
Advanced Learning Models
Chapter I - Introduction, Deep Learning and Multilayer Perceptron

Julien Mairal & Xavier Alameda-Pineda

with the help of Jakob Verbeek and Laurent Besacier

MSIAM/MoSIG – 2019-2020

1 / 82

Table of Today’s Contents

1 Course Organisation

2 Principles of Machine Learning

3 Deep Learning: Overview

4 Deep Learning: Basics

5 Deep Learning: Feed Forward Networks

6 Deep Learning: Convolutional Neural Networks

2 / 82

Course Organisation

3 / 82

Course Organisation

Goal

Introduce two major paradigms in machine learning called kernel methods
(taught by Julien) and neural networks (taught by Xavi).

Ressources

You can visit (often) the web page of the course
http://lear.inrialpes.fr/people/mairal/teaching/2018-2019/MSIAM/

Grading

Homework (once, 30%), Data Challenge (30%) and final exam (40%).
Data challenge can be done in teams of two students.

4 / 82

http://lear.inrialpes.fr/people/mairal/teaching/2018-2019/MSIAM/

Principles of Machine Learning

5 / 82

Common strategy: optimisation (for machine learning)

Optimisation is central in machine learning. As an example, supervised
learning consists on estimating a prediction function f : X → Y given a
set of labeled training data {(xn, yn)}Nn=1, xn ∈ X and yn ∈ Y:

min
f ∈F

1

N

N∑
n=1

L(yn, f (xn))︸ ︷︷ ︸
Empirical Risk

+ λΩ(f)︸ ︷︷ ︸
Regularisation

X is the data space and xn are the data points (visual features,
bag-of-words, cepstral coefficients, raw images).

Y is the label space and yn are the labels (Y could be {−1, 1},
{1, . . . ,K} for binary/multiclass class., R, RK) for regression).

L is the loss assessing the dissimilarity between yn and f (xn).

Ω is the regulariser, ensuring that the optimal f is reasonable.

6 / 82

Common strategy: optimisation (for machine learning)

Optimisation is central in machine learning. As an example, supervised
learning consists on estimating a prediction function f : X → Y given a
set of labeled training data {(xn, yn)}Nn=1, xn ∈ X and yn ∈ Y:

min
f ∈F

1

N

N∑
n=1

L(yn, f (xn))︸ ︷︷ ︸
Empirical Risk

+ λΩ(f)︸ ︷︷ ︸
Regularisation

X is the data space and xn are the data points (visual features,
bag-of-words, cepstral coefficients, raw images).

Y is the label space and yn are the labels (Y could be {−1, 1},
{1, . . . ,K} for binary/multiclass class., R, RK) for regression).

L is the loss assessing the dissimilarity between yn and f (xn).

Ω is the regulariser, ensuring that the optimal f is reasonable.

6 / 82

Common strategy: optimisation (for machine learning)

Optimisation is central in machine learning. As an example, supervised
learning consists on estimating a prediction function f : X → Y given a
set of labeled training data {(xn, yn)}Nn=1, xn ∈ X and yn ∈ Y:

min
f ∈F

1

N

N∑
n=1

L(yn, f (xn))︸ ︷︷ ︸
Empirical Risk

+ λΩ(f)︸ ︷︷ ︸
Regularisation

X is the data space and xn are the data points (visual features,
bag-of-words, cepstral coefficients, raw images).

Y is the label space and yn are the labels (Y could be {−1, 1},
{1, . . . ,K} for binary/multiclass class., R, RK) for regression).

L is the loss assessing the dissimilarity between yn and f (xn).

Ω is the regulariser, ensuring that the optimal f is reasonable.

6 / 82

Common strategy: optimisation (for machine learning)

Optimisation is central in machine learning. As an example, supervised
learning consists on estimating a prediction function f : X → Y given a
set of labeled training data {(xn, yn)}Nn=1, xn ∈ X and yn ∈ Y:

min
f ∈F

1

N

N∑
n=1

L(yn, f (xn))︸ ︷︷ ︸
Empirical Risk

+ λΩ(f)︸ ︷︷ ︸
Regularisation

X is the data space and xn are the data points (visual features,
bag-of-words, cepstral coefficients, raw images).

Y is the label space and yn are the labels (Y could be {−1, 1},
{1, . . . ,K} for binary/multiclass class., R, RK) for regression).

L is the loss assessing the dissimilarity between yn and f (xn).

Ω is the regulariser, ensuring that the optimal f is reasonable.

6 / 82

Common strategy: optimisation (for machine learning)

Optimisation is central in machine learning. As an example, supervised
learning consists on estimating a prediction function f : X → Y given a
set of labeled training data {(xn, yn)}Nn=1, xn ∈ X and yn ∈ Y:

min
f ∈F

1

N

N∑
n=1

L(yn, f (xn))︸ ︷︷ ︸
Empirical Risk

+ λΩ(f)︸ ︷︷ ︸
Regularisation

X is the data space and xn are the data points (visual features,
bag-of-words, cepstral coefficients, raw images).

Y is the label space and yn are the labels (Y could be {−1, 1},
{1, . . . ,K} for binary/multiclass class., R, RK) for regression).

L is the loss assessing the dissimilarity between yn and f (xn).

Ω is the regulariser, ensuring that the optimal f is reasonable.

6 / 82

Examples

Examples of linear models on a P-dimensional feature space:

Linear SVM: min
w∈RP

1

N

N∑
n=1

max(0, 1− ynw
>xn) + λ‖w‖22.

Ridge: min
w∈RP

1

N

N∑
n=1

1

2
(yn − w>xn)2 + λ‖w‖22.

Logistic: min
w∈RP

1

N

N∑
n=1

log(1 + e(−ynw
>xn)) + λ‖w‖22.

7 / 82

Overall strategy

The previous formulation is called empirical risk minimisation:

Observe the world, i.e. gather (and annotate) data.

Model the observed data. Design, learn and select the model.

Assess the quality of the model on test data.

Train (design, learn)
Validation
(select)

Test
(assess)

8 / 82

Overall strategy

The previous formulation is called empirical risk minimisation:

Observe the world, i.e. gather (and annotate) data.

Model the observed data. Design, learn and select the model.

Assess the quality of the model on test data.

Train (design, learn)
Validation
(select)

Test
(assess)

8 / 82

Overall strategy

The previous formulation is called empirical risk minimisation:

Observe the world, i.e. gather (and annotate) data.

Model the observed data. Design, learn and select the model.

Assess the quality of the model on test data.

Train (design, learn)
Validation
(select)

Test
(assess)

8 / 82

Overall strategy

The previous formulation is called empirical risk minimisation:

Observe the world, i.e. gather (and annotate) data.

Model the observed data. Design, learn and select the model.

Assess the quality of the model on test data.

Train (design, learn)
Validation
(select)

Test
(assess)

Test on NEW data is very important to quantify the generalisation error!!!

General principle

This principle is valid (and required) for a wide variety of tasks, and
methods, namely: neural networks, kernel methods, etc.

8 / 82

Overall strategy: comments

Not so simple

Even linear models lead to challenging problems in optimization:

algorithms that scale both in the problem size N and dimension P;

are able to exploit the problem structure;

come with statistical, convergence and numerical stability guarantees.

Usable beyond supervised learning

min
f ∈F

1

N

N∑
n=1

L(f (xn)) + λΩ(f)

L is not a classification loss;

Example of paradigms: K-means, PCA, MoG, matrix factorisation.

9 / 82

Overall strategy: comments

Not so simple

Even linear models lead to challenging problems in optimization:

algorithms that scale both in the problem size N and dimension P;

are able to exploit the problem structure;

come with statistical, convergence and numerical stability guarantees.

Usable beyond supervised learning

min
f ∈F

1

N

N∑
n=1

L(f (xn)) + λΩ(f)

L is not a classification loss;

Example of paradigms: K-means, PCA, MoG, matrix factorisation.

9 / 82

ALM Paradigm 1: Deep neural network

min
f ∈F

1

N

N∑
n=1

L(yn, f (xn))︸ ︷︷ ︸
Empirical Risk

+ λΩ(f)︸ ︷︷ ︸
Regularisation

In deep neural network, the prediction function space F is a
combination of linear operators Ak and non-linear operators σk :

f (x) = σK (AKσK−1(AK−1 · · ·σ2(A2σ1(A1x)) · · ·)).

Optimising for A1, . . .AK yields an intractable, non-convex
optimisation problem in huge dimension (millions!).

Linear operation A1, . . .AK can be unconstrained (fully connected) or
share some parameters (convolutions).

10 / 82

Paradigm 1: Deep Neural Networks

Example: convolutional neural network:

Main properties of CNNs:

Multi-scale feature extraction;

Invariant to certain basic transformations;

Model the local stationarity (at several scales);

State-of-the-art in many tasks/fields.

Image from https://missinglink.ai/.

11 / 82

Paradigm 1: Deep Neural Networks

Example: convolutional neural network:

Main open problems:

Little theoretical understanding;

Huge amounts of labeled data (millions!);

Manual design and parameter tuning/selection;

Unclear how to regularise.

Image from https://missinglink.ai/.

11 / 82

Paradigm 1: Deep Neural Networks

Example: convolutional neural network:

Main advantages (for you):

Huge academic and industrial effort;

Many open source libraries (pytorch, keras, tensorflow, etc);

Lots of researchers publish their models and their weights
(reproducibility/reuse);

Anyone with a GPU and some programing basics can
run/re-train/modify/update a CNN.

Image from https://missinglink.ai/.

11 / 82

Paradigm 2: Kernel Methods

Map the data into a hilbert space H

min
f ∈H

1

N

N∑
n=1

L(yn, f (xn)) + λ‖f ‖H,

and then work with linear forms:

ϕ : X → H and f (x) = 〈ϕ(x), f 〉H , f ∈ H.

12 / 82

Paradigm 2: Kernel Methods

Map the data into a hilbert space H

min
f ∈H

1

N

N∑
n=1

L(yn, f (xn)) + λ‖f ‖H,

and then work with linear forms:

ϕ : X → H and f (x) = 〈ϕ(x), f 〉H , f ∈ H.

The main purpose is to embed the data in a vector space, where many
geometrical operations are well-defined (angle, barycenters, projections).
These includes infinite-dimensional vector spaces!

This priciple is generic and assumes nothing about the original feature
space X (vectors, graphs, meshes, sequences, sets, etc).

12 / 82

Paradigm 2: Kernel Methods (II)

Kernel methods are very useful to

(i) compare non-vector data as if they were and (ii) compare vector data
in a structure different than the Euclidean space:

lift-up the data into a higher dimensional space where we hope data
will be e.g. linearly separable, nice clusters;

this is because the linear form f (x) = 〈ϕ(x), f 〉H in H may
correspond to a non-linear model in X .

13 / 82

Paradigm 2: Kernel Methods (III)

How does it work? Pairwise comparisons

Define a comparison function K : X × X → R.

Represent a set of N data points S = {x1, . . . , xN} by the N × N
matrix of pair-wise comparisons K:

K ∈ RN×N Kij = K (xi , xj).

14 / 82

Paradigm 2: Kernel Methods (IV)

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping ϕ : X → H, such that:

K (x , x ′) =
〈
ϕ(x), ϕ(x ′)

〉
H , ∀x , x ′ ∈ X .

RKHS

H is called the reproducing kernel Hilbert space (RKHS). Intuitively, for
any x ∈ X we can build fx ∈ H so that:

fx : X → R (by definition) and fx(y) = K (x , y).

The mapping x → fx is the mapping ϕ of the previous theorem.

15 / 82

Paradigm 2: Kernel Methods (IV)

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping ϕ : X → H, such that:

K (x , x ′) =
〈
ϕ(x), ϕ(x ′)

〉
H , ∀x , x ′ ∈ X .

RKHS

H is called the reproducing kernel Hilbert space (RKHS). Intuitively, for
any x ∈ X we can build fx ∈ H so that:

fx : X → R (by definition) and fx(y) = K (x , y).

The mapping x → fx is the mapping ϕ of the previous theorem.

15 / 82

Paradigm 2: Kernel Methods – Summary

Main features

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

often convex optimization problems with natural regularisation;

versatility: applies to vectors, sequences, graphs, sets, etc.

Main limitations

decoupling of data representation and learning may not be good;

requires kernel design;

has scalability problems.

More on this with Julien Mairal on Dec 12th, Jan 9th and 16th.

16 / 82

Paradigm 2: Kernel Methods – Summary

Main features

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

often convex optimization problems with natural regularisation;

versatility: applies to vectors, sequences, graphs, sets, etc.

Main limitations

decoupling of data representation and learning may not be good;

requires kernel design;

has scalability problems.

More on this with Julien Mairal on Dec 12th, Jan 9th and 16th.

16 / 82

Deep Learning: Overview

17 / 82

What is Deep Learning?

Deep Learning is a field of machine learning, aiming to learn
representations of data tailored to the problem at hand.

The conception of the model depends on the task to be solved, but the
philosophy of deep learning is to process raw data (e.g. images, sounds).

It can be used in supervised, unsupervised and reinforcement learning.
Supervised ↔ annotated labels, unsupervised ↔ no annotated labels,
reinforcement ↔ learning a sequence of actions to maximise a reward.

Why is it called Deep Learning and Deep Neural Networks?

18 / 82

Deep Learning and Deep Neural Networks

Neural

As we will see later, the basic unit is called (artificial) neuron, and its
design is inspired by the way brain cells function. Several inputs (scalars)
are weighted and added, to trigger (or not) the single output (scalar).

Deep Network

These neurons are grouped in layers, in different structures. To construct a
network, we stack K layers on top of each other.

Weighted sum ↔ linear operator (A), trigger ↔ non-linear function (σ).

f (x) = σK (AKσK−1(AK−1 · · ·σ2(A2σ1(A1x)) · · ·)).

Learning

Once we have decided the structure, we need to devise a way to optimise
for the parameters of the linear operators: A1, . . . ,AK .

19 / 82

Deep Learning and Deep Neural Networks

Neural

As we will see later, the basic unit is called (artificial) neuron, and its
design is inspired by the way brain cells function. Several inputs (scalars)
are weighted and added, to trigger (or not) the single output (scalar).

Deep Network

These neurons are grouped in layers, in different structures. To construct a
network, we stack K layers on top of each other.

Weighted sum ↔ linear operator (A), trigger ↔ non-linear function (σ).

f (x) = σK (AKσK−1(AK−1 · · ·σ2(A2σ1(A1x)) · · ·)).

Learning

Once we have decided the structure, we need to devise a way to optimise
for the parameters of the linear operators: A1, . . . ,AK .

19 / 82

Deep Learning and Deep Neural Networks

Neural

As we will see later, the basic unit is called (artificial) neuron, and its
design is inspired by the way brain cells function. Several inputs (scalars)
are weighted and added, to trigger (or not) the single output (scalar).

Deep Network

These neurons are grouped in layers, in different structures. To construct a
network, we stack K layers on top of each other.

Weighted sum ↔ linear operator (A), trigger ↔ non-linear function (σ).

f (x) = σK (AKσK−1(AK−1 · · ·σ2(A2σ1(A1x)) · · ·)).

Learning

Once we have decided the structure, we need to devise a way to optimise
for the parameters of the linear operators: A1, . . . ,AK .

19 / 82

How to learn?

1 Sample a batch of
annotated data.

2 Forward the network to
predict, f (x).

3 Compute the prediction
error for back-propagation.

4 Update the weights by
back-propagation.

We first generate an error signal measuring the difference between
predictions and ground-truth (annotations). This signal is used to update
the weights of the network.

20 / 82

A bit of history

In 2012 there was a three-fold break-through: data (ImageNet),
computation (GPU) and architectures.

Image from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction.

21 / 82

Success stories (I): convolutional neural networks

For stationary signals such as audio, images, and video.

Applications: object detection, image retrieval, pose estimation.

Image from He et al. “Mask R-CNN” in ICCV 2017.

22 / 82

Success stories (II): recurrent neural networks

For variable length sequence data, e.g. in natural language.

Applications: sequence to sequence prediction (machine translation,
speech recognition).

Images from: https://smerity.com/media/images/articles/2016/ and

http://www.zdnet.com/article/google-announces-neural-machine-translation-to-improve-google-translate/.

23 / 82

https://smerity.com/media/images/articles/2016/
http://www.zdnet.com/article/google-announces-neural-machine-translation-to-improve-google-translate/

Where does the success come from?

Classic approach

Feature extraction engineered

Feature aggregation unsupervised

Recognition supervised

Deep learning approach

There is continuous between feature extraction and recognition.

All information processing steps are jointly learned to optimise a
task-dependent loss.

24 / 82

And at what cost?

Annotation of millions of images by hand is quite tedious. Gathering
such large-scale data-set for every new task is unfeasible. There are
approaches to address that and mitigate that effect.

Storage of these data: need of disk space, data servers, data
transmission, etc.

Pre-processing of these data points to satisfy the expected input (in
terms of size, shape, format, statistical distribution, etc).

Computational cost of learning the model parameters (hours, days or
weeks on multi-GPU servers). Big tech companies have GPU farms.

So what is the advantage?

Performance!

25 / 82

And at what cost?

Annotation of millions of images by hand is quite tedious. Gathering
such large-scale data-set for every new task is unfeasible. There are
approaches to address that and mitigate that effect.

Storage of these data: need of disk space, data servers, data
transmission, etc.

Pre-processing of these data points to satisfy the expected input (in
terms of size, shape, format, statistical distribution, etc).

Computational cost of learning the model parameters (hours, days or
weeks on multi-GPU servers). Big tech companies have GPU farms.

So what is the advantage? Performance!

25 / 82

CNN for visual data

Intuitive idea: organise neurons spatially as “images” in a 2D grid.

Since 2012’s AlexNet trained in ImageNet (106 images for 103 classes):

Image from https://www.embedded-vision.com/.

26 / 82

https://www.embedded-vision.com/

CNN for visual data

Intuitive idea: organise neurons spatially as “images” in a 2D grid.

Convolution computes activations from one layer to next
I Translation invariant (stationary signal)
I Local connectivity (fast to compute)
I # of parameters decoupled from input size (generalization)

Pooling layers down-sample the signal every few layers
I Multi-scale pattern learning
I Degree of translation invariance

26 / 82

CNN: Hierarchical representations

Higher layers represent more abstract concepts!!!

Image from M. Zeiler and Rob Fergus “Visualizing and understanding convolutional networks” ECCV 2014.

27 / 82

CNN: Applications

1 Image classification (all started with that).
I Object-class or face-identity recognition.
I Deeper and deeper networks (2012: 8 layers, now 100+ layers).
I Other architectures: residual networks, skip connections.
I The models trained on image classification, can be used for other tasks.

2 Object detection.
I Localise the objects (bounding box, segmentation).
I Classify the localised objects.

3 Scene text detection and reading.
I Localise and read text.
I Extreme variability → train with combined real/synthetic dataset.

28 / 82

CNN: Applications

1 Image classification (all started with that).
I Object-class or face-identity recognition.
I Deeper and deeper networks (2012: 8 layers, now 100+ layers).
I Other architectures: residual networks, skip connections.
I The models trained on image classification, can be used for other tasks.

2 Object detection.
I Localise the objects (bounding box, segmentation).
I Classify the localised objects.

Image from He et al. “Mask R-CNN” in ICCV 2017.

3 Scene text detection and reading.
I Localise and read text.
I Extreme variability → train with combined real/synthetic dataset.

28 / 82

CNN: Applications

1 Image classification (all started with that).
I Object-class or face-identity recognition.
I Deeper and deeper networks (2012: 8 layers, now 100+ layers).
I Other architectures: residual networks, skip connections.
I The models trained on image classification, can be used for other tasks.

2 Object detection.
I Localise the objects (bounding box, segmentation).
I Classify the localised objects.

3 Scene text detection and reading.
I Localise and read text.
I Extreme variability → train with combined real/synthetic dataset.

Image from Gupta et al “Synthetic data for text localisation in natural images” In CVPR 2016.

28 / 82

Recurrent neural networks (RNN)

Motivation

Not all inputs have fixed length.

Some problems are inherently “online”: information has to be treated
upon arrival while keeping track of the past observations.

Exemplar applications: machine translation, speech recognition.

A RNN treats input x(t) combined with the previous hidden representation
h(t − 1) to update the hidden representation h(t) and output y(t).

29 / 82

RNNs as generative models

We can train RNN to generate language.

Example of generated text after training on Shakespeare:

Figure from http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

30 / 82

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs vanishing gradient

The vanishing/exploding gradient problem happens when sequences are
too long. The error back-propagated is either too tiny/large to be usable.

Alternative architectures have been proposed: they learn to remember or
forget information through a gating mechanism. Examples: long-short
term memory (LSTM) or gated recurrent units (GRU):

RNN LSTM GRU

Figures from http://dprogrammer.org/.

31 / 82

http://dprogrammer.org/

RNN Applications

1 Machine Translation
I End-to-end translation: map input sequence into a fixed vector, then

decode target sequence.
I Most on-line machine translation systems are based on that.

h1 h2 h3

Une voiture bleue

encoder

s1 s2 s3 s4

A blue car </S><S>

decoder

h1 h2 h3

Une voiture bleue

encoder

s1 s2 s3 s4

A blue car </S><S>

decoder

c2

0.1
0.3

0.6

attention

Figure from Alexandre Berard’s thesis.

2 Speech Transcription
I Architecture similar to neural machine translation.
I Speech encoder based on CNNs or pyramidal LSTMs.

3 Natural language image description

32 / 82

RNN Applications

1 Machine Translation
I End-to-end translation: map input sequence into a fixed vector, then

decode target sequence.
I Most on-line machine translation systems are based on that.

2 Speech Transcription
I Architecture similar to neural machine translation.
I Speech encoder based on CNNs or pyramidal LSTMs.

h1
1 h1

2
. . . h1

T−1 h1
T

h2
1

h2
T
2

. . .

c2

s2s1 s3 s4

A blue car </S><S>

Figure from Alexandre Berard’s thesis.

3 Natural language image description

32 / 82

RNN Applications

1 Machine Translation
I End-to-end translation: map input sequence into a fixed vector, then

decode target sequence.
I Most on-line machine translation systems are based on that.

2 Speech Transcription
I Architecture similar to neural machine translation.
I Speech encoder based on CNNs or pyramidal LSTMs.

3 Natural language image description

I Beyond detection of a fixed set of
object categories.

I Generate word sequence from
image data.

Figure from Karpathy et al “Deep visual-semantic alignments for generating image descriptions” in CVPR 2015.

32 / 82

Wrap-up

Core idea of deep learning
I Many processing layers from raw input to output
I Joint learning of all layers for single objective

A strategy that is effective across different disciplines
I Computer vision, speech recognition, natural language processing,

game playing, etc.

Widely adopted in large-scale applications in industry
I Face tagging on Facebook over 10 9 images per day
I Speech recognition on iPhone
I Machine translation at Google, Systran, DeepL, etc.

Open source development frameworks available (pytorch, tensorflow
and the like)

Limitations: compute and data hungry
I Parallel computation using GPUs
I Re-purposing networks trained on large labeled data sets

33 / 82

Research directions (I)

Optimal architectures and hyper-parameters
I Possibly under constraints on computing power and memory
I Hyper-parameters of optimization: learning to learn (meta learning)

Extend to irregular data such as: (molecular) graphs, 3D meshes,
(social) networks, circuits, trees, etc.

Reduce reliance on supervised data.
I Un-, semi-, self-, weakly- supervised, etc.
I Data augmentation and synthesis (e.g. rendered images).
I Pre-training, multi-task learning.

Uncertainty and structure in the output space, many possible outputs,
structured outputs, etc.

34 / 82

Research directions (II)

Analyze learned representations
I Better understanding of black boxes
I Explainable AI
I Neural networks to approximate/verify long standing models and

theories (link with cognitive sciences)

Robustness to adversarial examples that fool systems

Introduce prior knowledge in the model

Biases issues (gender, skin tone, appearance, etc)

Common sense reasoning

35 / 82

Deep Learning: Basics

36 / 82

Biological motivation

The neuron is the basic computational unit of the brain
About 1011 neurons in the human brain.

Simplified neuron model as a linear threshold unit.
I Firing rate of electrical spikes modeled as continuous output quantity
I Connection strength modeled by multiplicative weights
I Cell activation given by sum of inputs
I Output is non-linear function of activation

Basic component in neural circuits for complex tasks

Figure from http://cs231n.github.io/neural-networks-1/.

37 / 82

http://cs231n.github.io/neural-networks-1/

Rosenblatt’s Perceptron

Binary classification based on the sign of a generalised linear function:

sign(fw (x)) with fw (x) = w>φ(x).

Gradient is always zero!!! Not good
for weight estimation.

Objective function linear in the score over misclassified patterns:

L(w) = −
∑

ti 6=fw (xi)

ti fw (xi) =
∑
i

max(0,−ti fw (xi)) ti ∈ {−1, 1}.

Perceptron learning via stochastic gradient descent at iteration r + 1:

wr+1 = wr + η ti φ(xi) [ti f (xi) < 0].

Let us analyse this equation.

38 / 82

Rosenblatt’s Perceptron Weight Update

wr+1 = wr + η ti φ(xi) [ti f (xi) < 0].

One sample “i” at a time → stochastic gradient descent (SGD).
Nowadays we sample a batch of data (several points) → batch SGD.

η is the so-called learning rate, associated to first-order gradient
descent techniques.

ti φ(x) is the direction/module of the update.

39 / 82

Rosenblatt’s Perceptron Weight Update

wr+1 = wr + η ti φ(xi) [ti f (xi) < 0].

One sample “i” at a time → stochastic gradient descent (SGD).
Nowadays we sample a batch of data (several points) → batch SGD.

η is the so-called learning rate, associated to first-order gradient
descent techniques.

ti φ(x) is the direction/module of the update.

39 / 82

Rosenblatt’s Perceptron Weight Update

wr+1 = wr + η ti φ(xi) [ti f (xi) < 0].

One sample “i” at a time → stochastic gradient descent (SGD).
Nowadays we sample a batch of data (several points) → batch SGD.

η is the so-called learning rate, associated to first-order gradient
descent techniques.

ti φ(x) is the direction/module of the update.

39 / 82

Rosenblatt’s Perceptron Convergence

If a correct solution w∗ exists, then the perceptron learning rule will
converge to a correct solution in a finite number of iterations.

Assume all input live in ball of radius M, that w∗ has unit norm and
it has some margin t 〈w∗, x〉 > δ.

Given an initial estimate w0, its update w1 = w0 + tx safistifes:
〈w∗,w1〉 = 〈w∗,w0〉+ t 〈w∗, x〉 > 〈w∗,w0〉+ δ.

Moreover, since t 〈w , x〉 < 0 for misclassified samples, we have:
〈w1,w1〉 = 〈w0,w0〉+ 2t 〈w0, x〉+ 〈x , x〉 < 〈w0,w0〉+ 〈x , x〉 < 〈w0,w0〉+M.

After r updates: 〈w∗,wr 〉 > 〈w∗,w0〉+ rδ and 〈wr ,wr 〉 < 〈w0,w0〉+ rM.

Then (check it!):

a(r) :=
〈w∗,wr 〉√
〈wr ,wr 〉

⇒ a(r) ≤ 1 and a(r) >
δ
√
r√
M

large r

⇒ the number of iterations is limited!

40 / 82

Rosenblatt’s Perceptron Limitations

Perceptron convergence theorem (Rosenblatt, 1962) states that:
I If training data is linearly separable, then learning algorithm finds a

solution in a finite number of iterations.
I Faster convergence for larger margin.

If training data is linearly separable then the found solution will
depend on the initialization and ordering of data in the updates

If training data is not linearly separable, then the perceptron learning
algorithm will not converge

No direct multi-class extension

No probabilistic output or confidence on classification

41 / 82

Relation to logistic/hinge regression

Perceptron loss similar to hinge loss without the notion of margin
Not a bound on the zero-one loss
Loss is zero for any separator, not only for large margin separators
All are based on (generalised) linear score functions, relying on
pre-defined non-linear data transformation or kernel

f (x) = w>φ(x)

.

42 / 82

Multi-Layer Perceptron (MLP)

Instead of using generlised linear functions, learn the features!

Each unit (neuron) in MLP computes:
1 Linear function of the features (activations) in the previous layer
2 Followed by scalar non-linearity (not the perceptron’s “step”)

zj = h(1)

(∑
i

w
(1)
ij xi

)

yk = h(2)

∑
j

w
(2)
jk zj



43 / 82

Multi-Layer Perceptron (MLP)

Instead of using generlised linear functions, learn the features!

Each unit (neuron) in MLP computes:
1 Linear function of the features (activations) in the previous layer
2 Followed by scalar non-linearity (not the perceptron’s “step”)

If activations are linear, then it
remans a linear model.

Two-layer MLPs can uniformly
approximate any continuous
function on a compact input
domain provided a sufficiently
large number of hidden units.

43 / 82

Deep Learning: Feed Forward Networks

44 / 82

Feed Forward Networks

MLP Architecture can be generalized
I More than two layers of computation
I Skip-connections from previous layers

Feed-forward nets are restricted to directed acyclic graphs of
connections. Ensures that output can be computed from the input in
a single feed-forward pass from the input to the output.

Important issues in practice
I Designing network architecture (# nodes, layers, non-linearities, etc)
I Learning the network parameters (Non-convex optimization)
I Sufficient training data (Data augmentation, synthesis)

45 / 82

Simple output case: multiclass classification

Each output neuron is mapped to the posterior prob. of the class:

yk → p(ck |x) =
exp(yk)∑
m exp(ym)

So-called softmax operation.

Multi-class logistic regression loss (also called cross-entropy loss):

L = −
∑
k

lk log p(ck |x)→ lk = 1⇔ k is the correct class.

⇒ We are maximising the log-probability of the correct class.

We are now learning the classifier and the data representation
simultaneously → representation learning.

But how do we do that?

46 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂yk

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂yk

=

{
0 lk = 0

1− eyk∑
` e

y`
lk = 1

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂yk

∂w
(2)
km

= h′(t) =
−e−t

(1 + e−t)2

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂yk

∂w
(2)
km

= h′

(
M∑

m=0

w
(2)
km zm

)
zm h′(t) =

−e−t

(1 + e−t)2

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂yk
∂zm

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂yk
∂zm

= h′

(
M∑

m=0

w
(2)
km zm

)
w

(2)
km

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂w

(2)
km

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂w

(2)
km

=
∑
k

(
1− eyk∑

` e
y`

)
h′

(
M∑

m=0

w
(2)
km zm

)
zm

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂zm

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂zm

=
∑
k

(
1− eyk∑

` e
y`

)
h′

(
M∑

m=0

w
(2)
km zm

)
w

(2)
km

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂zm

∂w
(1)
md

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂zm

∂w
(1)
md

= h′

(
D∑

d=0

w
(1)
mdxd

)
xd

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂w

(1)
md

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂w

(1)
md

=
∑
k

(
1− eyk∑

` e
y`

)
h′

(
M∑

m=0

w
(2)
km zm

)
h′

(
D∑

d=0

w
(1)
mdxd

)
xd

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂xd

=

47 / 82

Computing the gradient

Recall:

zm = h

(
D∑

d=0

w
(1)
mdxd

)
, yk = h

(
M∑

m=0

w
(2)
km zm

)
,

p(ck |x) =
eyk∑
m eym

, h(t) = 1/(1 + e−t),

L = −
∑
k

lk log p(ck |x), lk = 1 or 0.

∂L
∂xd

=
∑
k,m

(
1− eyk∑

` e
y`

)
h′

(
M∑

m=0

w
(2)
km zm

)
h′

(
D∑

d=0

w
(1)
mdxd

)
w

(1)
md

47 / 82

Activation functions

Many possible. Simple non-linear scala functions.

Sigmoid: h(t) = 1/(1 + e−t).

Squeezes reals to [0, 1].

Smooth step function.

Historically popular because of
biologically inspired.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tan-h: h(t) = (et − e−t)/(et + e−t).

Squeezes reals to [−1, 1].

Similar to sigmoid.

Limitation: saturated neurons “kill”
the gradients.

-8 -6 -4 -2 2 4 6 8

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

48 / 82

Activation functions

ReLU: h(t) = max(0, t).

Rectified Linear Unit.

Does not saturate.

Converges much faster than
previous. Widely used.

-10 -8 -6 -4 -2 0 2 4 6 8 10

1

2

3

4

5

6

7

8

9

Leaky ReLU: h(t) = max(αt, t).

Does not saturate in neither region.

Computationally efficient.

Faster convergence.
-8 -6 -4 -2 2 4 6 8

2

4

6

8

49 / 82

Training feedforward neural networks

Non-convex optimisation problem in very high dimension (millions!).

1

N

N∑
n=1

L(φ(x ;W), l) + λΩ(W), φ(·;W) is the DNN.

Many equivalent local minima exist.

Regularisation, Ω: using “weight decay” or “drop-out.”

Label smoothing to avoid overfitting:

L = (1− ε) log(p(l |x)) + ε log(1− p(l |x)).

Weight update using gradient descent. For large datasets, we will use
batch-stochastic techniques.

50 / 82

Training feedforward neural networks (II)

1 Sample a batch of data (input-output) from the dataset.

2 Feed-forward the data through the network.

3 Back-propagate the error through the network (gradient chain rule).

4 Update the weights with gradient.

51 / 82

Deep Learning: Convolutional Neural Networks

52 / 82

Motivation

Is this input representation suitable for images?

53 / 82

CNN: Overview

A convolutional neural network is a special feedforward network

Hidden units are organized into grid, as is the input

Linear mapping from layer to layer takes form of convolution
I Translation invariant processing
I Local processing
I Decouples # of parameters from input size
I Same net can process inputs of varying size

54 / 82

2D convolutions

2D convolutions are linear operations:

Start from the top-left position.

Multiply-and-add.

Store in the output image.

Go to next pixel position.

55 / 82

Convolutions in ConvNets

In ConvNets (or CNNs), the convolution filters or kernels have depth:

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

56 / 82

Convolutions in ConvNets (II)

What is the width and height of the output image?

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

57 / 82

Convolutions in ConvNets (III)

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

58 / 82

Convolutions in ConvNets (IV)

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

59 / 82

Convolutions in ConvNets (V)

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

60 / 82

Convolutions in ConvNets (VI)

The filters must have the same depth as the input. The output depth
corresponds to the number of filters.

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

61 / 82

Convolutions in ConvNets (VII)

We can repeat the operation with a second convolutional layer.

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

62 / 82

Different types of convolutions

Standard

Padded (full, half, etc)

Strided

Dilated

etc.

http://deeplearning.net/software/theano/tutorial/conv_

arithmetic.html

63 / 82

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Pooling

Applied separately per feature channel

Effect: invariance to small translations of the input

Max and average pooling most common, other things possible

Parameter free layer

Similar to strided convolution with special non-trainable filter

64 / 82

Receptive field

Receptive field is area in original image impacting a certain unit.
Later layers can capture more complex patterns over larger areas.

Receptive field size grows linearly over convolutional layers.
If we use a convolutional filter of size w × w , then each layer the
receptive field increases by w − 1.

Receptive field size increases exponentially over layers with striding.
Regardless whether they do pooling or convolution.

65 / 82

Fully connected layers

Convolutional and pooling layers typically followed by several “fully
connected” (FC) layers, i.e. a standard MLP

FC layer connects all units in previous layer to all units in next layer

Assembles all local information into global vectorial representation

66 / 82

Weight initialisation

Intuition 1: if the weights are too small, then the signal shrinks and
becomes tiny.

Intuition 2: if the weights are too high, the signal may become too
huge to be used.

We cannot initialise the network weights to very small (or zero)
values.

We usually draw the initial weights from a Gaussian distribution with
standard deviation of

√
2/n, where n is the number of outputs to the

neuron. → Ensures that the signal/gradient stay on the same scale.

67 / 82

Drop-out regularisation

Main idea: deactivate a subset of neurons, randomly selected at every
batch during training.

If forces the network to be redundant, hence robust.

Different paths to recognise the same pattern.

68 / 82

Batch normalisation

Motivation: for very deep networks with ReLU, we quickly overflow
(very large values).

Main idea: the output of the linear combinations must follow a
standard Gaussian distribution (zero mean, unit variance).

Rationale: then all layers work at a similar regime.

Usually after the fully connected or convolutional layers and before
the non-linear activation.

Compute the mean and variance for each neuron and:

xnew =
xold − µ√

ν

.

Improves gradient flow and allows for larger learning rates.

It is an unsupervised process that can take place at test time as well.

69 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5):

#par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling):

#par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5):

#par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling):

#par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120):

#par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84):

#par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10):

#par: 84 ∗ 10 = 840 #act: 10.

70 / 82

CNN Architectures: Lenet (1998)

Let’s compute the # parameters and activations (input image is 32× 32):

C1 (6 filters of 5 × 5): #par: (5 × 5 + 1) × 6 = 156 #act: 28 × 28 × 6 = 4704.

S2 (subsampling): #par : 0 #act: 14 × 14 × 6 = 1176.

C3 (16 filters of 5 × 5): #par: (5 × 5 + 1) × 16 × 6 = 2496 #act:
10 × 10 × 16 = 1600.

S4 (subsampling): #par: 0 #act: 5 × 5 × 16 = 400.

C5 (FC output 120): #par: (400 + 1) × 120 = 48120 #act: 120.

F6 (FC output 84): #par: 120 ∗ 84 = 10080 #act: 84.

Class (FC output 10): #par: 84 ∗ 10 = 840 #act: 10.

70 / 82

What changed?

Large training datasets for computer vision
I 1.2 million images of 1000 classes in ImageNet challenge (2012)
I 200 million faces to train face recognition nets (2015)

GPU-based implementation: much faster than CPU
I Parallel computation for matrix products
I Krizhevsky & Hinton, 2012: six days on two GPUs (see next slide)
I Rapid progress in GPU compute performance

Network architectures

Industrially backed open-source software (Pytorch, TensorFlow, etc)

71 / 82

AlexNet CNN (2012)

Winner ImageNet 2012 image classification challenge, huge impact
(+50k citations). CNNs improving “traditional” computer vision
techniques on uncontrolled images.
Compared to LeNet

I Inputs at 224x224 rather than 32x32
I 5 rather than 3 conv layers
I More feature channels in each layer
I ∼ 60 million parameters
I ReLU non-linearity

72 / 82

VGG CNN (2015)

Double the number of layers (up to 16/19).

Only small 3× 3 filters (rather than 11 in AlexNet). Same receptive
field, less parameters, better learned.

About 140 million parameters.

73 / 82

GoogleNet Inception CNN (2015)

Reduced number of parameters (5 million) but more layers (27 or 48).

Inception module to compress features before convolution.

Replaces fully-connected with average pooling.

Intermediate loss functions to improve training.

74 / 82

Res(idual)Net CNN (2015)

Many more layers (34, 50, 110, 1200),
multi-GPU training is required.

Residual module to ensure gradient
flow.

Residual block does not require
intermediate losses.

75 / 82

U-Net (2015)

Convolution/deconvolution architecture for tissue segmentation.
Convolutions downsample the feature maps (and increase the #
channels).
Deconvolutions restore high-resolution image.
Skip connections allow to transfer information from intermediate
representations to the deconvolutions.

76 / 82

C3D or 3D ConvNets (2015)

Consider convolutional filters with less channels than the input.

The kernel can move also along channels, and convolve the input.

Can be used to process video frames (contactenated in a cube).

77 / 82

Understanding activations in CNN

Higher layers, more complicated concepts (Zeiler & Fergus 2014).

Layer 1: simple edges and color detectors.

78 / 82

Understanding activations in CNN

Higher layers, more complicated concepts (Zeiler & Fergus 2014).

Layer 2: corners, centers, ...

78 / 82

Understanding activations in CNN

Higher layers, more complicated concepts (Zeiler & Fergus 2014).

Layer 3: various object parts.

78 / 82

Understanding activations in CNN

Higher layers, more complicated concepts (Zeiler & Fergus 2014).

Layer 4 & 5: discriminative object parts/full objects.

78 / 82

Finetunning pre-trained CNNs

Early CNN layers extract generic features that seem useful for
different tasks.
Object localization, semantic segmentation, action recognition, etc.

On some datasets too little training data to learn CNN from scratch.
For example, only few hundred objects bounding box to learn from.

Pre-train AlexNet/VGGnet/ResNet/DenseNet on large scale dataset.
In practice mostly ImageNet classification: millions of labeled images.

Fine-tune CNN weights for task at hand, perhaps modifying the
architecture.

I Replace classification layer, add bounding box regression, ...
I Reduced learning rate and possibly freezing early network layers

79 / 82

Finetunning pre-trained CNNs (II)

From Yamashita et al “Convolutional neural networks: an overview and application in radiology” Insights into Imaging, 2018.

80 / 82

Fine-tunning example

Human body pose regression

Remove the last layers of the network.

Add new layers regression the limbs position.

Change the loss e.g. Euclidean distance.

Fine-tune previously trained layers and train the new ones from
scratch.

81 / 82

Common uses and extensions

Object category localisation

Semantic segmentation

Instance segmentation

Multi-person tracking

Combinations with other methods (e.g. CRF for segmentation)

Multi-architecture training and search

82 / 82

Common uses and extensions

Object category localisation

Semantic segmentation

Instance segmentation

Multi-person tracking

Combinations with other methods (e.g. CRF for segmentation)

Multi-architecture training and search

82 / 82

	Course Organisation
	Principles of Machine Learning
	Deep Learning: Overview
	Deep Learning: Basics
	Deep Learning: Feed Forward Networks
	Deep Learning: Convolutional Neural Networks

