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Matching is Fundamental



Matching is Fundamental

�� To the solution ofTo the solution of

–– Recovery of structure and motion from imagesRecovery of structure and motion from images; ; 
matching is the hard part, once this is solved everything else matching is the hard part, once this is solved everything else 
is just equation shuffling…is just equation shuffling…

–– Object Recognition;Object Recognition;
having established optimal correspondence between having established optimal correspondence between 
features on the image and within a model one can determine features on the image and within a model one can determine 
the appropriateness of the model.the appropriateness of the model.



Tutorial Overview

�� Section 1: Generative models for matching in Section 1: Generative models for matching in 
object recognition and structure from motionobject recognition and structure from motion

�� Section 2: Algorithms for Matching.Section 2: Algorithms for Matching.
�� Section 3: ICP.Section 3: ICP.



Section 1
Generative 

Matching Overview



Section 1
Generative Matching Overview

�� 1.1 Explain Generative model of matching1.1 Explain Generative model of matching
–– Useful for structure and motion recoveryUseful for structure and motion recovery
–– And object recognitionAnd object recognition

�� 1.2 Probabilistic interpretation, likelihood of a model 1.2 Probabilistic interpretation, likelihood of a model 
depends on the matching.depends on the matching.

�� 1.3 Marginalizing over the matching: either (a) for 1.3 Marginalizing over the matching: either (a) for 
object recognition or (b) for learning the shape and object recognition or (b) for learning the shape and 
appearance.appearance.

�� 1.4 Strong priors on shape.1.4 Strong priors on shape.



Section 1.1
Generative Matching Introduction



Generative Model of Matching

One way to consider matching is the use of generative One way to consider matching is the use of generative 
models:models:

�� Features generated from some modelFeatures generated from some model

�� Bayesian analysis easy: Analysis by Synthesis, Bayesian analysis easy: Analysis by Synthesis, 
[inspired by[inspired by GrenanderGrenander 1970], why is this good: can 1970], why is this good: can 
learn appearance and shape!.learn appearance and shape!.



Generative model

�� Patches on the model generate patches in the Patches on the model generate patches in the 
image; together with some score for goodness of image; together with some score for goodness of 
match.match.



Feature Generation

�� Flow is to generate features in an image and Flow is to generate features in an image and 
detect objects based on this.detect objects based on this.

�� Features need to be Features need to be 
–– Discriminative.Discriminative.
–– Reproducible (appear on same part of the object Reproducible (appear on same part of the object 

in different scenes).in different scenes).
–– Rich, i.e. the more the better, don’t throw away Rich, i.e. the more the better, don’t throw away 

informationinformation



Types of Features

�� Typical Features include:Typical Features include:
–– Harris cornersHarris corners
–– Canny edgesCanny edges
–– SIFT operator  (Lowe)SIFT operator  (Lowe)
–– Entropy operator (Entropy operator (KadirKadir and Brady).and Brady).
–– Maximally StableMaximally Stable ExtremalExtremal Regions.Regions.
–– Learnt Templates, specific to object (e.g nose, eyes)Learnt Templates, specific to object (e.g nose, eyes)
–– Etc.Etc.

�� Learning which features useful is an interesting topic Learning which features useful is an interesting topic 
of research. of research. 



Fergus et al
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f Yuille, �91
f Brunelli & Poggio, �93
f Lades, v.d. Malsburg et al. �93
f Cootes, Lanitis, Taylor et al. �95
f Amit & Geman, �95, �99
f Perona et al.  �95, �96, �98, �00



Generative Model for Object 
Recognition

Once features extracted, what is features extracted, what is 
relation between them?relation between them?

Choose: 2D relation, or rigid 3D 
relation??



Examples of Relations for faces

Poor prior scoreModel

�� Weber suggests learning features…Weber suggests learning features…



Block Diagram of Weber Method to 
learn features.

�� Extract features, apply VQ.Extract features, apply VQ.



Possible Features



Section 1.2
Generative Model, Probabilistic 

Interpretation



Probabilistic Formulation

�� Weber ECCV 2000Weber ECCV 2000

�� Means: joint probability of  Means: joint probability of  
–– XXOO the responses of our feature detectorsthe responses of our feature detectors
–– xxmm the position of the object partsthe position of the object parts
–– h   an indicator as to whether a feature is foreground or h   an indicator as to whether a feature is foreground or 

background.background.



Probabilistic Formulation

�� Fergus et al 2003Fergus et al 2003

–– X Locations of features detected in the image.X Locations of features detected in the image.
–– S Scale of featuresS Scale of features
–– A appearance of featuresA appearance of features
–– � � parameters of model parameters of model 



Is an object in the Scene?

�� Fergus et al: calculate ratio R: if R>1 then Fergus et al: calculate ratio R: if R>1 then 
yes:yes:

�� Should really marginalize over Should really marginalize over ����



Section 1.3
Generative Model, Marginalizing out 

matches…



To Marginalize or Maximize the 
matching?

�� So given a generative model AND a matching So given a generative model AND a matching 
we can say how likely our image is under our we can say how likely our image is under our 
model for it.model for it.

�� By evaluating this for a set of models we can By evaluating this for a set of models we can 
determine which model is best.determine which model is best.

�� However we could also marginalize out the However we could also marginalize out the 
matches.matches.



Why marginalize

�� If all we are interested in is whether an object If all we are interested in is whether an object 
is present then we do not really care about is present then we do not really care about 
what matches what so we marginalize out the what matches what so we marginalize out the 
matching (tricky, more later).matching (tricky, more later).

�� No direct analogue with SFMNo direct analogue with SFM



Learning Shape without matching

�� If we want to learn the appearance and shape If we want to learn the appearance and shape 
of the model then we could also marginalize of the model then we could also marginalize 
out the matches.out the matches.

�� Interestingly this can be done both for object Interestingly this can be done both for object 
recognition and for SFM as explored byrecognition and for SFM as explored by
DellaertDellaert, and also Davidson., and also Davidson.



Roadmap

�� Next we describe how matches might be Next we describe how matches might be 
marginalized out.marginalized out.

�� The following features the work ofThe following features the work of DellaertDellaert et et 
al to do this, first ignoring uniqueness of al to do this, first ignoring uniqueness of 
matches and then second using MCMC to matches and then second using MCMC to 
include matching uniqueness.include matching uniqueness.

�� The conclusion is that it doesn’t work too well The conclusion is that it doesn’t work too well 
for structure estimation so matching is not for structure estimation so matching is not 
irrelevant!irrelevant!



Structure from Motion



Traditionally: 2 Problems !

CorrespondenceCorrespondence

OptimizationOptimization



A Correspondence Problem



An Optimization Problem
�� Find the Find the most likelymost likely structure and motion structure and motion ΘΘ



Optimization

jik

=

uik

mi
mi’

xj

Image i Image i’

=Non-linear Least-Squares !



Big Question !

How can we recoverHow can we recover
structure and motion withstructure and motion with

unknown correspondence unknown correspondence ??



Combinatorial Explosion

�� In general, #J is combinatorial in m,nIn general, #J is combinatorial in m,n

�� 3 images, 4 features: 4!3 images, 4 features: 4!33=13,824=13,824
�� 5 images, 30 features: 30!5 images, 30 features: 30!55=1.3131e+162=1.3131e+162
�� (number of stars:1e+20, atoms: 1e+79)(number of stars:1e+20, atoms: 1e+79)

��Total Likelihood = intractable !Total Likelihood = intractable !



EM for marginalizing



Clever Observation!



Clever Observation

�� In other words we can compute a set of In other words we can compute a set of 
virtual measurements (virtual projections of virtual measurements (virtual projections of 
the model into the image) and minimizing the the model into the image) and minimizing the 
distance to these is the same as minimizing distance to these is the same as minimizing 
the marginalized, over matches log likelihood.the marginalized, over matches log likelihood.

�� The virtual measurement are simply the The virtual measurement are simply the 
weighted sum of the features.weighted sum of the features.



Pseudo Code



Expectation Maximization



E-Step: Soft Correspondences



M-Step: Optimization
using virtual measurements !

jik
vij

mi
mi’

xj

Image i Image i’

vij j  
j=1 

n 



Structure from Motion without 
Correspondence via EM:

In each image, calculate the n2 “soft correspondences” fijk



Incorporating Appearance



Appearance Models

�� TemplatesTemplates
�� Color HistogramsColor Histograms
�� Color InvariantsColor Invariants
�� SymbolicSymbolic



“Toy” Example



Appearance Measurements

y1 y2

a1
a2

a3
a4

Image 1
Image 2



EM with Appearance

�� MM--step:step:
rere--estimate appearance (templates)estimate appearance (templates)

�� EE--step:step:
use appearance to constrain matchesuse appearance to constrain matches



“wiretoy” Image Sequence



Appearance Measurements



Recovered 3D Structure



Critique

�� TheThe DellaertDellaert et al algorithm seems to produce poorer et al algorithm seems to produce poorer 
matches than standard techniques; why?matches than standard techniques; why?

�� One argument is that matching IS structure so do we One argument is that matching IS structure so do we 
want to marginalize over matching?want to marginalize over matching?

�� Anyway, better results seem to be achieved by Anyway, better results seem to be achieved by 
maximization so far…which justifies the next section maximization so far…which justifies the next section 
about algorithms for matching!! (just as well).about algorithms for matching!! (just as well).



Section 1.4
Strong Priors on Shape:

Combing OR and SAM.
(ORSAM)



A quick thought:
Stronger Prior shape models

�� If strong prior models are  used object If strong prior models are  used object 
recognition and structure from motion meet.recognition and structure from motion meet.

�� If we recognize that the images arise from a If we recognize that the images arise from a 
certain class of objects might we want not use certain class of objects might we want not use 
that information to refine our estimates of that information to refine our estimates of 
shape?shape?



Aim Structure From 2-6 views

�� Problem; Problem; SFM often under constrained i.e. SFM often under constrained i.e. 
homogeneous regions, occlusionshomogeneous regions, occlusions
–– Generic Smoothness prior often used (Generic Smoothness prior often used (SzeliskiSzeliski

2002)2002)--traditional dense stereo reached limit of traditional dense stereo reached limit of 
performance.performance.

�� Solution; Solution; Combine recognition and SFM to go Combine recognition and SFM to go 
much further in resolving ambiguity.much further in resolving ambiguity.
–– Recognition allows for more functional models e.g. Recognition allows for more functional models e.g. 

opening doors, transparent windows.opening doors, transparent windows.



Example:
Parameterizing buildings

�� The form of a prior for a building is far from obviousThe form of a prior for a building is far from obvious
–– Generative/explicit distribution hard to formulate.Generative/explicit distribution hard to formulate.

�� Previous work (Dick et al) constructedPrevious work (Dick et al) constructed parameterizedparameterized models of models of 
building parts e.g. doors etcbuilding parts e.g. doors etc
–– Problem how to combine these sub parts?Problem how to combine these sub parts?

�� Define anDefine an unnormalizedunnormalized prior via a cost functionprior via a cost function
�� We can explore/test validity of this prior by Reversible Jump We can explore/test validity of this prior by Reversible Jump 

Metropolis Hastings, MCMC.Metropolis Hastings, MCMC.



Example of Primitives
�� Reconstruction and recognition of Reconstruction and recognition of 

architecturearchitecture



Shape representation
�� Model is a collection of “wall” planesModel is a collection of “wall” planes
�� Each wall plane may contain primitives Each wall plane may contain primitives 

defined by 4 defined by 4 –– 8 parameters8 parameters

b

c

Front view
a

(x,y)

Example shape     
(window)

E.g.:
Window
Door
Pediment
Pedestal
Entablature
Column
Buttress
Drainpipe

d
r a

Overhead view



Model estimation

�� Initial shape estimate obtained via existing Initial shape estimate obtained via existing 
structure and motion algorithmsstructure and motion algorithms
–– Extract and match corners and linesExtract and match corners and lines
–– SelfSelf--calibrate camerascalibrate cameras
–– Plane fitting RANSAC to estimate wallsPlane fitting RANSAC to estimate walls

�� Search for likely primitives on each wall Search for likely primitives on each wall 
[ICCV01][ICCV01]
–– This produces seed points for the MCMC processThis produces seed points for the MCMC process
–– Likelihood measure is based on sum squared Likelihood measure is based on sum squared 

error oferror of reprojectedreprojected pixelspixels
)) AssumesAssumes LambertianLambertian modelmodel



Reconstructed model



Ground truth



Section 2 
Algorithms For 

Feature Matching



Overview

�� RANSACRANSAC
�� Problems with RANSACProblems with RANSAC
�� MAPSACMAPSAC



Section 2.1
Random Sampling Methods



Section 2.1
Random Sampling Methods

�� If the features are related by some sort of global If the features are related by some sort of global 
relation then we can use this to guide the matching.relation then we can use this to guide the matching.

�� Basic Idea is to use some sort of correlation to get Basic Idea is to use some sort of correlation to get 
putative matches.putative matches.

�� Then randomly sample from these, estimate the Then randomly sample from these, estimate the 
relation and see how many other features agree.relation and see how many other features agree.



Object Recognition

�� Paradigm for the past 40 years has been Paradigm for the past 40 years has been 
[Roberts 65]:[Roberts 65]:

–– Extract features in image.Extract features in image.

–– Match features in model to image.Match features in model to image.



Structure and Motion Recovery

�� Repeat:Repeat:

–– Match features between images,Match features between images,

–– Infer image relation based on feature matches,Infer image relation based on feature matches,

–– Rematch under guidance from image relation.Rematch under guidance from image relation.

�� NEXT: we illustrate RANSAC with respect to feature NEXT: we illustrate RANSAC with respect to feature 
matching for SAM.matching for SAM.



A RANSAC system for SAM



Structure and Motion Recovery

2. Matching Features2. Matching Features1. Finding Features 1. Finding Features 3. Extracting Epipolar3. Extracting Epipolar
GeometryGeometry

7. VRML Models7. VRML Models4. Extract edges4. Extract edges
5. Match edges

6. Estimate Depth Map 6. Estimate Depth Map 
(dynamic programming)5. Match edges (dynamic programming)



Guide matches with Geometry
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Concatenated Image space

�� 2 Views2 Views-- consider 4D space of image consider 4D space of image 
coordinates (x,y,x’,y’).coordinates (x,y,x’,y’).

�� Fundamental matrix is a 3D manifold in Fundamental matrix is a 3D manifold in 
this space.this space.

�� HomographyHomography is a 2D manifold in this is a 2D manifold in this 
space.space.



Estimation of Motion model like fitting 
a manifold to space of 4D image 

points in two images:

••Problem compounded in higher dimensionsProblem compounded in higher dimensions



Stage 1 Corner Detection

Images of the same scene from different viewpoints

Feature Detectors need to consistently locate the 
position within  the image of a landmark on the 

3D object.



Typical Features Detected



Stage 2 Feature Matching

Images of the same scene from different viewpoints

Initial Feature correspondence  via Cross Correlation.



Stage 2 Feature Matching

Initial Feature correspondence  via Cross Correlation
Many outliers.



Stage 3 Estimation of Epipolar 
Geometry

Images of the same scene from different viewpoints

Corresponding features must lie on corresponding
epipolar lines.

All epipolar lines intersect at a common point.



Robust estimation

�� What if set of matches contains gross outliers?What if set of matches contains gross outliers?



RANSAC
Objective

Robust fit of model to data set S which contains outliers
Algorithm
(i) Randomly select a sample of s data points from S and 

instantiate the model from this subset.
(ii) Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S.

(iii) If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate

(iv) If the size of Si is less than T, select a new subset and 
repeat the above.

(v) After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si



RANSAC

��Repeat M times:Repeat M times:
–– Sample minimal number of matches to estimate Sample minimal number of matches to estimate 

two view relation.two view relation.

–– Calculate number of inliers or posterior likelihood Calculate number of inliers or posterior likelihood 
for relation.for relation.

–– Choose relation to maximize number of inliers.Choose relation to maximize number of inliers.



RANSAC line fitting example

Task:Task:
Estimate best lineEstimate best line



RANSAC line fitting example

Sample two pointsSample two points



RANSAC line fitting example

Fit LineFit Line



RANSAC line fitting example

Total number of points Total number of points 
within a threshold of within a threshold of 
line.line.



RANSAC line fitting example

Repeat, until get a Repeat, until get a 
good resultgood result



RANSAC line fitting example

Repeat, until get a Repeat, until get a 
good resultgood result



RANSAC line fitting example

Repeat, until get a Repeat, until get a 
good resultgood result



How many samples?

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

Choose Choose NN so that, with probability so that, with probability pp, at least one random , at least one random 
sample is free from outliers. e.g. sample is free from outliers. e.g. pp=0.99=0.99

11771177272272787844442626995588
588588163163545433332020884477
2932939797373724241616774466
1461465757262617171212664455
727234341717131399553344
3535191911119977443333
17171111776655332222

50%50%40%40%30%30%25%25%20%20%10%10%5%5%ss
proportion of outliersproportion of outliers ee



Adaptively determining the 
number of samples

ee is often unknown a priori, so pick worst case, e.g. 50%, and is often unknown a priori, so pick worst case, e.g. 50%, and 
adapt if more inliers are found, e.g. 80% would yield adapt if more inliers are found, e.g. 80% would yield ee=0.2 =0.2 

–– NN==∞∞, , sample_count sample_count =0=0
–– While While N N >>sample_countsample_count repeatrepeat

)) Choose a sample and count the number of inliersChoose a sample and count the number of inliers
)) Set e=1Set e=1--(number of inliers)/(total number of points)(number of inliers)/(total number of points)
)) RecomputeRecompute NN from from ee
)) Increment the Increment the sample_countsample_count by 1by 1

–– TerminateTerminate
( ) ( )( )( )sepN −−−= 11log/1log



Number of Samples II

�� Make take many Make take many 
more samples than more samples than 
one would think due one would think due 
to degenerate point to degenerate point 
sets.sets.



Number of Samples II

�� These two These two 
points are points are 
inliers.inliers.



Number of Samples II

�� And yet the And yet the 
estimate estimate 
yielded is poor.yielded is poor.



Automatic computation of H
Objective

Compute homography between two images
Algorithm
(i) Interest points: Compute interest points in each image
(ii) Putative correspondences: Compute a set of interest 

point matches based on some similarity measure
(iii) RANSAC robust estimation: Repeat for N samples

(a) Select 4 correspondences and compute H
(b) Calculate the distance d⊥ for each putative match
(c) Compute the number of inliers consistent with H (d⊥<t)
Choose H with most inliers 

(iv) Optimal estimation: re-estimate H from all inliers by 
minimizing ML cost function with Levenberg-Marquardt

(v) Guided matching: Determine more matches using 
prediction by computed H

Optionally iterate last two steps until convergence



Determine putative correspondences

�� Compare interest pointsCompare interest points
–– Similarity measure:SAD, SSD, NCC on small neighborhoodSimilarity measure:SAD, SSD, NCC on small neighborhood

�� NOTE: we can use correlation score to bias the NOTE: we can use correlation score to bias the 
selection of the samples selecting matches with a selection of the samples selecting matches with a 
better correlation score more often (Tordoff et al).better correlation score more often (Tordoff et al).

�� NOTE multiple matches for each point can be NOTE multiple matches for each point can be 
RANSAC’edRANSAC’ed on (although this increases the on (although this increases the 
proportion of outliers).proportion of outliers).



Example: robust computation
Interest points
(500/image)

Putative 
correspondences (268)

Outliers (117)

Inliers (151)

Final inliers (262)



Example; 2D Similarity 
Transformation

Set 1Set 1 Set 2Set 2



Example; 2D Similarity 
Transformation

Set 1Set 1 Set 2Set 2
Set of matches from some correlation function.Set of matches from some correlation function.
Some are incorrect (shown in Some are incorrect (shown in redred))



Example; 2D Similarity 
Transformation

Set 1Set 1 Set 2Set 2
Two matches, used to infer transform, Two matches, used to infer transform, 
Here: Top match correct, bottom incorrectHere: Top match correct, bottom incorrect



Example; 2D Similarity 
Transformation

Set 1Set 1 Set 2Set 2
Features mapped under transform do not align Features mapped under transform do not align 
well.well.



Example; 2D Similarity 
Transformation

Set 1Set 1 Set 2Set 2
On the other hand, if we pick two correct matches On the other hand, if we pick two correct matches 
(modulo noise).(modulo noise).



Example; 2D Similarity 
Transformation

Set 1Set 1 Set 2Set 2
Alignment is good!Alignment is good!



Problems and Improvements to 
RANSAC 

�� Problem 1, cost function.Problem 1, cost function.

�� Problem 2, what model to fit?Problem 2, what model to fit?



Problem 1; cost function 

�� RANSAC can be vulnerable to the correct RANSAC can be vulnerable to the correct 
choice of the threshold:choice of the threshold:
–– Too large all hypotheses are ranked equally.Too large all hypotheses are ranked equally.
–– Too small leads to an unstable fit.Too small leads to an unstable fit.

�� The interesting thing is that the same strategy The interesting thing is that the same strategy 
can be followed with any modification of the can be followed with any modification of the 
cost function.cost function.



Problem with RANSAC;
threshold too high



Problem with RANSAC;
threshold too high

This solution…This solution…



Problem with RANSAC;
threshold too high

Is as good as this Is as good as this 
solutionsolution



Problem with RANSAC;
threshold too low-no support



Problem 1; cost function 

�� Examples of other cost functionsExamples of other cost functions
–– Least Median Squares; i.e. take the sample that Least Median Squares; i.e. take the sample that 

minimized the median of the residuals.minimized the median of the residuals.
–– MAPSAC/MLESAC use the posterior or likelihood MAPSAC/MLESAC use the posterior or likelihood 

of the data.of the data.
–– MINPRAN (Stewart), makes assumptions about MINPRAN (Stewart), makes assumptions about 

randomness of datarandomness of data



LMS

��Repeat M times:Repeat M times:
–– Sample minimal number of matches to estimate Sample minimal number of matches to estimate 

two view relation.two view relation.

–– Calculate error of  all data.Calculate error of  all data.

–– Choose relation to minimize median of errors.Choose relation to minimize median of errors.



Pros and Cons LMS

�� PROPRO
–– Do not need any threshold for inliers.Do not need any threshold for inliers.

�� CONCON
–– Cannot work for more than 50% outliers.Cannot work for more than 50% outliers.
–– Problems if a lot of data belongs to a Problems if a lot of data belongs to a submanifoldsubmanifold

(e.g. dominate plane in the image)(e.g. dominate plane in the image)



Con: LMS, subspace problem

Median error is same Median error is same 
for two solutions.for two solutions.



Con: LMS, subspace problem

No good solution if the No good solution if the 
number of outliers >50%number of outliers >50%



Pros LMS

�� One major advantage of LMS is that it can One major advantage of LMS is that it can 
yield a robust estimate of the variance of the yield a robust estimate of the variance of the 
errors.errors.

�� But care should be taken to use the right But care should be taken to use the right 
formula, as this depends on the distribution of formula, as this depends on the distribution of 
the errors, and degrees of freedom in the the errors, and degrees of freedom in the 
errors (errors (codimensioncodimension).).



Robust Maximum Likelihood 
Estimation

Random Sampling can optimize any function:Random Sampling can optimize any function:

Better, robust cost function, MLESACBetter, robust cost function, MLESAC

( ) ( )
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Mixture (Maxture) of 
Gaussian/Uniform?

�� RedRed--mixture, greenmixture, green--uniform, blueuniform, blue--Gaussian.Gaussian.



MLESAC/MAPSAC

This solution…This solution…



MLESAC/MAPSAC

Is better than this Is better than this 
solutionsolution



MAPSAC

�� Add in prior to get to MAP solutionAdd in prior to get to MAP solution

�� Interesting thing is that with MAPSAC one could Interesting thing is that with MAPSAC one could 
sample less than the minimal number of points to sample less than the minimal number of points to 
make an estimate (using prior as extra information).make an estimate (using prior as extra information).

�� Any posterior can beAny posterior can be optimizedoptimized; random sampling ; random sampling 
good for matching AND FUNCTION OPTIMIZATION! good for matching AND FUNCTION OPTIMIZATION! 
e.g. MAPSAC is a cheap way toe.g. MAPSAC is a cheap way to optimizeoptimize objective objective 
functions regardless of outliers or not.functions regardless of outliers or not.



MAPSAC

�� Once the benefits of MAPSAC are seen there Once the benefits of MAPSAC are seen there 
is no reason to continue to use RANSAC; is no reason to continue to use RANSAC; 
–– in many situations the improvement in the solution in many situations the improvement in the solution 

can be markedcan be marked
–– Especially if want to use prior information (e.g. the Especially if want to use prior information (e.g. the 

F matrix changing smoothly over time).F matrix changing smoothly over time).
–– Gives anGives an optimizedoptimized solution solution 

AT NO EXTRA COST!AT NO EXTRA COST!



Problem 2, what model to fit?

�� There are many cases when we do not know There are many cases when we do not know 
the relation between the images, there may a the relation between the images, there may a 
choice of many.choice of many.

�� In this case a Bayesian solution might be to In this case a Bayesian solution might be to 
evaluate the likelihood of each.evaluate the likelihood of each.



There are many possible
two view relations, e.g.



Robust Model Selection

••Curve Dim 2, degree 2Curve Dim 2, degree 2
••Line Dim 1, degree 1Line Dim 1, degree 1
••Point Dim 0, degree 1Point Dim 0, degree 1

••Outliers make a hard problem very hard!Outliers make a hard problem very hard!



Model Selection outside scope of this 
work

�� See papers by me, or See papers by me, or KanataniKanatani..



Chum and Matas
possible speed ups

�� Rather than test all the data given a Rather than test all the data given a 
hypothesis (which could be costly for large hypothesis (which could be costly for large 
amounts of data)amounts of data)
–– Test against a subset:Test against a subset: RandomizedRandomized RANSAC.RANSAC.



Altered Match Selection strategies:

�� Zhang suggest picking points far apart to Zhang suggest picking points far apart to 
avoid degeneracy of samples.avoid degeneracy of samples.

�� TordoffTordoff suggests selecting matches with a suggests selecting matches with a 
good correspondence more often.good correspondence more often.

�� Chum andChum and MatasMatas suggest Hisuggest Hi--Lo RANSAC: Lo RANSAC: 
each time a large consensus set is found each time a large consensus set is found 
RANSAC again within the set of inliers…RANSAC again within the set of inliers…



Section 2.3
Robust Registration of 2D and 3D 

Point Sets ICP

Thanks to Andrew FitzgibbonThanks to Andrew Fitzgibbon



Section 2.3
Robust Registration of 2D and 3D 

Point Sets ICP
Introduction to point-set registration

The ICP algorithm
The Levenberg-Marquardt version

Comparisons and contrasts between the two.



The problem



Problem variants
�� Infinite point sets Infinite point sets 

(curves & surfaces)(curves & surfaces)

�� NonNon--Euclidean Euclidean 
transformationstransformations

�� Incomplete dataIncomplete data



The strategy

For each 
datum

Distance to model



Known Correspondences
1

7

32

1 – 2

7 – 3

...



But we don’t know the 
correspondence



Iterate these steps: ICP

red: data       blue: modelred: data       blue: model



Common problems with ICP

�� ICP ICP inactioninaction
–– Slow convergence: let’s see whySlow convergence: let’s see why

�� Difficult to extendDifficult to extend to include:to include:
–– RobustnessRobustness

)) MM--estimationestimation

–– ConstraintsConstraints
)) translation limitstranslation limits

–– AA--priori priori informationinformation
)) priors on projective transformationspriors on projective transformations



Convergence: ICP as
optimization



ICP as optimization

Error is a function Error is a function 
of of 

correspondencecorrespondence
and and posepose

parameters

Start
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nc
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 φ

parameters



My proposal: LMICP



Advantages

�� ObviousObvious::
–– Easier to codeEasier to code
–– Easier to modifyEasier to modify

�� NonobviousNonobvious::
–– Runs fasterRuns faster
–– Wider basin of convergenceWider basin of convergence



Example

ICP                              LMICP                              LM--ICPICP



But what about derivatives?



Speeding it up



The Distance Transform



Derivatives: Option 2



Performance: speed

�� BoxBox--box box 
registratregistrat
ion, 400 ion, 400 
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Robustness: Using an M-
estimator

�� Need robustness when data are Need robustness when data are 
–– riddled with outliersriddled with outliers
–– not a complete subset of model not a complete subset of model 

)) (e.g. sampled model)(e.g. sampled model)

�� ICP: Requires iteration at inner loopICP: Requires iteration at inner loop
–– Very expensiveVery expensive

�� LM: Trivial to add to cost functionLM: Trivial to add to cost function
–– Distance transform easily modifiedDistance transform easily modified



Performance: Examples



Performance: radius of 
convergence

Distance from true starting position (degrees)
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Conclusion

�� LMICP is faster, more accurate, has a wider basin of LMICP is faster, more accurate, has a wider basin of 
convergence, is easier to code, easier to extend.convergence, is easier to code, easier to extend.

�� ICP is easier to understand.ICP is easier to understand.

�� ICP is slow because it hasn’t had the benefit of 40 ICP is slow because it hasn’t had the benefit of 40 
years of numerical analysisyears of numerical analysis



Section 2.3.1
Chamfer Distance

Thanks to Thanks to 

ArasanathanArasanathan ThayananthanThayananthan

BjornBjorn StengerStenger



Chamfer Distance

�� Left: Camera imageLeft: Camera image
�� Right: Canny edge map Right: Canny edge map 

�� Left: Distance Left: Distance 
Transform of the canny Transform of the canny 
edge map edge map 

�� Right: Search templates Right: Search templates 
(150(150--250 points)250 points)



Chamfer Distance

(x,y)
d

(x,y)
d

�� Distance Image gives the distance to the nearest Distance Image gives the distance to the nearest 
edge feature at every pixel location in the image.edge feature at every pixel location in the image.

�� Calculated only once for each frame.Calculated only once for each frame.



Chamfer Matching

�� The chamfer score is the average nearest distance The chamfer score is the average nearest distance 
from templates points to image points. from templates points to image points. 

�� The nearest distances are readily obtained from the The nearest distances are readily obtained from the 
distance image.distance image.

�� Computationally inexpensive.Computationally inexpensive.



Chamfer Matching

�� Distance Image provides a smooth cost function.Distance Image provides a smooth cost function.

�� Efficient Searching techniques can be used to find Efficient Searching techniques can be used to find 
the correct template.the correct template.













Multiple Edge Orientations

�� Similar toSimilar to GavrilaGavrila, Edge , Edge 
pixels are divided into 8 pixels are divided into 8 
groups based on orientationgroups based on orientation

�� Distance Transforms are Distance Transforms are 
calculated separately for calculated separately for 
each groupeach group

�� Total matching score is Total matching score is 
obtained by adding individual obtained by adding individual 
chamferchamfer scoresscores



Applications: Hand Detection

�� InitializingInitializing a hand model for trackinga hand model for tracking
–– Locate the hand in the imageLocate the hand in the image
–– Adapt model parametersAdapt model parameters
–– No skin No skin colorcolor information usedinformation used
–– Hand is open and roughly Hand is open and roughly frontofronto--parallelparallel



Results: Hand Detection
Original Shape Context 

Shape Context with 
Continuity Constraint Chamfer Matching



Applications: CAPTCHA
• Completely Automated Public Turing test 
to tell Computers and Humans Apart [Blum et al., 02]

• Used in e-mail sign up for Yahoo accounts

• Word recognition with shape variation and added noise

Examples:



EZ-Gimpy results
Chamfer cost for each letter template

Word matching cost: average chamfer cost 
+ variance of distances

Top 3 matches (dictionary 561 words)

right   25.34 fight  27.88 night  28.42

93.2% correct matches using 2 templates per letter
Shape context  92.1% [Mori & Malik, 03]
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