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Abstract

It’s common experience for human vision to perceive
full 3D shape and scene from a single 2D image with the
occluded parts “filled-in” by prior visual knowledge. In
this paper we represent prior knowledge of 3D shapes and
scenes by probabilistic models at two levels – both are de-
fined on graphs. The first level model is built on a graph rep-
resentation for single objects, and it is a mixture model for
both man-made block objects and natural objects such as
trees and grasses. It assumes surface and boundary smooth-
ness, 3D angle symmetry etc. The second level model is built
on the relation graph of all objects in a scene. It assumes
that objects should be supported for maximum stability with
global bounding surfaces, such as ground, sky and walls.
Given an input image, we extract the geometry and photo-
metric structures through image segmentation and sketch-
ing, and represent them in a big graph. Then we partition
the graph into subgraphs each being an object, infer the 3D
shape and recover occluded surfaces, edges and vertices in
each subgraph, and infer the scene structures between the
recovered 3D sub-graphs. The inference algorithm samples
from the prior model under the constraint that it reproduces
the observed image/sketch under projective geometry.

1. Introduction

Computing 3D object shapes and complex scene struc-
tures from 2D image(s) is a fundamental problem in com-
puter vision and has been extensively studied. There are
three main streams of research in the literature.

The first is 3D reconstruction from line drawings[8, 9, 11,
10, 4]. Early work used deterministic rules for categorizing
boundary and vertex, and lately the focus has been shifted
to compute 3D shapes through energy minimization. Ex-
isting line drawing work assumes single man-made object,
such as polyhedra, from manual input. Especially all hid-
den lines have to be inputted and their occlusion relation-

ship specified manually. These assumptions prevent the al-
gorithms from working on real images.
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Figure 1. a. Two input images. b. Their primal
sketches obtained by a segmentation and
sketching algorithm [3, 6].

The second is to compute 2.5D depth map using shape-
from-shading, texture and defocus etc or compute 3D mod-
els with user-interactions from a single image[13, 12, 14,
15, 19]. For the methods to compute depth map, the result
has yet to be parsed into objects and 3D shapes have yet
to be computed. Also the photometric cues are rather weak
and some global prior models must be engaged to yield use-
ful results. For the methods using some user-interactions,
they can’t meet the needs to be fully automatic.

The third is to compute 3D shape from multiple images.
For example, structure from Motion (SFM), multiple-view
stereo, space carving etc [18, 17, 16, 5, 20]. As it is well
stated in the photo-hull theory [16], these methods seek con-
straints from a large number of images, taken from well-
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Figure 2. a. input image. b. a graph representation by segmentation algorithm in [2]. c. The graph is
partitioned into five subgraphs for the five objects: wall, ground, and three block objects. d. Hidden
structures ((dashed lines) are recovered for each subgraph. e. Spatial support relation between five
objects in a graph. (Please view the graph in color on screen).

controlled camera positions, to minimize the uncertainty in
3D reconstruction. Most of such algorithms often use very
little prior knowledge about object shape and scene, even
though there are a few impressive trials [20].

Existing methods can hardly be applicable to generic
natural scenes like the images shown in Fig.1. Due to the
complexity and concavity of the objects, like trees and
grasses, one has to capture an enormous number of images
to constrain their 3D shapes, and some views are impossi-
ble or impractical to access without disturbing the objects,
such as water and grasses.

These difficulties are in sharp contrast to human vision
perception. One can perceive full 3D shapes and scene
structures from a single 2D image, like those in Fig.1, with
the occluded parts “filled-in” using prior visual knowledge.
Our perceived 3D structures may only be approximately
correct, but they are sufficient for many vision and graph-
ics tasks. This contradiction between human vision and ma-
chine vision suggests that we should make use of prior mod-
els on 3D shapes and scenes.

In this paper we represent prior knowledge of 3D shapes
and scenes by probabilistic models at two levels – both are
defined on graphs.

The first level model is built on a graph representation
for single object, and it is a mixture model for both man-
made block objects and natural objects such as trees and
grasses. It assumes surface and boundary smoothness, 3D
angle symmetry, like line drawing work [9, 11].

The second level model is built on the relation graph of
all objects in a scene. It is a mixture model for both indoor
and outdoor scenes. It assumes that objects should be sup-
ported for maximum stability, i.e. maximum surface con-
tact and alignment, and use global bounding surfaces, such
as ground, sky and walls. This supporting relation is par-
tially ordered and represented by a graph.

Fig.2 shows a simple example for illustration, and more

examples are shown in Figs.6 and 7. Given an input image
in Fig.2.a, we extract the geometry and photometric struc-
tures through image segmentation and sketching, and rep-
resent them in a big graph in Fig.2.b. Then we partition the
graph into subgraphs each being an object in Fig.2.c. Mean-
while we infer the 3D shape and recover occluded surfaces,
edges and vertices in each subgraph which are shown by
the dashed lines in Fig.2.d. We also infer the scene struc-
tures with a supporting relation graph in Fig.2.e for the re-
covered 3D sub-graphs. These 3D structures can be used for
scene editing, augment reality, image rendering etc.

The inference algorithm samples from the prior model
under the constraint that it reproduces the observed image
under projective geometry. We adopt stochastic algorithms
for graph partition, death-birth of hidden vertices, edges,
and surfaces, which are implemented by reversible jumps
[24].

2. Problem formulation

We formulate the problem as Bayesian inference and
proceed in two steps.

2.1. From an input image to a full primal sketch

Let I be an input 2D image, we first apply an image seg-
mentation and sketching algorithm [2, 3, 6] to compute a
full primal sketchS in a Bayesian formulation.S contains
two layers: a region layerSr in the background and a curve
layerSc in the foreground.

S = (Sr,Sc) ∼ p(I|S)p(S) (1)

The region layer partitions the image lattice into a number
of Kr regions and is represented by a planar graph

Sr = (V, E, F ), V = {pi = (xi, yi) : i = 1, 2, ..., |V |, }.



a. b. c.

Figure 3. a. Orthogonal projection, b. Perspective projection. c. Spatial model of grass/tree

whereV , E andF are respectively the set of vertices, edges
and faces. For polyhedra objects, the verticesV are junc-
tions, and edges inE are line segments. But for natural
scenes,V also includes knots with degreed(v) = 2 to rep-
resent region boundaries. Each face of the planar graph is
a regionR and we record the image intensity in each re-
gion

F = {(Ri, IRi) : i = 1, 2, ..., Kr).

The curve layer consists of a number ofKc curves

Sc = (Kc, C1, C2, ..., CKc).

Each curveC is actually a degenerated 1D region and is rep-
resented by a sequences ofL knots (vertices) with attributes
such as curve widthw and intensity profileρ perpendicular
to the curve.

Ci = (Li, {(pij , wij , ρij) : j = 1, 2, ..., Li})
As the regions and curve profiles preserve the intensity in-
formation,S is considered an augmentation fromI with al-
most no loss of information. The priorp(S) specifies curve
and boundary smoothness etc. The algorithms of segmen-
tation and sketching are referred to [2, 3, 6]. For example,
in Fig.1, the lake-tree image has two regions inSr – the
lake and the sky, andSc includes some free curves and two
trees. The grass image has only one background region and
the rest are curves. The polyhedra image in Fig. 2 has only
Sr andSc is empty.

2.2. From full primal sketch to 3D

The full 3D scene is represented byK objects each being
a 3D graphGi, and by relationPR among the 3D graphs.

W = (K, {Gi, G2, ..., GK}, PR)

a graphG = (Vi, Ei, Fi) is represented by (1)Vi – 3D ver-
tices, (2).Ei – edges that may include attributes such as
width and intensity profile for the curve processes, and (3).
Fi – surfaces with albedo or intensity patterns (or 3D curves
for degenerated surfaces).

V = {vi = (xi, yi, zi) : i = 1, 2, ..., |V |}

E = {(em, wm, ρm) : em = (vs, vt),m = 1, 2..., |E|}
F = {(fn, ρn) : fn = (en1, en2, ..., enk}
PR is a partially ordered relation for the set of objects

PR = ({G1, ..., GK}; ¹).

An element< Gi, Gj >∈ PR meansGi ¹ Gj , i.e. object
Gi supports objectGj . Figs.2.d-e show a representation of
W with K = 5 objects.

Our objective is to compute an optimal representation by
maximizing (or sampling) a Bayesian posterior in a solu-
tion spaceΩ,

W ∼ p(S|W )p(W ), W ∈ Ω.

To preserve the 2D information inS or equivalently inI,
we put the likelihoodp(S|W ) as hard constraints. Then it
becomes

W ∼ p(W )
subject to Π(W ) = S.

whereΠ represents the projection matrix in the image for-
mation. Orthogonal projection (see Fig.3.a) was assumed in
almost all line drawings work. This will cause major arti-
facts in dealing with some real images. In this paper, we
also use the perspective projection shown in Fig. 3.b to deal
with the polyhedra scene.

2.3. Theoretical connection of our method with
Julesz ensemble and photo-hull

The prior modelp(W ) should be essentially learned
from a large training set of real world shapes and scenes,
for example, by a maximum entropy principle [21]. Thus it
is a minimally biased summary of real world regularities ex-
pressed in statistical constraints over a number of features
φi().

E[φi(W )] = φobs
i , i = 1, 2, ..., M

E[] is the expectation over the priorp, andφobs
i is the aver-

age over the training ensemble. Thus the problem becomes
to sample from the following ensemble

W ∼ ensemble{W : E[φi(W )] = φobs
i

M
i=1, Π(W ) = S}.



This ensemble is constructed based on both statistical (soft)
constraints and hard constraints. It is an integration of the
Julesz and Gibbs ensemble in texture modeling [7] and the
photo-hull in space carving [16]. AnyW sampled from the
ensemble will be a reasonable explanation of the observa-
tion imageI or full primal sketchS.

Intuitively, each object graph is divided into two sub-
graphs

Gi = GO
i ∪GH

i , i = 1, 2, ..., K.

GO
i includes the observable vertices, edges and surfaces,

which have to be consistent with the image after projec-
tion. This means that each 3D vertex inGO

i slides along
a projection line in Fig. 3.b and the photometric attributes
in the surfaces have to be interpolated. Some 3D structures
will be preferred by the priorp(W ). This preference is fur-
ther propagated to compute the hidden graphGH

i .
However, it’s very hard to learn the prior modelp(W ) in

practice because we don’t have enough 3D data about real
world available at current stage of computer vision. For-
tunately, some manually defined prior models haven been
shown to work well to some extent [20]. So we will fol-
low this way to define our prior models in the next section.

3. Prior knowledge on graphs

We represent prior knowledge in two levels. One is on
the 3D object graphs and the other is on the relation graph
PR. Thus the total prior model is as follows,

p(W ) = p(K) ·
K∏

i=1

p(Gi) · p(PR)

wherep(K) is assumed to be a Poisson distribution. The
3D objects are limited to polyhedron, trees, and grasses. We
also assume that the type of each component in the full pri-
mal sketchS is known, e.g. it is the projection of a 3D curve
or surface.

3.1. Prior Model for Single Object — p(G)

3.1.1. Prior model for polyhedra For each face of any
polyhedron, we have two regularities. The first regularity
is planarity that the lines for each face should lie on a 3D
plane. For each face in the polyhedra,fi, i = 1, 2, ..., |F |,
assume it has a number of 3D lineslij , j = 1, 2, ...ni. The
planarity for allfi of the polyhedra is enforced by an en-
ergy term,

Eface
1 =

|F |∑

i=1

ni∑

j=1

(1− (li,j−1 × lij) · (lij × li,j+1)
||li,j−1 × lij || ||lij × li,j+1|| )

2

where· and× are inner and outer product respectively.

The second regularity is that the inner angels of the face
should be more or less the same. This is also the case for
the lengths of edges of the face. Letθij , j = 1, 2, ...ni be
the inner angels of facefi. The regularity can be enforced
by the following two energy terms,

Eface
2 =

|F |∑

i=1

ni∑

j=1

1
ni

(θij − θi)2, θi =
1
ni

ni∑

j=1

θij

Eface
3 =

|F |∑

i=1

ni∑

j=1

1
ni

(||lij || − ||li||)2, ||li|| = 1
ni

ni∑

j=1

||lij ||

We also define the prior on all the edgesE using the fol-
lowing three regularities. First, all angles between all pairs
of edges meeting at each vertex must be similar. Letθij , j =
1, 2, ..., ni be the angles between all pairs of edges meeting
at vertexi and the regularity can be enforced by the follow-
ing energy term,

Eedge
4 =

|V |∑

i=1

ni∑

j=1

1
ni

(θij − θi)2, θi =
1
ni

ni∑

j=1

θij

Second, the lengths of all the edges meeting at each ver-
tex must be similar. Leteij , j = 1, 2, ..., mi be all the edges
meeting at vertexi. This regularity can be enforced by the
following energy term,

Eedge
5 =

|V |∑

i=1

mi∑

j=1

1
mi

(||eij || − ||ei||)2, ||ei|| = 1
mi

mi∑

j=1

||eij ||

Third, the lengths of all the edges should be uniformly
proportional to those of their 2D projections. Letei, i =
1, 2, ..., |E| ande′i, i = 1, 2, ..., |E| be the edges in 3D space
and their 2D projections respectively. In this paper we as-
sume the projection is either orthogonal or perspective with
the projection matrix known by some methods in [22], so
we can compute the 2D projection for anyW . Then this
regularity can be enforced by the following energy term,

Eedge
6 =

|E|∑

i=1

1
|E| (

||ei||
||e′i||

− r)2, r =
1
|E|

|E|∑

i=1

||ei||
||e′i||

The prior model for one polyhedron is thus defined as,

p(G) ∝ exp(−{
6∑

i=1

λiEi})

3.1.2. Prior model for trees and grassesFor trees and
grasses, the face surfaces are degenerated into 3D curves.
To explicitly represent this changing, we replaceF andf
in G with C andc here. We define the prior model onG
using two regularities. The first one is that each curve in
C should be smooth. To enforce this regularity, we use a



Markov chain model in [23] which forces the smoothness of
2D curves, but extend it to 3D case. Letci, i = 1, 2, ..., |C|
be all the curves inC andvij , j = 1, 2, ...|ci| be all the ver-
tices on curveci. The smoothness prior model for curveci

can be represented as,

p(ci) = p(vi1, vi2)p(vi3|vi1, vi2)
ni∏

j=4

p(vij |vi,j−1, vi,j−2, vi,j−3)

The probability p(vi1, vi2) is assumed to be uniform,
p(vi3|vi1, vi2) is a two gram represented by a 2-way joint
histogram andp(vij |vi,j−1, vi,j−2, vi,j−3) is a trigram rep-
resentation by three way joint histogram. The first his-
togram is learned as in [23], while the second histogram
is learned from some manually obtained data by comput-
ing three variables:

1. the angle between(vi,j−1, vi,j−2) and(vi,j−2, vi,j−3),

2. the angle between(vi,j−1, vi,j−2) and(vi,j−1, vi,j),

3. the distance fromvi,j to the plane fitting through
vi,j−1, vi,j−2 andvi,j−3.

The second regularity is that these curves should evenly
spread in the 3D space as shown in Figure 3.c. To enforce
this regularity, we fit one plane through each of these long
curves and force the angles between these planes more or
less the same. Letθi, i = 1, 2, ...N be these angels. The
regularity can be enforced by the following energy term,

E =
N∑

i=1

1
N

(θi − θ)2, θ =
1
N

N∑

i=1

θi

The prior model for grasses is thus defined as,

p(G) ∝
|C|∏

i=1

p(ci) exp{−E}

However, the prior model for trees is more complex
since the tree curves are recursively evenly spread in the
3D space. That means not only the overall tree curves are
evenly spread in the 3D space, but also are the tree curves
of the subtrees. Taking the grass prior model as the prior
model for the first level of tree, we can define the tree prior
model as:

p(G) ∝
L∏

i=1

Mi∏

j=1

|Cij |∏

k=1

p(ck) exp{−Eij}

whereL is number of levels of the tree,Mi is the number
of subtrees at leveli, Cij is the number of curves in thejth
subtree at leveli, andEij is the regularity energy term for
jth subtree at leveli.

In the computing process, these two families of prior
models will compete with each other to explain the 3D
shape of one object.

3.2. Prior model for scenes –p(PR)

For eachGi ¹ Gj that meansGi supportsGj , the inter-
face between them should be as large as possible to be sta-
ble. For example, when one box is lying on the ground, we
should expect one of its face is totally touching the ground
instead of part of it. However, if the interface betweenGi

andGj is not a surface, but degenerated line or points (e.g.
the interface between the wall plane and floor plane or that
between grass curves and the pot), we should expect the
overall structure ofGj is perpendicular toGi. Since we
know each component inS represents a 3D curve or sur-
face, the type of the interface betweenGi andGj can be
classified deterministically. Thus, this regularity is enforced
by the following energy term,

E(Gi ¹ Gj) =

{ ∑|Vj |
m=1

(1−δ(D(vjm,Gi)<T ))

|Vj | Gi ∩Gj is a surface
‖A(Gi, Gj)− π

2 ‖ otherwise

where D(vjm, Gi) is a function to compute the min-
imum distance between vertexvjm and objectGi, and
A(Gi, Gj) is a function to compute the angle between the
two overall structures ofGi and Gj . T is a threshold to
judge the distance is small enough for two objects touch-
ing each other.

The prior model for spatial relationPR is thus defined
as,

p(PR) ∝ exp−{
|PR|∑
m=1

E(GPR(m).1 ¹ GPR(m).2)}

wherePR(m).1 andPR(m).2 denote the first and second
element in themth set of the posetPR respectively.

4. Computation and inference

4.1. Random walk in manifold of different dimen-
sions

Given the two levels of prior models and our interest
in obtaining nearly globally optimal solutions, we design
Markov chain to simulate walks in the solution spaceΩ. Re-
cently there are some ideas to speed up the MCMC search
by data driven techniques for image segmentation and per-
ceptual grouping [2, 23] which compute importance pro-
posal probabilities to drive the Markov chain and make the
search focus on promising subspaces. We adopt the DDM-
CMC paradigm in [2]. However, only data driven may not
be enough to recover the hidden information since the given
data provides no direct information about the invisible parts.
Here we introduce some geometric rules that human beings
often use to imagine the hidden information to speed up the
recovering of hidden information.



4.2. Diffusion of vertices and objects

When each subgraph inW is fixed for both visible and
inferred hidden vertices and edges, we try to diffuse thez
value for each visible vertex and thex, y, z values for each
inferred hidden vertex. We also have another diffusion pro-
cess to adapt the overall position of each object to make
all the objects in a scene have maximum stabilities, e.g.
the wall and the floor would be moved to be perpendicu-
lar to each other. The diffusion dynamics can be easily im-
plemented by Gibbs sampler.

4.3. Reversible jumps

Structure changes in the solutionW are realized by
Markov chain jumps, which are bridges between subspaces
of different dimensions inΩ and made reversible [24] to
avoid greedy search. To obtain the full 3D information of
the scene, we design the following reversible jumps that
form ergodic Markov chain to search in the spaceΩ.

1. Reversible jumps to switch between the two families
of prior models for single object,

(G; `1) ↔ (G; `2)

where`i, i ∈ {1, 2} is the label for these families of
prior models.

2. Reversible jumps for adding/removing a partial order
{Gi, Gj} element in the spatial relation setPR,

PR ↔ PR + /− {(Gi, Gj)}
Or reversing the order,

(Gi, Gj) ↔ (Gj , Gi)

3. Reversible jumps for adding/removing a vertex in the
inferred hidden partGH

GH ↔ GH + /− v

4. Reversible jumps for adding/removing an edge in the
inferred hidden partGH

GH ↔ GH + /− e

5. Reversible jumps for splitting/merging surfaces in the
inferred hidden partGH

fk ↔ fi

⊎
fj

6. Reversible jumps for splitting/merging subgraphs

Gk ↔ Gi

⊎
Gj

7. Reversible jumps for growth/shrink of the boundary
of occluded face (or curve for tree and grass). Fig-
ures 4 shows how this pair of jumps work, where the
occluded boundary and curve shown in a) and c) are
grown to the state as shown in b) and e) respectively.

Figure 4. a. The state of a polyhedra before
growth of its occluded boundary, b) the state
of the polyhedra in b) after growth of its oc-
cluded boundary, c) the state of a grass be-
fore growth of its occluded curve, d) the state
of the grass in c) after growth of the occluded
curve.

4.4. Data driven and knowledge driven

Each reversible jump connects two statesWA andWB ,
and observes the detailed balance equation

p(WA|I)dWAP (WA → dWB) = p(WB |I)dWBP (WB → dWA)

where p(WA|I), p(WB |I) are the posterior probabilities
and forWA 6= WB

P (WA → dWB) = q(WA → dWB)α(WA → WB)

is the transition (conditional) probability fromWA to WB ,
andq() andα() are respectively the proposal and acceptable
probabilities. A good design of the proposal probability is
crucial to speed up the search and two recent successful ex-
amples are [2, 23] which design the proposal probability
from bottom-up heuristicsB(I): q(A|B,D(I)) ≈ p(A|I)
andq(B|A, D(I)) ≈ p(B|I). So the acceptance probability
is close to one. To speed up the splitting and merging jumps
on subgraphs using this idea, we computeimportance pro-
posal, q, from the relation between the shapes of the com-
ponent that always should be grouped together. This is es-
pecially true for the tree and grass since we should never
group a curve with a face, but instead one curve with an-
other curve.

However, how to design a goodq for the dynamics re-
covering the hidden structure is challenging because we
have no directly observed data to use. Some geometric rules
that human being often use to imagine the hidden infor-
mation are introduced here to produce a goodq and act as
Knowledge Driven. These geometric rules are: parallelism,



Figure 5. Three rules are used to propose a
new vertex V for the hidden structure GH . a)
mirror symmetry, b) rotational symmetry, c)
parallelism.

rotational symmetry and mirror symmetry, which are often
present in the 3D objects. Fig. 5 shows how these rules can
be used to propose a new vertex added toGH .

5. Experimental results

We test our whole algorithm on two types of data sets.
The first data set are images about polyhedra and we use
image segmentation [2] to work on these images to get
the sketch. Besides the vertices and edges information of
sketch, the segmentation result also provides the face infor-
mation that means which vertices and edges are combined
to form a face. The second data set are images about objects
with strong stochastic 3D shapes, like trees and grasses. We
use primal sketch algorithms [3, 6] to work on these im-
ages to get the sketch. As the segmentation result can pro-
vide the face information, the primal sketch algorithm also
provides the curve information about which edges are con-
nected to form a long curve. Therefore, for each component
in S, we can know it should represent a 3D curve or sur-
face. In addition, to show the reconstruction results effec-
tively in OpenGL with texture mapping, we intently extend
the curves into narrow surfaces.

Fig. 6 shows some reconstruction results on the polyhe-
dra data set. The first two rows in the figure show three im-
ages of polyhedra scene and their sketches obtained by the
algorithm in [2]. The rest three rows show the reconstruc-
tion results in three different viewpoints.

Fig. 7 shows some reconstruction results on trees and
grasses in the second data set. The first row shows three in-
put images of tree or grass. The sketches of these images,
obtained by the algorithm in [3] for the tree image and by
the algorithm in [6] for grass images, are shown in the sec-
ond row. The reconstruction results are also shown in three
different viewpoints in the last three rows.

6. Discussion

Our algorithm is built on a full primal sketch from
other segmentation and sketching algorithm using MCMC
[2, 3, 6]. Currently we are integrating the two stages as they
are all formulated in the Bayesian framework with MCMC
computing. Thus we solveW from I directly with S be-
ing an intermediate representation.

(W,S) ∼ p(I|S)p(S|W )p(W )

Thus we can use 3D priors to resolve ambiguities in seg-
mentation and sketching.
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Figure 7. Three input images are shown in the first row and their sketches are shown in the second
row. The reconstruction results are shown in three different viewpoints in the rest three rows.


