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Dynamic Programming
For Detection
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Fast Detection

For example finding faces at video rates
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Dynamic Programming (DP)

General algorithmic technique
– Not specific algorithm
– Analogous to “divide and conquer” – bottom up 

Methods that cache solutions to sub-
problems rather than re-computing them
– E.g., Fibonacci, substring matching

Applies to problems that can be 
decomposed into sequence of stages
– Each stage expressed in terms of results of fixed 

number of previous stages
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Simple DP Example: Box Sum

Sum n-vector over sliding k-window
– Wk[x] = f[x] + … + f[x+k]

– Note: often k odd, sum between x ± (k-1)/2

Explicit summation O(k*n) additions 
Recurrence yields O(n+k) time method
– Wk[x] = Wk[x-1] + f[x+k] – f[x-1]
– Each element of sum differs from previous by 

just two values

… … 
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Box Sums in d Dimensions

One pass along each dimension
– Sum intermediate result from previous pass
– 2D case: horizontal then vertical (or vice versa)

• m by n image, O(mn+wh) time vs. O(mnwh)
• E.g., 10 by 10 summation window, 100x faster

… … …
 

…
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1d Integral Images

Fast summations over 
different sized regions 
(non spatially uniform)
Cumulative sum
– S[x] = f[0] + … + f[x]

DP recurrence O(n) time
– S[x] = S[x-1] + f[x]

Sum over window of f[x] 
independent of size k
– Wk[x] = S[x+k-1]-S[k-1]

… 

3 3 3 2 2 2 1 1 1 2
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n-d Integral Images

Analogous for higher dimensions, 2D:
– S[x,y] = f[0,0] + … + f[0,y] + … 

f[x,0] + … + f[x,y]

Separate recurrence per dimension
– C[x,y] = C[x,y-1] + f[x,y]    (column sum)
– S[x,y] = S[x-1,y] + C[x,y]   (total sum)
– Or alternatively row sum then total sum

… 

…
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Fast Region Sums With II

Sum over a rectangle, constant time
– S[b_r] + S[t_l-(1,1)] –

S[b_l-(1,0)] – S[t_r-(0,1)]

Sum over arbitrary region, linear time
– Running time proportional to length of 

boundary not area

+1-1

+1-1+2-2

+1

b_rb_l

t_rt_l
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Fast Detection With II

Features formed from combinations of 
sums over rectangles
– For example positive and negative regions
– Running time independent of rectangle size

Viola and Jones use for face detection at 
approximately video rates
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Fast Detection With II

Also useful for arbitrary shaped regions
– Decompose into rectangles

• With no holes in worst case this is number of 
scan lines (not too bad with holes either)

• Proportional to boundary length rather than area

– Construct chain-code representation of 
boundary and sum values
• Positive for downward links and negative for 

upward (reverse for holes)

– Note relation to work of Jermyn and Ishikawa 
on boundary integrals
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Distance Transforms
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Distance Transforms

Map of distance to nearest features
– Computed from map of feature locations

• E.g., edge detector output

Powerful and widely applicable
– Can think of as “smoothing in feature space”
– Related to morphological dilation operation
– Often preferable to explicitly searching for 

correspondences of features

Efficiently computable using DP
– Time linear in number of pixels, fast in practice
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Distance Transform Definition

Set of points, P, some distance •
DP(x) = miny∈P x - y

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (x - y + 1P(y) )

– Where 1P(y) = 0 when y∈P, ∞ otherwise

0
0
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DP for L1 Distance Transform

1D case
– Two passes: 

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either 

previous closest point or current point
• Analogous moving right-to-left for closest point 

on right

– Can keep track of closest point as well as 
distance to it
• Will illustrate distance; point follows easily
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L1Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(for simplicity just distance)
1. Initialize: For all j

D[j] ← 1P[j]
2. Forward: For j from 1 up to n-1

D[j] ← min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0

D[j] ← min(D[j],D[j+1]+1)

1 0

0 1

∞ 0 ∞ 0 ∞ ∞ ∞ 0 ∞

∞ 0 1 0 1 2 3 0 1
1 0 1 0 1 2 1 0 1
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L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Fwd pass finds closest above and to left
• Bwd pass finds closest below and to right

Note nothing depends on 0,∞ form of 
initialization
– Can “distance transform” arbitrary array
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L2 Distance Transform 

Approximations using fixed size masks
– Analogous to L1 case
– Simple to understand but not best methods

Exact linear time method for L2
2

– Can compute sqrt (but usually not needed)
– Fast in practice, easy to implement
– Harder to understand than L1 algorithm
– Uses important general algorithmic technique 

of amortized analysis

1D case – lower envelope of quadratics
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1D L2
2 Distance Transform

Single left-to-right pass
– Adding k-th quadratic to lower envelope (LE) 

of first k-1 quadratics
– Quadratics differ only in location of their base

Concerned about intersection of k-th
quadratic and LE of first k-1
– Consider only rightmost quadratic visible in LE
– Keep track of locations of bases of visible
quadratics (VQ), ordered left-to-right

– Keep track of visible intersections of adjacent 
quadratics (VI), ordered left-to-right
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Adding k-th Quadratic to LE

Case 1: intersection of k and rightmost VQ 
(RVQ) outside range, k not visible on LE
Case 2: intersection of k and RVQ to right 
of rightmost VI (RVI), k added to right
Case 3: intersection of k and RVQ to left 
of RVI, k covers at least RVQ, remove RVQ 
and try adding again
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Running Time of 1D Algorithm

Traditional analysis would consider time 
for each case, multiplied by n iterations
– Cases 1 and 2 O(1), but case 3 ??

Amortized analysis: charge work done by 
algorithm to “events” that can be bounded
– Three event types

• K-th quadratic initially excluded
• K-th quadratic added
• K-th quadratic removed

– Each event happens at most once per 
quadratic (note once removed, never again)

– Algorithm does constant work per event
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2D Algorithm

Horizontal pass of 1D algorithm
– Computes minimum x2 distance

Vertical pass of 1D algorithm on result of 
horizontal pass
– Computes minimum x2+y2 distance
– Note algorithm applies to any input (quadratics 

can be at any location)

Actual code straightforward and fast
– Each pass maintains arrays of indexes of 

visible parabolas and the intersections
– Fills in distance values at each pixel after 

determining which parabolas visible
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Horizontal Pass of 2D L2
2 DT

for (y = 0; y < height; y++) {
k = 0;  /* Number of boundaries between parabolas */
z[0] = 0;   /* Indexes of locations of boundaries */
z[1] = width;  /* No current boundaries (first at end of array) */
v[0] = 0;     /* Indexes of locations of visible parabola bases */
for (x = 1; x < width; x++) {

do {
/* intersection of this parabola with rightmost visible parabola */
s = ((imRef(im, x, y) + x*x) - (imRef(im, v[k], y) + v[k]*v[k])) /

(2 * (x - v[k]));
sp = ceil(s);
/* case one: intersection off end, this parabola not visible */
if (sp >= width)

break;
/* case two: intersection is rightmost, add it to end*/
if (sp > z[k]) {

z[k+1] = sp; z[k+2] = width; v[k+1] = x; k++;
break;  }

/* case three: intersection is not rightmost, hides rightmost
parabola and perhaps others, remove rightmost and try again */

if (k == 0) {
v[0] = x; break;

} else {
z[k] = width; k--; }

} while (1);
}
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DT Values From Intersections

/* get value of input image at each parabola base */
for (x = 0; x <= k; x++) {

vref[x] = imRef(im, v[x], y);
}
k = 0;
/* iterate over pixels, calculating value for closest parabola */
for (x = 0; x < width; x++) {

if (x == z[k+1])
k++;
imRef(im, x, y) = vref[k] + (v[k]-x)*(v[k]-x);

}

No reason to approximate L2 distance!
Code available at 
www.cs.cornell.edu/~dph/matchalgs/
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DT and Morphological Dilation

Dilation operation replaces each point of P 
with some fixed point set Q
– P ⊕ Q = Up Uq p+q 

Dilation by a “disc” Cd of radius d replaces 
each point with a disc
– A point is in the dilation of P by Cd exactly 

when the distance transform value is no more 
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d
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Generalizations of DT

Combination distance functions
– Robust “truncated quadratic” distance

• Quadratic for small distances, linear for larger
• Simply minimum of (weighted) quadratic and 

linear distance transforms

DT of arbitrary functions: minyx-y+f(y) 
– Exact same algorithms apply
– Combination of cost function f(y) at each 

location and distance function
• Useful for certain energy minimization problems
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Distance Transforms in Matching
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Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and 
sum resulting values 

Hausdorff distance (and generalizations)
– Max-min distance which can be computed 

efficiently using distance transform
– Generalization to quantile of distance 

transform values more useful in practice

Iterated closest point (ICP) like methods
– Traditionally search for matches, DT faster
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Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B a-b

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))

Minimization term is simply a distance 
transform of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of DT

Classical distance not robust, single “bad 
match” dominates value 
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Hausdorff Matching

Partial (or fractional) Hausdorff distance to 
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈Ba-b = ktha∈A DB(a)

– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25
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Hausdorff Matching

Best match
– Minimum fractional Hausdorff distance over 

given space of transformations

Good matches
– Above some fraction (rank) and/or below some 

distance

Each point in (quantized) transformation 
space defines a distance
– Search over transformation space

• Efficient branch-and-bound “pruning” to skip 
transformations that cannot be good
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Fast Hausdorff Search

Branch and bound hierarchical search of 
transformation space
Consider 2D transformation space of 
translation in x and y
– (Fractional) Hausdorff distance cannot change 

faster than linearly with translation
• Similar constraints for other transformations

– Quad-tree decomposition, compute distance 
for transform at center of each cell
• If larger than cell half-width, rule out cell
• Otherwise subdivide cell and consider children
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Branch and Bound Illustration

Guaranteed (or admissible) 
search heuristic
– Bound on how good answer 

could be in unexplored region
• Cannot miss an answer

– In worst case won’t rule anything 
out

In practice rule out vast 
majority of transformations
– Can use even simpler tests than 

computing distance at cell center
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DT Based Matching Measures

Fractional Hausdorff distance
– Kth largest value selected from DT

Chamfer
– Sum of values selected from DT

• Suffers from same robustness problems as 
classical Hausdorff distance

• Max intuitively worse but sum also bad
– Robust variants

• Trimmed: sum the K smallest distances (same 
as Hausdorff but sum rather than largest of K)

• Truncated: truncate individual distances before 
summing
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Comparing DT Based Measures

Monte Carlo experiments with known 
object location and synthetic clutter
– Matching edge locations

Varying percent clutter
– Probability of edge 

pixel 2.5-15%

Varying occlusion
– Single missing interval, 

10-25% of boundary

Search over location,
scale, orientation 5% Clutter Image
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ROC Curves

Probability of false alarm vs. detection
– 10% and 15% occlusion with 5% clutter
– Chamfer is lowest, Hausdorff (f=.8) is highest
– Chamfer truncated distance better than trimmed

Hausdorff, f=.8

Trimmed Chamfer, f=.8

Truncated Chamfer, d=2

Chamfer
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Edge Orientation Information

Match edge orientation as well as location
– Edge normals or gradient direction

Increases detection performance and 
speeds up matching
– Better able to discriminate object from clutter
– Better able to eliminate cells in branch and 

bound search

Distance in 3D feature space [px,py,αpo]
– α weights orientation versus location
– ktha∈A minb∈B a-b  = ktha∈A DB(a) 
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ROC’s for Oriented Edge Pixels

Vast improvement for moderate clutter
– Images with 5% randomly generated contours
– Good for 20-25% occlusion rather than 2-5%

Oriented Edges Location Only
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Observations on DT Based Matching

Fast compared to explicitly considering 
pairs of model and data features
– Hierarchical search over transformation space

Important to use robust distance
– Straight Chamfer very sensitive to outliers

• Truncated DT can be computed fast

No reason to use approximate DT 
– Fast exact method for L2

2 or truncated L2
2

For edge features use orientation too 
– Comparing normals or using multiple edge maps
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Template Clustering

Cluster templates into tree structures to 
speed matching
– Rule out multiple templates simultaneously

• Coarse-to-fine search where coarse granularity 
can rule out many templates

• Several variants: Olson, Gavrila, Stenger

Applies to variety of DT based matching 
measures
– Chamfer, Hausdorff and robust Chamfer

Use hierarchical clustering techniques 
(e.g., Edelsbrunner) offline on templates
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Example Hierarchical Clusters

Larger pairwise differences higher in tree 
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Hausdorff and Linear Halfspaces
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Dilate and Correlate Matching

Fixed degree of “smoothing” of features
– Dilate binary feature map with specific radius 

disc rather than all radii as in DT

hk(A,B) ≤ d  ⇔ |A ∩ Bd| ≥ k
– At least k points of A contained in Bd

For low dimensional transformations such 
as x-y-translation best way to compute
– Dilation and binary correlation are very fast
– For higher dimensional cases hierarchical 

search using DT is faster 
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Dot Product Formulation

Let A and Bd be (binary) vector 
representations of A and B
– E.g. standard scan line order

Then fractional Hausdorff distance can be 
expressed as dot product
– hk(A,B) ≤ d ⇔ A•Bd ≥ k

Note that if B is perturbation of A by d 
then A•B is arbitrary whereas A•Bd= A•A
Hausdorff matching using linear subspaces
– Eigenspace, PCA, etc.
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Learning and Hausdorff Distance

Learning linear half spaces
– Dot product formulation defines linear 

threshold function
• Positive if A•Bd ≥ k, negative otherwise

PAC – probably approximately correct
– Learning concepts that with high probability 

have low error 
– Linear programming and perceptrons can both 

be used to learn half spaces in PAC sense

Consider small number of values for d 
(dilation parameter) and pick best
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Illustration of Linear Halfspace

Possible images define n-dimensional 
binary space
Linear function separating positive and 
negative examples

000 100

101

111

010

011

001

110
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Perceptron Algorithm

Examples xi each with label yi∈{+,-}
Set initial prediction vector v to 0
For i=1, …, m
– If sign(v•xi) ≠ sign(yi)

then v=v+yixi

Run repeatedly until no misclassifications 
on m training examples
– Or less than some threshold number but then 

haven’t found linear separator

Generally need many more negative than 
positive examples for effective training
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Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000) 

All Model
Coefs.

Pos. Model
Coefs.

Example Model (dilation d=3, picked automatically)
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Detection Results

Train on 80% test on 20% of data
– No trials yielded any false positives
– Average 3% missed detections, worst case 5%
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Spatial Continuity

Hausdorff and Chamfer matching do not 
measure degree of connectivity
– E.g., edge chains versus isolated points

Spatially coherent matching approach
– Separate features into three subsets

• Matchable
− Near image features

• Boundary
− Matchable but near

un-matchable

• Un-matchable
− Far from image features
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Flexible Templates



52

Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance 

models for each part
– Used for human bodies, faces
– Fischler&Elschlager, 1973 – considerable 

recent work
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Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected 

parts
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Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts are connected (E) and how (C)

General case exponential time
– Consider special case in which parts translate 

with respect to common origin
• E.g., useful for faces

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring
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Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li) 

• Measures degree of mismatch of appearance ai
when part vi placed at location li

– Deformation cost di(li,l1)
• Spring cost ci1 of part vi measured with respect 

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)
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Express as Kind of DT

minL (Σi (mi(li) + di(li,l1)))
minL (Σi mi(li) + li – Ti(l1)2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1 (m1(l1) + 
Σi>1 minli (mi(li)+li–Ti(l1)2))

– i-th term of sum minimizes only over li
minl1 (m1(l1) + Σi>1 Dmi(Ti(l1)))
– Each term of sum is distance transform of the 

match cost function mi
• Df(x) = miny (f(y) + y-x2), using same 

algorithms as before
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Application to Face Detection

Five parts: eyes, tip of nose, sides of 
mouth
Each part a local image patch (mi)
– Represented as response to oriented filters

– 27 filters at 3 scales and 9 orientations
– Learn coefficients from labeled examples

Parts translate with respect to central 
part, tip of nose (di)
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Flexible Template Face Detection

Runs at several frames per second
– Compute oriented filters at 27 orientations and 

scales for part cost mi

– Distance transform mi for each part other than 
central one (nose tip)

– Find maximum of sum
for detected location
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More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part

Two differences from reference part case
– Relate positions of parts to one another using 

tree-structured recursion
• Solve with Viterbi or forward-backward 

algorithm

– Parameterization of distance transform more 
complex – transformation Tij for each 
connected pair of parts 



60

General Form of Problem

Best location can be viewed in terms of 
probability or cost (negative log prob.)
– maxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

– minL ΣV mj(lj) + ΣE dij(li,lj)
• mj(lj) – how well part vj matches image at lj
• dij(li,lj) – how well locations li,lj agree with model

(spring connecting parts vi and vj)

Difficulty of maximization/minimization 
depends on form of graph
– Exponential time in general, efficient for tree
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Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)
Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )
– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted
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Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(ns2) rather than O(sn) for s locations, n parts
• Still slow to be useful in practice (s in millions)

– Couple with distance transform method for 
finding best pair-wise locations in linear time
• Resulting O(ns) method

Similar techniques allow sampling from 
posterior distribution in O(ns) time
– Using forward-backward algorithm
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O(ns) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization 
formulas as a DT Df(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij,Tji map locations to space where difference 
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations 
– Each can be computed in O(sD) time

• D is number of dimensions to parameter space 
but is fixed (in our case D is 2 to 4)
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Example: Recognizing People
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Variety of Poses
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Variety of Poses
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Samples From Posterior
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Model of Specific Person
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Bayesian Formulation of Learning

Given example images I1, …, Im with 
configurations L1, …, Lm

– Supervised or labeled learning problem

Obtain estimates for model Θ=(A,E,C)

Maximum likelihood (ML) estimate is
– argmaxΘ p(I1, …, Im, L1, …, Lm |Θ)

– argmaxΘ ∏kp(Ik,Lk|Θ) 
• Independent examples

– argmaxΘ ∏kp(Ik|Lk,A) ∏kp(Lk|E,C)
• Independent appearance and dependencies
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Efficiently Learning Tree Models

Estimating appearance p(Ik|Lk,A)
– ML estimation for particular type of part

• E.g., for constant color patch use Gaussian 
model, computing mean color and covariance

Estimating dependencies p(Lk|E,C)
– Estimate C for pairwise locations, p(lik,ljk|cij)

• E.g., for translation compute mean offset 
between parts and variation in offset

– Best tree using minimum spanning tree (MST) 
algorithm
• Pairs with “smallest relative spatial variation”
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Example: Generic Person Model

Each part represented as rectangle
– Fixed width, varying length
– Learn average and variation 

• Connections approximate revolute joints

– Joint location, relative position, 
orientation, foreshortening

– Estimate average and variation

Learned model (used above)
– All parameters learned

• Including “joint locations”

– Shown at ideal configuration
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