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For extensive qualitative comparison and examples of predictions of the models, we refer the interested reader to the
project page provided at https://thoth.inrialpes.fr/people/pluc/iccv2017.

1. Improved baseline relying on optical flow

We propose an improvement over an initial baseline that has previously been used for next frame prediction in the space
of RGB intensities and relying on optical flow employed in [4] and [5]. In both the initial and our improved flow baselines,
the approach is based on using the optical flow field F,_,;_; computed from X, the RGB frame at time ¢, to X;_1, the RGB
frame at time ¢ — 1.

1.1. Initial flow baseline

Let us consider a spatial position p of the frame we wish to predict X, ;. The original baseline sets Xt-H (p) by bilinearly
interpolating the values of X, surrounding spatial position p+d, where d = F;_,;_1(p). The issue is that one should be using
the flow vector d’ = Fy;1_,+(p) instead, which we cannot access since we are trying to predict X;;1. The displacements
d and d’ are in general not equal, since the physical point corresponding to d may have been replaced by another, which
potentially does not have the same displacement. For instance, this is the case for still points that are about to be occluded by
moving objects. In this case, d is zero, whereas d’ could correspond to a fast moving point. A qualitative example is shown
is Figure 1, where the values for the pixels in front of the moving car are not replaced by those of the car as they should be.
Note that this is a systematic failure case of the flow baseline used in [4] and [5], which concerns all pixels which are about
to be occluded by a moving object. We call this baseline “t 4 1 - centric”, as it can be viewed as looping over the spatial
positions of the prediction Xt+1.

1.2. Improved optical flow baseline

We propose an improved baseline which does not have this shortcoming. Considering a spatial position p in the last input
frame X;, we project its value into the next frame by using the opposite of the flow vector at p as an estimation for the
displacement of the corresponding physical point between time steps ¢ and ¢ + 1, setting

Xes1([p +d]) = Xe(p), (1)

where d = —F;_,;_1(p) and where [-] denotes rounding.

In case of competing values for position [p+ d], we prioritize these corresponding to the largest flow to favor displacement
of moving and close-by objects, as opposed to still and far objects or stuff. This baseline is called “¢ - centric”

We apply the same transformation procedure to the flow field F;_,;_ to get Ftﬂﬁt, which we use to predict X; o and so
on. We solve a Dirichlet boundary value problem to interpolate the missing values that were not determined by the warping
in Equation 1. The flow fields themselves are computed using Full Flow [3], a state of the art optical flow estimation method,
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Figure 1: From left to right: two input frames and three predictions, framed in red, obtained from the warping baselines, “t+1
- centric” (top) and “¢ - centric” (bottom). Static pixels that are about to be occluded by the moving objects are systematically
mis-predicted to hold their previous values in the original baseline - see the pixels in front of the left car on the top row -
leading moving objects to shrink instead of moving. This is corrected in our improved baseline, shown in the bottom row.

using the default parameters given by the authors on the MPI Sintel Flow Dataset [2]. As in our other experiments, we
employed a frame interval of 3. Decreasing the frame interval down to 1 leads to worse performance for mid-term prediction
(43.5 instead of 44.3 ToU GT for a frame rate of 3) because of error propagation, as more predictions are needed to reach
0.5s.

2. Further exploration for the S:S model
2.1. Adversarial training

As Mathieu et al. [4] in the context of raw images, we introduce an adversarial loss term allowing the model to disam-
biguate between modes corresponding to different turns of events.

The adversarial network is a two-scale convolutional network. The coarse-scale discriminator subnetwork has a single
convolutional layer 128 x3x 3, followed by three fully connected layers with 512, 256 and 1 hidden units respectively. The
fine-scale subnetwork consists of three convolutional layers (128 x3x3, 128x3x3, 256 x3x3) and three fully connected
layers with 512, 256, 1 hidden units.

Following [1], we employ clipping of the discriminator weights © to the range [—0.01, 0.01] after each gradient update,
and set the target coefficient o to 0.9 to prevent saturation. In our setting, every iteration of the discriminator training is
followed by a single update of the generator’s parameters. We found that A = 0.1 provides the optimal balance between the
loss terms.

2.2. Deeper models and dilated convolutions

Our multiscale S2S model based on standard convolutions has a field of view of 30 over input resolution 128 x 256. We
perform further architecture exploration to boost the model’s performance. First we increase the number of parameters from
1.5M to 8.5M by linearly scaling the number of feature maps per layer. This boosts the IoU GT performance for short-
term prediction from 58.3 to 59.0 on the Cityscapes validation set. Next, inspired by the recent developments of semantic
segmentation architectures [6], we replace the inner convolutions of each of the two subnetworks of the architecture, with
dilated convolutions of dilation respectively 2, 2, 2 and 4. This increases the field of view from 30 to 46 and improves
performance from 59.0 to 59.5.

In parallel, we test a simpler but deeper single scale architecture. We design it to have yet a broader field of view of 65.
We summarize its architecture below :

Ny xC —convk7— 32xq —convkb— 64%q —convkbd2— 64xq —convk3dsi— 128xq
—conv k5,d8 =+ 64xq —convkb— 32xq —convk3d— C,

where N; is the number of input frames, C' is the number of classes, n;y — conv ki,dj — ns is an adequately padded
convolutional layer taking n input feature maps, outputing no feature maps, of kernel size ¢ and dilation j, followed by a
ReLU for all the inner layers, and ¢ is a hyperparameter to scale the number of feature maps linearly for simple control over
the model capacity. With ¢ = 4, this architecture has 8.2M parameters and obtains overall best performance of 60.4. We
tried a yet deeper architecture, keeping the number of parameters fixed, but it saturated at 59.4 performance.



Finally, to retain the possibility of fine-tuning this architecture in an autoregressive fashion on a single GPU, we scale the
parameters back down to 0.9M, corresponding to a choice of ¢ = 1.25. We call this model S2S-dil and record its performance
in Tables 1 and 4 of the main paper. We recall here its short-term IoU GT performance of 59.4.

3. Results obtained on the test set

We measure performance on the test set of the Cityscapes dataset for mid-term prediction of our optical flow baseline and
of our two models S2S, AR, fine-tune and S2S-dil, AR, fine-tune. We use the same setup as we used on the validation set
in the main paper: we take in input frames 2, 5, 8, and 11, and predict outputs for frames 14, 17 and 20 of each sequence.
Results for frame 20 are shown in Table 1. For reference, we also show the performance reported by the authors of the
Dilation10 architecture [6] on the test set. These “oracle” results give an idea of the maximum performance that could be
expected, since this oracle was used to provide the training data.

Model IoUGT IoUSEG IoU-MO GT
Dilation10 oracle 67.1 100 61.5
Warp last input 459 49.5 39.1
S2S, AR, fine-tune 47.8 51.8 40.2
S2S-dil, AR, fine-tune 48.0 52.0 404

Table 1: Mid-term segmentation prediction for frame 20 using our best S2S model on the Cityscapes test set.

4. Failure cases

Figures 2 and 3 show two failures cases of our S2S model (fine-tuned in autoregressive mode) for mid-term prediction
(half-a-second future), where the model respectively underestimates the speed of the camera and fails to predict a future
occlusion.
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Figure 2: Failure case of the autoregressive fine-tuned S2S model. First row: last inputs and ground truth. Second row: future
segmentations obtained using the Dilation10 network computed using the future RGB frames. Third row: S2S, AR, fine-tune
predictions overlaid with the true future frames. In this example, the speed of the camera is underestimated by our model,
resulting in large errors in the segmentation of the closest car.



AR fine-tune pred. at¢ + 3 att+6 att 49

Figure 3: Failure case of the autoregressive fine-tuned S2S model. First row: last inputs and ground truth. Second row: future
segmentations obtained using the Dilation10 network computed using the future RGB frames. Third row: S2S, AR, fine-tune
predictions overlaid with the true future frames. In this example, the occlusion of the pedestrian by the vehicle coming from
the right is not predicted by our system. The green blobs that appear in the vehicle correspond to the “bus” category. This
second mistake is hard to avoid because it also appears in the Dilation10 input segmentations.

5. Comparison of batch and autoregressive methods

We present visualizations that extend the ones given in Figure 5 of the main paper. Figures 4 and 5 compare S2S models
for mid-term prediction (half-a-second future) with the different approaches presented in the paper: batch, autoregressive,
autoregressive using adversarial training, and autoregressive fine-tuned. Results are also compared with our optical flow
baseline. All segmentations are overlaid with the true video sequence to facilitate assessment of the predictions.
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Figure 4: Comparison between optical flow baseline, batch, autoregressive, adversarially fine-tuned autoregressive, and
autoregressive fine-tuned S2S model predictions. First row: last inputs and ground truth segmentation. Second row: target
segmentations obtained using the Dilation10 network. Other rows show predictions overlaid with the true future frames.
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Figure 5: Comparison between optical flow baseline, batch, autoregressive, adversarially fine-tuned autoregressive, and
autoregressive fine-tuned S2S model predictions. First row: last inputs and ground truth segmentation. Second row: target
segmentations obtained using the Dilation10 network. Other rows show predictions overlaid with the true future frames.




