Advanced learning models - 2nd homework

Exercice 1. Some kernels...

Show that the following kernels are positive definite:

1. On $\mathcal{X}=\mathbb{R}$:

$$
\forall x, y \in \mathbb{R}, \quad K(x, y)=\cos (x-y)
$$

2. On $\mathcal{X}=\left\{x \in \mathbb{R}^{p}:\|x\|_{2}<1\right\}$:

$$
\forall x, y \in \mathcal{X}, \quad K(x, y)=1 /\left(1-x^{\top} y\right)
$$

3. On $\mathcal{X}=\mathbb{N}$:

$$
\forall x, y \in \mathbb{N}, \quad K(x, y)=(-1)^{x+y}
$$

4. On $\mathcal{X}=\mathbb{R}^{n}$:

$$
\forall x, y \in \mathcal{X}, \quad K(x, y)=\pi-\arccos \left(\frac{x^{\top} y}{\|x\|\|y\|}\right) .
$$

Exercice 2. Dual of the SVM with intercept.

We recall the primal formulation of SVMs seen in the class.

$$
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2},
$$

and its dual formulation.

$$
\begin{equation*}
\max _{\alpha \in \mathbb{R}^{n}} 2 \alpha^{\top} \mathbf{y}-\alpha^{\top} \mathbf{K} \alpha \quad \text { such that } \quad 0 \leq y_{i} \alpha_{i} \leq \frac{1}{2 \lambda n}, \text { for all } i \tag{1}
\end{equation*}
$$

Consider the primal formulation of SVMs with intercept

$$
\min _{f \in \mathcal{H}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(f\left(x_{i}\right)+b\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2},
$$

Can we still apply the representer theorem? Why? Derive the corresponding dual formulation by using Lagrangian duality. Provide a formulation in terms of α in \mathbb{R}^{n} as in (11).

Exercice 3. Kernels encoding equivalence classes.

Consider a similarity measure $K: \mathcal{X} \times \mathcal{X} \rightarrow\{0,1\}$ with $K(x, x)=1$ for all x in \mathcal{X}. Prove that K is p.d. if and only if, for all $x, x^{\prime}, x^{\prime \prime}$ in \mathcal{X},

- $K\left(x, x^{\prime}\right)=1 \Leftrightarrow K\left(x^{\prime}, x\right)=1$, and
- $K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x^{\prime \prime}\right)=1 \Rightarrow K\left(x, x^{\prime \prime}\right)=1$.

Exercice 4. COCO

Given two sets of real numbers $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, the covariance between X and Y is defined as

$$
\operatorname{cov}_{n}(X, Y)=\mathbf{E}_{n}(X Y)-\mathbf{E}_{n}(X) \mathbf{E}_{n}(Y)
$$

where $\mathbf{E}_{n}(U)=\left(\sum_{i=1}^{n} u_{i}\right) / n$. The covariance is useful to detect linear relationships between X and Y. In order to extend this measure to potential nonlinear relationships between X and Y, we consider the following criterion:

$$
C_{n}^{K}(X, Y)=\max _{f, g \in \mathcal{B}_{K}} \operatorname{cov}_{n}(f(X), g(Y)),
$$

where K is a positive definite kernel on $\mathbb{R}, \mathcal{B}_{K}$ is the unit ball of the RKHS of K, and $f(U)=\left(f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right)$ for a vector $U=\left(u_{1}, \ldots, u_{n}\right)$.

1. Express simply $C_{n}^{K}(X, Y)$ for the linear kernel $K(a, b)=a b$.
2. For a general kernel K, express $C_{n}^{K}(X, Y)$ in terms of the Gram matrices of X and Y.

Exercice 5. RKHS

1. Let K_{1} and K_{2} be two positive definite kernels on a set \mathcal{X}, and α, β two positive scalars. Show that $\alpha K_{1}+\beta K_{2}$ is positive definite, and describe its RKHS.
2. Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi: \mathcal{X} \rightarrow \mathcal{F}$, and $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\left\langle\Psi(x), \Psi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

Show that K is a positive definite kernel on \mathcal{X}, and describe its RKHS.
3. Prove that for any p.d. kernel K on a space \mathcal{X}, a function $f: \mathcal{X} \rightarrow \mathbb{R}$ belongs to the RKHS \mathcal{H} with kernel K if and only if there exists $\lambda>0$ such that $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)-\lambda f(\mathbf{x}) f\left(\mathbf{x}^{\prime}\right)$ is p.d.

