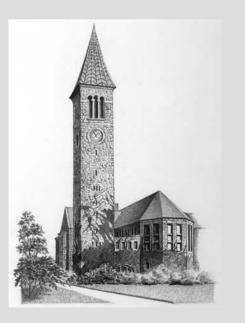


Efficient Algorithms for Matching



Dan Huttenlocher and Phil Torr ICCV 2003

Dynamic Programming For Detection

Fast Detection

For example finding faces at video rates

Dynamic Programming (DP)

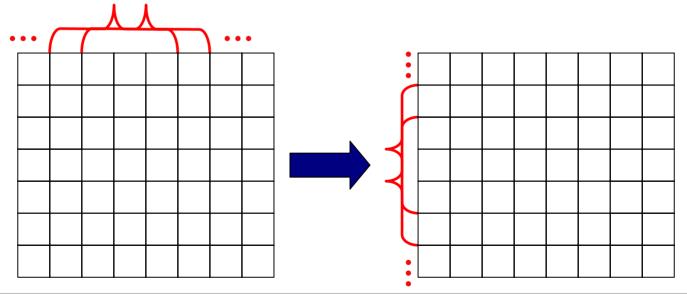
- General algorithmic technique
 - Not specific algorithm
 - Analogous to "divide and conquer" bottom up
- Methods that cache solutions to subproblems rather than re-computing them
 - E.g., Fibonacci, substring matching
- Applies to problems that can be decomposed into sequence of stages
 - Each stage expressed in terms of results of fixed number of previous stages

Simple DP Example: Box Sum

- Sum n-vector over sliding k-window
 - $-W_{k}[x] = f[x] + ... + f[x+k]$
 - Note: often k odd, sum between x ± (k-1)/2 ... (...) ... (... (... (... (...) ... (... (...) ... (... (...) ... (... (...) ... (...) ... (... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ... (...) ...) ... (...) ... (...) ...) ... (...) ...) ... (...) ...) ... (...) ...) ... (...) ... () ...) ...)
- Explicit summation O(k*n) additions
- Recurrence yields O(n+k) time method
 - $-W_{k}[x] = W_{k}[x-1] + f[x+k] f[x-1]$
 - Each element of sum differs from previous by just two values

Box Sums in d Dimensions

- One pass along each dimension
 - Sum intermediate result from previous pass
 - 2D case: horizontal then vertical (or vice versa)
 - m by n image, O(mn+wh) time vs. O(mnwh)
 - E.g., 10 by 10 summation window, 100x faster



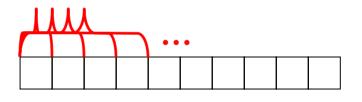
1d Integral Images

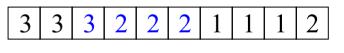
- Fast summations over different sized regions (non spatially uniform)
- Cumulative sum

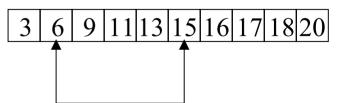
-S[x] = f[0] + ... + f[x]

- DP recurrence O(n) time
 S[x] = S[x-1] + f[x]
- Sum over window of f[x] independent of size k

 $-W_{k}[x] = S[x+k-1]-S[k-1]$

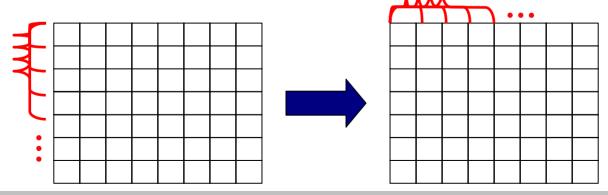






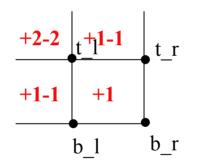
n-d Integral Images

- Analogous for higher dimensions, 2D:
 S[x,y] = f[0,0] + ... + f[0,y] + ... f[x,0] + ... + f[x,y]
- Separate recurrence per dimension
 - -C[x,y] = C[x,y-1] + f[x,y] (column sum)
 - -S[x,y] = S[x-1,y] + C[x,y] (total sum)
 - Or alternatively row sum then total sum



Fast Region Sums With II

- Sum over a rectangle, constant time
 - S[b_r] + S[t_l-(1,1)] S[b_l-(1,0)] S[t_r-(0,1)]



- Sum over arbitrary region, linear time
 - Running time proportional to length of boundary not area

Fast Detection With II

- Features formed from combinations of sums over rectangles
 - For example positive and negative regions
 - Running time independent of rectangle size
- Viola and Jones use for face detection at approximately video rates

Fast Detection With II

- Also useful for arbitrary shaped regions
 - Decompose into rectangles
 - With no holes in worst case this is number of scan lines (not too bad with holes either)
 - Proportional to boundary length rather than area
 - Construct chain-code representation of boundary and sum values
 - Positive for downward links and negative for upward (reverse for holes)
 - Note relation to work of Jermyn and Ishikawa on boundary integrals

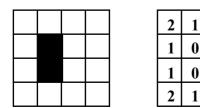
Distance Transforms

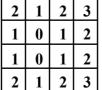
Distance Transforms

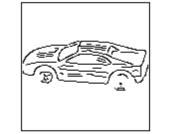
- Map of distance to nearest features
 - Computed from map of feature locations
 - E.g., edge detector output
- Powerful and widely applicable
 - Can think of as "smoothing in feature space"
 - Related to morphological dilation operation
 - Often preferable to explicitly searching for correspondences of features
- Efficiently computable using DP
 - Time linear in number of pixels, fast in practice

Distance Transform Definition

- Set of points, P, some distance || ||
 D_P(x) = min_{y∈P} ||x y ||
 - For each location x distance to nearest y in P
 - Think of as cones rooted at each point of P
- Commonly computed on a grid Γ using D_P(x) = min_{y∈Γ} (||x - y || + 1_P(y)) - Where 1_P(y) = 0 when y∈P, ∞ otherwise







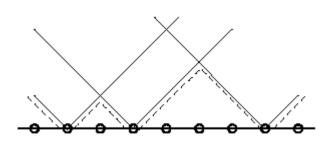
DP for L₁ Distance Transform

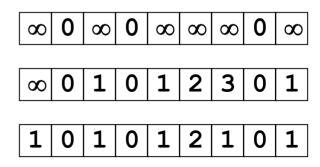
- 1D case
 - Two passes:
 - Find closest point on left
 - Find closest on right if closer than one on left
 - Incremental:
 - Moving left-to-right, closest point on left either previous closest point or current point
 - Analogous moving right-to-left for closest point on right
 - Can keep track of closest point as well as distance to it
 - Will illustrate distance; point follows easily

L₁Distance Transform Algorithm

- Two pass O(n) algorithm for 1D L_1 norm (for simplicity just distance)
 - 1. <u>Initialize</u>: For all j $D[j] \leftarrow 1_{\mathbf{P}}[j]$
- 2. <u>Forward</u>: For j from 1 up to n-1 D[j] \leftarrow min(D[j],D[j-1]+1)

3. <u>Backward</u>: For j from n-2 down to 0 0 1 D[j] \leftarrow min(D[j],D[j+1]+1)





L₁ Distance Transform

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to left
 - Bwd pass finds closest below and to right
- Note nothing depends on 0,∞ form of initialization

8	ø	8	8
8	0	8	ø
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	8
8	0	8	8
8	8	8	8

o	Ы	8	8	8
0	b	0	1	2
0	Ь	0	1	2
o	р	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

L₂ Distance Transform

- Approximations using fixed size masks
 - Analogous to L_1 case
 - Simple to understand but not best methods
- Exact linear time method for L₂²
 - Can compute sqrt (but usually not needed)
 - Fast in practice, easy to implement
 - Harder to understand than L_1 algorithm
 - Uses important general algorithmic technique of amortized analysis
- ID case lower envelope of quadratics

1D L₂² **Distance Transform**

- Single left-to-right pass
 - Adding k-th quadratic to lower envelope (LE) of first k-1 quadratics
 - Quadratics differ only in location of their base
- Concerned about intersection of k-th quadratic and LE of first k-1
 - Consider only rightmost quadratic visible in LE
 - Keep track of locations of bases of visible quadratics (VQ), ordered left-to-right
 - Keep track of visible intersections of adjacent quadratics (VI), ordered left-to-right

Adding k-th Quadratic to LE

- Case 1: intersection of k and rightmost VQ (RVQ) outside range, k not visible on LE
- Case 2: intersection of k and RVQ to right of rightmost VI (RVI), k added to right
- Case 3: intersection of k and RVQ to left of RVI, k covers at least RVQ, remove RVQ and try adding again

Running Time of 1D Algorithm

 Traditional analysis would consider time for each case, multiplied by n iterations

- Cases 1 and 2 O(1), but case 3 ??

- <u>Amortized analysis</u>: charge work done by algorithm to "events" that can be bounded
 - Three event types
 - K-th quadratic initially excluded
 - K-th quadratic added
 - K-th quadratic removed
 - Each event happens at most once per quadratic (note once removed, never again)
 - Algorithm does constant work per event

2D Algorithm

- Horizontal pass of 1D algorithm
 - Computes minimum x² distance
- Vertical pass of 1D algorithm on result of horizontal pass
 - Computes minimum x²+y² distance
 - Note algorithm applies to any input (quadratics can be at any location)
- Actual code straightforward and fast
 - Each pass maintains arrays of indexes of visible parabolas and the intersections
 - Fills in distance values at each pixel after determining which parabolas visible

Horizontal Pass of 2D L₂² DT

```
for (y = 0; y < height; y++) {
  k = 0; /* Number of boundaries between parabolas */
   z[0] = 0; /* Indexes of locations of boundaries */
   z[1] = width; /* No current boundaries (first at end of array) */
  v[0] = 0; /* Indexes of locations of visible parabola bases */
   for (x = 1; x < width; x++) {
    do {
   /* intersection of this parabola with rightmost visible parabola */
   s = ((imRef(im, x, y) + x*x) - (imRef(im, v[k], y) + v[k]*v[k])) /
      (2 * (x - v[k]));
    sp = ceil(s);
    /* case one: intersection off end, this parabola not visible */
    if (sp >= width)
      break;
    /* case two: intersection is rightmost, add it to end*/
    if (sp > z[k]) {
      z[k+1] = sp; z[k+2] = width; v[k+1] = x; k++;
      break; }
    /* case three: intersection is not rightmost, hides rightmost
       parabola and perhaps others, remove rightmost and try again */
    if (k == 0) {
      v[0] = x; break;
    } else {
      z[k] = width; k--; \}
     } while (1);
   }
```


DT Values From Intersections

```
/* get value of input image at each parabola base */
for (x = 0; x <= k; x++) {
    vref[x] = imRef(im, v[x], y);
}
k = 0;
/* iterate over pixels, calculating value for closest parabola */
for (x = 0; x < width; x++) {
    if (x == z[k+1])
    k++;
    imRef(im, x, y) = vref[k] + (v[k]-x)*(v[k]-x);
}</pre>
```

- No reason to approximate L₂ distance!
- Code available at www.cs.cornell.edu/~dph/matchalgs/

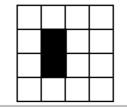
DT and Morphological Dilation

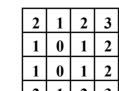
 Dilation operation replaces each point of P with some fixed point set Q

 $- P \oplus Q = U_p U_q p+q$

- Dilation by a "disc" C^d of radius d replaces each point with a disc
 - A point is in the dilation of P by C^d exactly when the distance transform value is no more than d (for appropriate disc and distance fcn.)

$$- x \in P \oplus C^d \iff D_P(x) \leq d$$





0	1	0	0	
1	1	1	0	
1	1	1	0	
0	1	0	0	

1	1	1	0
1	1	1	1
1	1	1	1
1	1	1	0

Generalizations of DT

- Combination distance functions
 - Robust "truncated quadratic" distance
 - Quadratic for small distances, linear for larger
 - Simply minimum of (weighted) quadratic and linear distance transforms

- DT of arbitrary functions: min_y ||x-y|| + f(y)
 - Exact same algorithms apply
 - Combination of cost function f(y) at each location and distance function
 - Useful for certain energy minimization problems

Distance Transforms in Matching

Distance Transforms in Matching

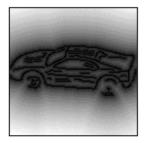
- Chamfer measure asymmetric
 - Sum of distance transform values
 - "Probe" DT at locations specified by model and sum resulting values
- Hausdorff distance (and generalizations)
 - Max-min distance which can be computed efficiently using distance transform
 - Generalization to quantile of distance transform values more useful in practice
- Iterated closest point (ICP) like methods
 - Traditionally search for matches, DT faster

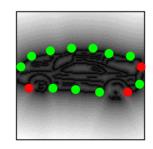
Hausdorff Distance

- Classical definition
 - Directed distance (not symmetric)
 - $h(A,B) = \max_{a \in A} \min_{b \in B} ||a-b||$
 - Distance (symmetry)
 - H(A,B) = max(h(A,B), h(B,A))
- Minimization term is simply a distance transform of B
 - $-h(A,B) = \max_{a \in A} D_B(a)$
 - Maximize over selected values of DT
- Classical distance not robust, single "bad match" dominates value

Hausdorff Matching

- Partial (or fractional) Hausdorff distance to address robustness to outliers
 - Rank rather than maximum
 - $h_{\mathbf{k}}(\mathbf{A},\mathbf{B}) = \operatorname{kth}_{\mathbf{a}\in\mathbf{A}} \operatorname{min}_{\mathbf{b}\in\mathbf{B}} \| \mathbf{a} \cdot \mathbf{b} \| = \operatorname{kth}_{\mathbf{a}\in\mathbf{A}} \mathsf{D}_{\mathbf{B}}(\mathbf{a})$
 - K-th largest value of D_B at locations given by A
 - Often specify as fraction f rather than rank
 - 0.5, median of distances; 0.75, 75th percentile





Hausdorff Matching

Best match

 Minimum fractional Hausdorff distance over given space of transformations

Good matches

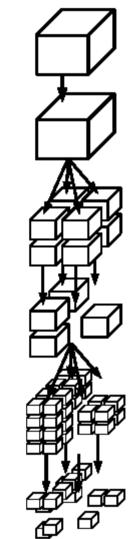
- Above some fraction (rank) and/or below some distance
- Each point in (quantized) transformation space defines a distance
 - Search over transformation space
 - Efficient branch-and-bound "pruning" to skip transformations that cannot be good

Fast Hausdorff Search

- Branch and bound hierarchical search of transformation space
- Consider 2D transformation space of translation in x and y
 - (Fractional) Hausdorff distance cannot change faster than linearly with translation
 - Similar constraints for other transformations
 - Quad-tree decomposition, compute distance for transform at center of each cell
 - If larger than cell half-width, rule out cell
 - Otherwise subdivide cell and consider children

Branch and Bound Illustration

- Guaranteed (or admissible) search heuristic
 - Bound on how good answer could be in unexplored region
 - Cannot miss an answer
 - In worst case won't rule anything Evaluate out
- In practice rule out vast majority of transformations
 - Can use even simpler tests than _{Evaluate} computing distance at cell center



Subdivide

Evaluate

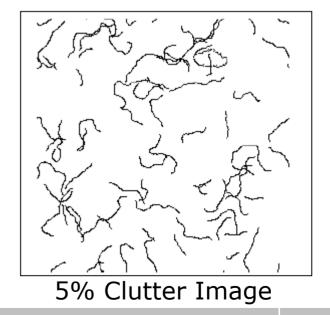
Subdivide

DT Based Matching Measures

- Fractional Hausdorff distance
 - Kth largest value selected from DT
- Chamfer
 - Sum of values selected from DT
 - Suffers from same robustness problems as classical Hausdorff distance
 - Max intuitively worse but sum also bad
 - Robust variants
 - Trimmed: sum the K smallest distances (same as Hausdorff but sum rather than largest of K)
 - Truncated: truncate individual distances before summing

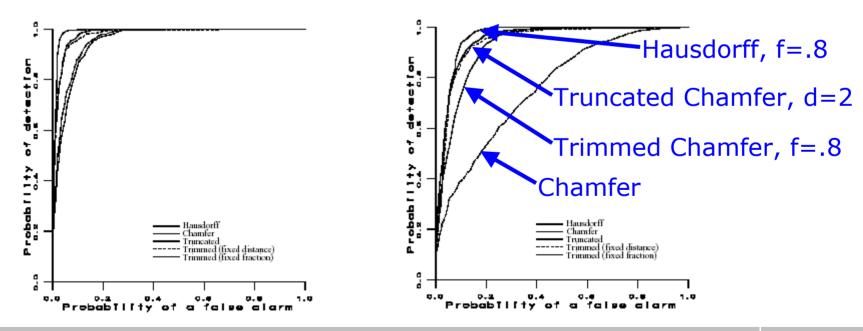
Comparing DT Based Measures

- Monte Carlo experiments with known object location and synthetic clutter
 - Matching edge locations
- Varying percent clutter
 - Probability of edge pixel 2.5-15%
- Varying occlusion
 - Single missing interval, 10-25% of boundary
- Search over location, scale, orientation



ROC Curves

- Probability of false alarm vs. detection
 - 10% and 15% occlusion with 5% clutter
 - Chamfer is lowest, Hausdorff (f=.8) is highest
 - Chamfer truncated distance better than trimmed

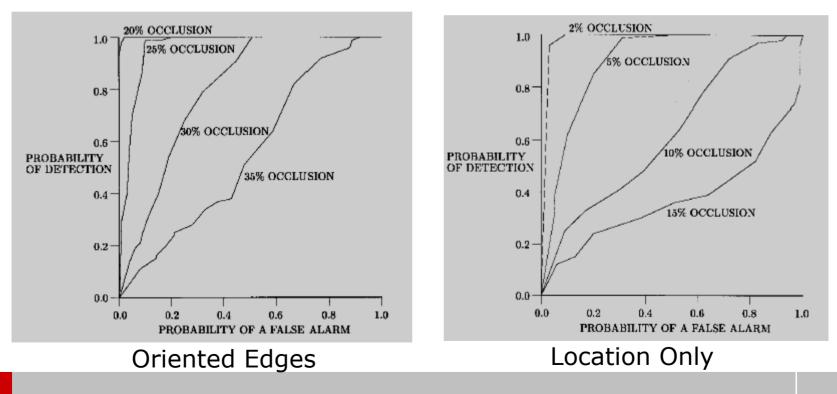


Edge Orientation Information

- Match edge orientation as well as location
 - Edge normals or gradient direction
- Increases detection performance and speeds up matching
 - Better able to discriminate object from clutter
 - Better able to eliminate cells in branch and bound search
- Distance in 3D feature space $[p_x, p_y, \alpha p_o]$
 - $\boldsymbol{\alpha}$ weights orientation versus location
 - $\operatorname{kth}_{a \in A} \operatorname{min}_{b \in B} \| a b \| = \operatorname{kth}_{a \in A} D_{B}(a)$

ROC's for Oriented Edge Pixels

- Vast improvement for moderate clutter
 - Images with 5% randomly generated contours
 - Good for 20-25% occlusion rather than 2-5%



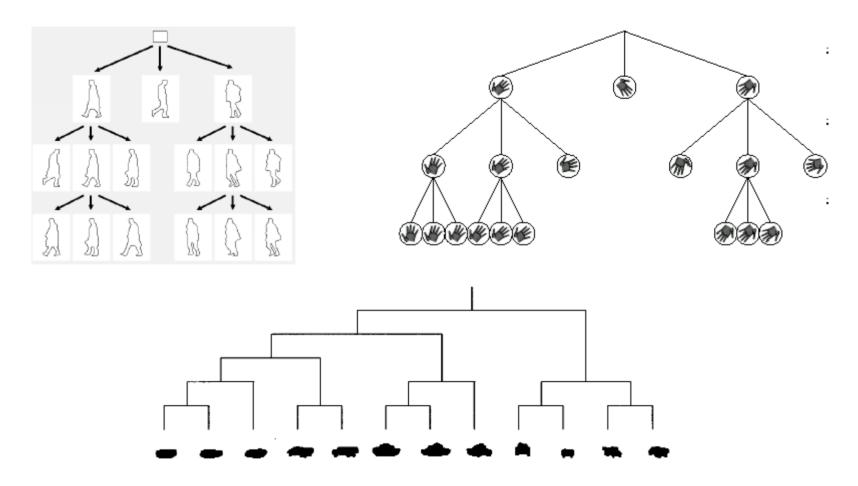
Observations on DT Based Matching

- Fast compared to explicitly considering pairs of model and data features
 - Hierarchical search over transformation space
- Important to use robust distance
 Straight Chamfer very sensitive to outliers
 - Truncated DT can be computed fast
- No reason to use approximate DT
 - Fast exact method for L_2^2 or truncated L_2^2
- For edge features use orientation too
 - Comparing normals or using multiple edge maps

Template Clustering

- Cluster templates into tree structures to speed matching
 - Rule out multiple templates simultaneously
 - Coarse-to-fine search where coarse granularity can rule out many templates
 - Several variants: Olson, Gavrila, Stenger
- Applies to variety of DT based matching measures
 - Chamfer, Hausdorff and robust Chamfer
- Use hierarchical clustering techniques (e.g., Edelsbrunner) offline on templates

Example Hierarchical Clusters



Larger pairwise differences higher in tree

Hausdorff and Linear Halfspaces

Dilate and Correlate Matching

- Fixed degree of "smoothing" of features
 - Dilate binary feature map with specific radius disc rather than all radii as in DT
- $h_{\mathbf{k}}(\mathbf{A},\mathbf{B}) \leq \mathbf{d} \iff |\mathbf{A} \cap \mathbf{B}^{\mathbf{d}}| \geq \mathbf{k}$
 - At least k points of A contained in $\mathsf{B}^{\mathbf{d}}$
- For low dimensional transformations such as x-y-translation best way to compute
 - Dilation and binary correlation are very fast
 - For higher dimensional cases hierarchical search using DT is faster

Dot Product Formulation

- Let A and B^d be (binary) vector representations of A and B
 - E.g. standard scan line order
- Then fractional Hausdorff distance can be expressed as dot product

 $-h_{\mathbf{k}}(\mathsf{A},\mathsf{B}) \leq d \Leftrightarrow \boldsymbol{A} \boldsymbol{\bullet} \boldsymbol{B}^{\mathbf{d}} \geq k$

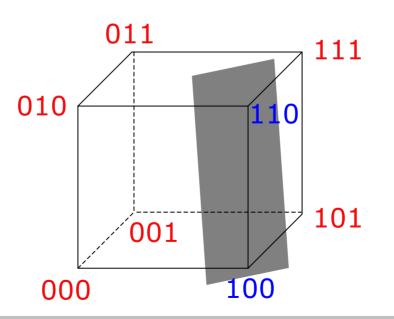
- Note that if B is perturbation of A by d then A•B is arbitrary whereas A•B^d = A•A
- Hausdorff matching using linear subspaces
 Eigenspace, PCA, etc.

Learning and Hausdorff Distance

- Learning linear half spaces
 - Dot product formulation defines linear threshold function
 - Positive if $\mathbf{A} \bullet \mathbf{B}^{\mathbf{d}} \ge \mathbf{k}$, negative otherwise
- PAC probably approximately correct
 - Learning concepts that with high probability have low error
 - Linear programming and perceptrons can both be used to learn half spaces in PAC sense
- Consider small number of values for d (dilation parameter) and pick best

Illustration of Linear Halfspace

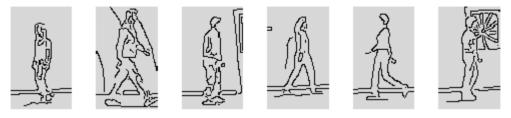
- Possible images define n-dimensional binary space
- Linear function separating positive and negative examples



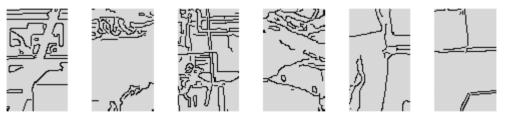
Perceptron Algorithm

- Examples x_i each with label $y_i \in \{+, -\}$
- Set initial prediction vector v to 0
- For i=1, ..., m
 - If sign($v \cdot x_i$) \neq sign(y_i) then $v = v + y_i x_i$
- Run repeatedly until no misclassifications on m training examples
 - Or less than some threshold number but then haven't found linear separator
- Generally need many more negative than positive examples for effective training

Learned Half-Space Templates



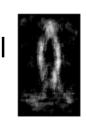
Positive examples (500)



Negative examples (350,000)

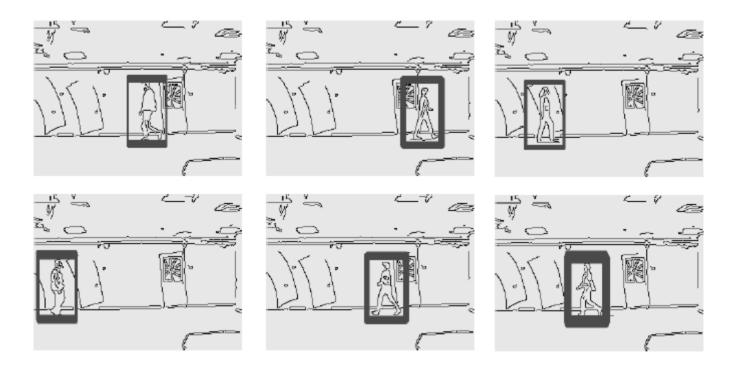
All Model Coefs.

Pos. Model Coefs.



Example Model (dilation d=3, picked automatically)

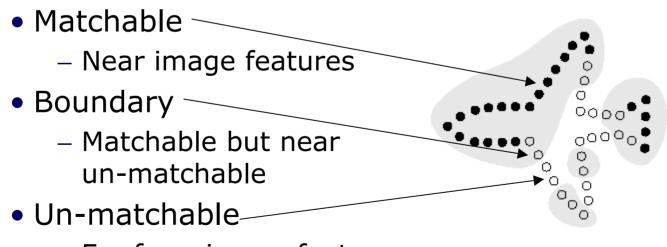
Detection Results



- Train on 80% test on 20% of data
 - No trials yielded any false positives
 - Average 3% missed detections, worst case 5%

Spatial Continuity

- Hausdorff and Chamfer matching do not measure degree of connectivity
 - E.g., edge chains versus isolated points
- Spatially coherent matching approach
 - Separate features into three subsets

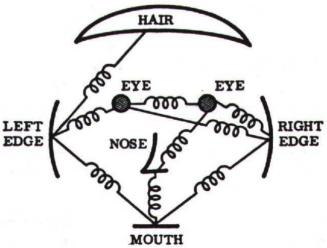


– Far from image features

Flexible Templates

Flexible Template Matching

- Pictorial structures
 - Parts connected by springs and appearance models for each part
 - Used for human bodies, faces
 - Fischler&Elschlager, 1973 considerable recent work

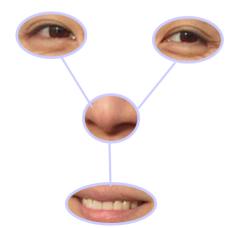


Formal Definition of Model

- Set of parts V={v₁, ..., v_n}
- Configuration L=(l₁, ..., l_n)
 Specifying locations of the parts
- Appearance parameters A=(a₁, ..., a_n)
 Model for each part
- Edge e_{ij}, (v_i,v_j) ∈ E for connected parts
 Explicit dependency between part locations I_i, I_i
- Connection parameters $C = \{c_{ij} | e_{ij} \in E\}$
 - Spring parameters for each pair of connected parts

Flexible Template Algorithms

- Difficulty depends on structure of graph
 - Which parts are connected (E) and how (C)
- General case exponential time
 - Consider special case in which parts translate with respect to common origin
 - E.g., useful for faces



- Distinguished central part v_1
- Spring c_{i1} connecting v_i to v_1
- Quadratic cost for spring

Efficient Algorithm for Central Part

- Location L=(I₁, ..., I_n) specifies where each part positioned in image
- Best location $\min_{\mathbf{L}} (\Sigma_{\mathbf{i}} m_{\mathbf{i}}(|_{\mathbf{i}}) + d_{\mathbf{i}}(|_{\mathbf{i}},|_{\mathbf{1}}))$
 - Part cost $m_i(l_i)$
 - Measures degree of mismatch of appearance $\mathbf{a_i}$ when part $\mathbf{v_i}$ placed at location $\mathbf{l_i}$
 - Deformation cost $d_i(|_i,|_1)$
 - Spring cost c_{i1} of part v_i measured with respect to central part v_1
 - E.g., quadratic or truncated quadratic function
 - Note deformation cost zero for part v₁ (wrt self)

Express as Kind of DT

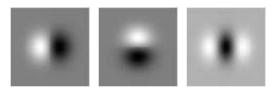
- $\min_{\mathbf{L}} (\Sigma_{\mathbf{i}} (\mathbf{m}_{\mathbf{i}}(\mathbf{l}_{\mathbf{i}}) + \mathbf{d}_{\mathbf{i}}(\mathbf{l}_{\mathbf{i}},\mathbf{l}_{\mathbf{1}})))$
- $\min_{\mathbf{L}} (\Sigma_{\mathbf{i}} m_{\mathbf{i}}(\mathbf{I}_{\mathbf{i}}) + \|\mathbf{I}_{\mathbf{i}} \mathsf{T}_{\mathbf{i}}(\mathbf{I}_{\mathbf{1}})\|^2)$
 - Quadratic distance between location of part $v_{\rm i}$ and ideal location given location of central part
- $\min_{\mathbf{l}_{1}} (m_{1}(|_{1}) + \sum_{i>1} \min_{\mathbf{l}_{i}} (m_{i}(|_{i}) + ||_{i} T_{i}(|_{1}) ||^{2}))$

– i-th term of sum minimizes only over I_i

- $\min_{I_1} (m_1(I_1) + \Sigma_{i>1} D_{mi}(T_i(I_1)))$
 - Each term of sum is <u>distance transform</u> of the match cost function m_i
 - D_f(x) = min_y (f(y) + ||y-x||²), using same algorithms as before

Application to Face Detection

- Five parts: eyes, tip of nose, sides of mouth
- Each part a local image patch (m_i)
 - Represented as response to oriented filters



- 27 filters at 3 scales and 9 orientations
- Learn coefficients from labeled examples
- Parts translate with respect to central part, tip of nose (d_i)

Flexible Template Face Detection

- Runs at several frames per second
 - Compute oriented filters at 27 orientations and scales for part cost m_i
 - Distance transform m_i for each part other than central one (nose tip)
 - Find maximum of sum for detected location

More General Flexible Templates

- Efficient computation using distance transforms for any <u>tree-structured</u> model
 - Not limited to central reference part
- Two differences from reference part case
 - Relate positions of parts to one another using tree-structured recursion
 - Solve with Viterbi or forward-backward algorithm
 - Parameterization of distance transform more complex transformation T_{ij} for each connected pair of parts

General Form of Problem

- Best location can be viewed in terms of probability or cost (negative log prob.)
 - $\max_{L} p(L|I,\Theta) = \arg\max_{L} p(I|L,A)p(L|E,C)$
 - $-\min_{\mathsf{L}} \Sigma_{\mathsf{V}} m_{\mathbf{j}}(\mathbf{I_j}) + \Sigma_{\mathsf{E}} d_{\mathbf{ij}}(\mathbf{I_i},\mathbf{I_j})$
 - $m_j(l_j)$ how well part v_j matches image at l_j
 - $d_{ij}(l_i, l_j)$ how well locations l_i, l_j agree with model (spring connecting parts v_i and v_j)
- Difficulty of maximization/minimization depends on form of graph
 - Exponential time in general, efficient for tree

Minimizing Over Tree Structures

- Use dynamic programming to minimize $\Sigma_V m_j(l_j) + \Sigma_E d_{ij}(l_i,l_j)$
- Can express as function for pairs B_j(l_i)
 Cost of best location of v_i given location l_i of v_i
- Recursive formulas in terms of children C_j of v_j
 - $B_j(I_i) = \min_{Ij} (m_j(I_j) + d_{ij}(I_i,I_j) + \Sigma_{Cj} B_c(I_j))$
 - For leaf node no children, so last term empty
 - For root node no parent, so second term omitted

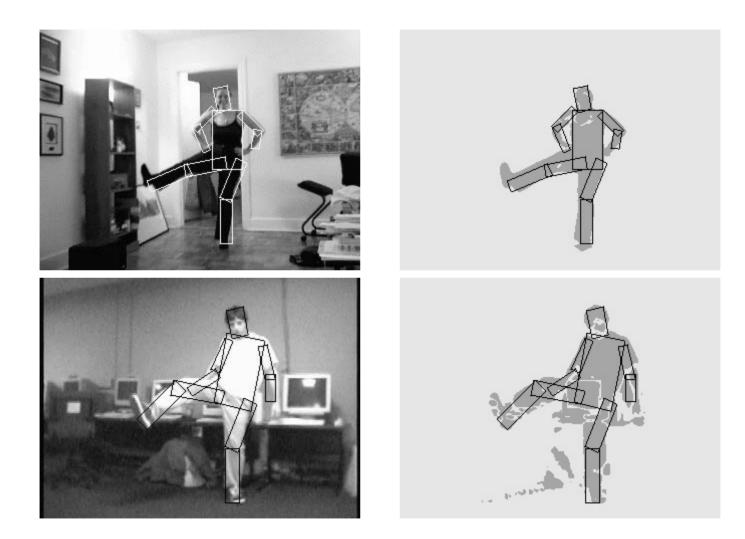
Efficient Algorithm for Trees

- MAP estimation algorithm
 - Tree structure allows use of Viterbi style dynamic programming
 - O(ns²) rather than O(sⁿ) for s locations, n parts
 - Still slow to be useful in practice (s in millions)
 - Couple with distance transform method for finding best pair-wise locations in linear time
 - Resulting O(ns) method
- Similar techniques allow sampling from posterior distribution in O(ns) time
 - Using forward-backward algorithm

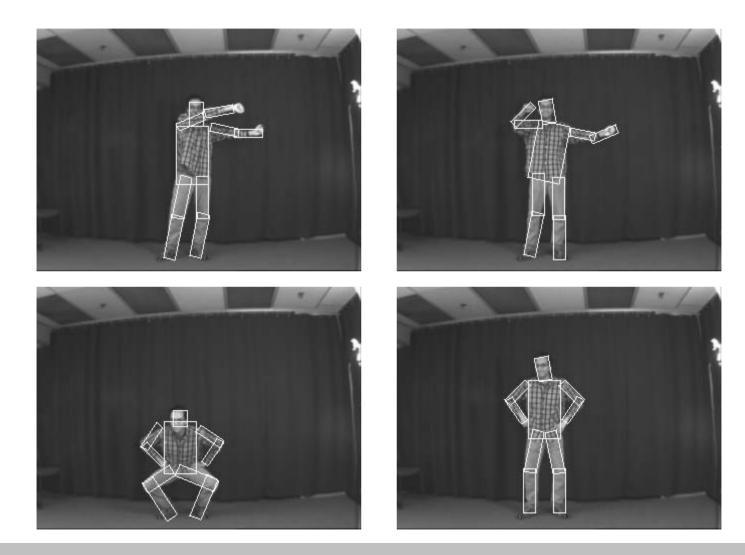
O(ns) Algorithm for MAP Estimate

- Express B_j(I_i) in recursive minimization formulas as a DT D_f(T_{ij}(I_i))
 - Cost function
 - $f(y) = m_j(T_{ji}^{-1}(y)) + \sum_{cj} B_c(T_{ji}^{-1}(y))$
 - T_{ij} , T_{ji} map locations to space where difference between I_i and I_j is a squared distance
 - Distance zero at ideal relative locations
- Yields n recursive equations
 - Each can be computed in O(sD) time
 - D is number of dimensions to parameter space but is fixed (in our case D is 2 to 4)

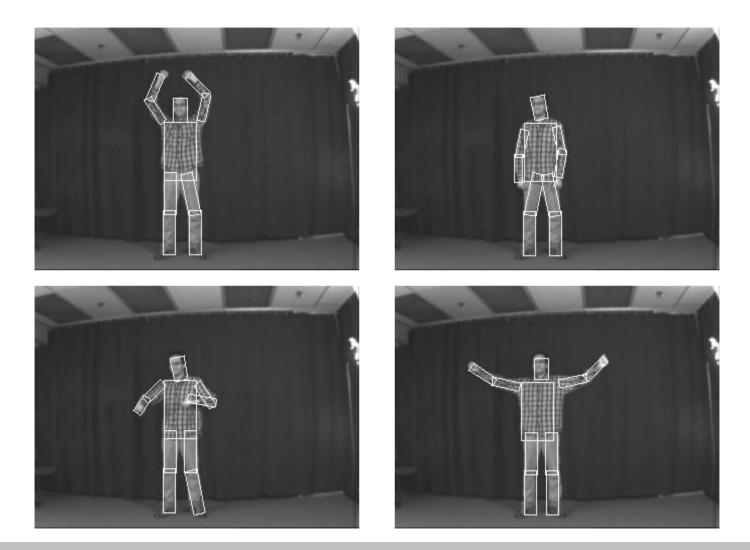
Example: Recognizing People



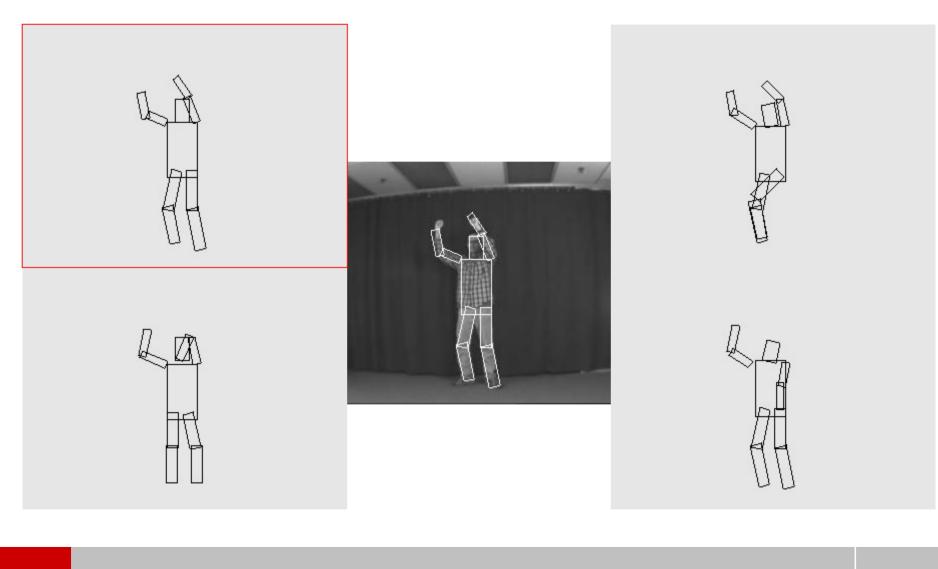
Variety of Poses



Variety of Poses



Samples From Posterior



Model of Specific Person

Bayesian Formulation of Learning

- Given example images I¹, ..., I^m with configurations L¹, ..., L^m
 - Supervised or labeled learning problem
- Obtain estimates for model $\Theta = (A, E, C)$
- Maximum likelihood (ML) estimate is
 - $\operatorname{argmax}_{\Theta} p(I^{1}, ..., I^{m}, L^{1}, ..., L^{m} | \Theta)$
 - $\operatorname{argmax}_{\Theta} \prod_{\mathbf{k}} p(I^{\mathbf{k}}, L^{\mathbf{k}}|\Theta)$
 - Independent examples
 - $\operatorname{argmax}_{\Theta} \prod_{\mathbf{k}} p(I^{\mathbf{k}}|L^{\mathbf{k}},A) \prod_{\mathbf{k}} p(L^{\mathbf{k}}|E,C)$
 - Independent appearance and dependencies

Efficiently Learning Tree Models

- Estimating appearance p(I^k|L^k,A)
 - ML estimation for particular type of part
 - E.g., for constant color patch use Gaussian model, computing mean color and covariance
- Estimating dependencies p(L^k|E,C)
 - Estimate C for pairwise locations, $p(|_i^k, |_j^k | c_{ij})$
 - E.g., for translation compute mean offset between parts and variation in offset
 - Best tree using minimum spanning tree (MST) algorithm
 - Pairs with "smallest relative spatial variation"

Example: Generic Person Model

- Each part represented as rectangle
 - Fixed width, varying length
 - Learn average and variation
 - Connections approximate revolute joints
 - Joint location, relative position, orientation, foreshortening
 - Estimate average and variation
- Learned model (used above)
 - All parameters learned
 - Including "joint locations"
 - Shown at ideal configuration

