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Abstract

We consider the problem of segmentation of images that
can be modelled as piecewise continuous signals having un-
known, non-stationary statistics. We propose a solution to
this problem which first uses a regression framework to esti-
mate the image PDF, and then mean-shift to find the modes
of this PDF. The segmentation follows from mode identifi-
cation wherein pixel clusters or image segments are identi-
fied with unique modes of the multi-modal PDF. Each pixel
is mapped to a mode using a convergent, iterative process.
The effectiveness of the approach depends upon the accu-
racy of the (implicit) estimate of the underlying multi-modal
density function and thus on the bandwidth parameters used
for its estimate using Parzen windows. Automatic selection
of bandwidth parameters is a desired feature of the algo-
rithm. We show that the proposed regression-based model
admits a realistic framework to automatically choose band-
width parameters which minimizes a global error criterion.
We validate the theory presented with results on real im-
ages.

1. Introduction
In this paper, we consider the problem of segmentation
of images that can be modelled as piecewise continuous
signals having unknown, non-stationary statistics. Non-
stationarity in the image can be modelled by the condi-
tional density function f(I|x, y) that varies with the loca-
tion (x, y). When f(I|x, y) is not known, it can be esti-
mated from the image data using Parzen windows (hence-
forth called kernels). The way the probability density func-
tion (PDF) of the image is related to segmentation of the im-
age data is via the observation that the image PDF is multi-
modal and that each mode of the PDF is associated with
a cluster of pixels which forms a homogeneous (having the
same central tendency, i.e., the mode) segment in the image.
This model for the image data, as clusters of pixels in the
combined range-domain (for e.g., Intensity-spatial) space,
has been proposed before (see [1, 5] for recent papers).

For segmenting the image, it is not sufficient to estimate
the underlying PDF and its modes. Also required is an
algorithm that associates each image pixel with the mode
associated with the segment it belongs to. If kernel-based
PDF estimators are used, under mild conditions1 on the ker-
nels, the mean-shift algorithm (proposed by Fukunaga and
Hostetler [7]) can be used to achieve this goal: it iteratively
shifts each pixel to it’s respective mode. In [5], Comani-
ciu and Meer analyzed the properties of the mean-shift al-
gorithm and proved its convergence for a specific class of
kernels (that includes the Gaussian and Epanechnikov ker-
nels). The algorithm is iterative but simple, fast and gives
visually good results. Consequently, mean-shift algorithm
(based on the kernel-based PDF estimation framework) can
be used to segment non-stationary image signals.

The main challenge of this approach is the estimation of
bandwidth (scale) parameters associated with the estimat-
ing kernels. There are several approaches listed in the lit-
erature - these include (A) subjective choice (page 6, [5]);
using asymptotic mean square criterion (B1) for a reference
distribution, called plug-in estimators (page 86, [10]); (B2)
data-driven cross-validation schemes (pages 160-180, [9]),
and other (C) completely data-driven techniques (see for ex-
cellent discussion, Section 3.1, [5] and [3, 11] for two dif-
ferent techniques). These techniques evolve in complexity
and reduce in domain-specific knowledge from (A) to (C) -
this is the inherent tradeoff involved. Further, these schemes
differ in estimating global and locally-adaptive bandwidths
- locally-adaptive bandwidths perform better but involve a
higher complexity.

We make two observations here: (1) The advantage of
mean-shift approach is its simplicity and hence one would
like as simple a bandwidth estimation technique as possible,
and (2) All the bandwidth-selection methods listed above
are for generic data distributions. However, image data is
highly structured - in fact, it is a function (scalar or vector)
from the domain of definition to intensity or color space.
Further, as we show in Section 2, real images are seen to

1see Section 4.1, Step 4
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have data distributions that can justify a plug-in estimator.
Thus, our scheme fits into category (B1) above. We exploit
this fact to propose a novel bandwidth selection scheme in
this paper. The proposed scheme is simple and fast (O(nk)
where k is the size of the spatial neighborhood (k << n).

Following are the main steps in our algorithm: (A) We
model the image data using a regression framework; (B)
Then, based on the spatial resolution at which segmentation
is desired, we select a regression estimator; (C) The residues
of the regression estimator are modelled using a parametric
distribution which yields the bandwidth parameters for ker-
nels; (D) These bandwidth parameters are used to estimate
the underlying PDF that produced the image data and to
apply the mean-shift algorithm to produce the end segmen-
tation.

Following are the main contributions of this paper: We
present an automatic bandwidth selection procedure for
mean-shift based image segmentation. This selection pro-
cedure is fast and easy to compute. We show that the band-
widths selected are consistent and the particular choice of
bandwidths bounds the asymptotic mean square error (for
the estimated image PDF) which asymptotically goes to
zero at the optimal rate2. The selection procedure gives a
central role to the spatial resolution at which the image is
analyzed. Further, we validate the bandwidth selection pro-
cedure with results on real data.

This paper is organized as follows: In Section 2, we
present the image model and its justification; then, in Sec-
tion 3, we present the kernel based density estimator for
the image model and derive expressions for the regression-
based bandwidth parameters. In Section 4, we present
the algorithm for bandwidth estimation and the consequent
mean-shift segmentation process. In Section 5, we present
results on real images. Finally, in Section 6, we present our
concluding remarks.

2. Model
In [5], images are modelled using a PDF distribution de-
fined on the joint domain-range space and pixels are as-
sumed to be drawn independently from this distribution.
The mean-shift procedure shifts each pixel to one of the
modes of the underlying PDF. Naturally, the parameters for
the mean-shift algorithm need to be selected for an optimal
estimate of the underlying PDF. The asymptotically opti-
mal scale parameters, in the Mean Integrated Square Error
(MISE) sense, depend upon the yet-to-be-estimated PDF, or
at least its average properties.

As discussed in Section 1, several methods have been
suggested in the literature (refer to pages 160-180, [9] and
[3, 5, 6] for details). However, plug-in estimators, where
optimal bandwidth parameters are found with respect to a

2Refer to Equation (9) and the following reference.
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Figure 1: This figure shows that image data does not have a
simple distribution while residues after regression do. For
Sailboat image 4(a), size 512× 512, marginal histogram of
(a) raw intensity values; (b) residuals of LL projection using
db2 wavelet; (c) residuals after 7 × 7 median filtering.

(plug-in) family of PDF’s like the multivariate Gaussian,
remain popular (because of their simplicity). Hitherto, only
multivariate Gaussian was used as a plug-in estimator, ei-
ther globally [4] or locally [6].

However, image data is highly non-Gaussian. Consider,
for example, the Sailboat image in Figure 4(a). Figure 1(a)
shows the marginal PDF for the intensity variable along
with the best-fit Gaussian curve which is indeed a poor fit.
In fact, the data cannot be easily modelled using paramet-
ric distributions. Contrast this with Figures 1(b) and (c)
where the distribution is highly structured and can be mod-
elled through a Generalized Gaussian Distribution (GGD)3.
In these images we plot the histogram of the spatial resid-
uals when the Sailboat image is projected onto the ”LL”
sub-band using Daubechies’ db2 wavelet (1(b)), and spa-
tial residues after median filtering the image (1(c)), respec-
tively.

The fact that GGD is a good model for residues in Figure
1(b) is already shown in [8]. We empirically observed that it
is true for median filtering as well. This shows that plug-in
estimators can be used for a wide class of regression resid-
uals, though not (at least globally) for images themselves.
This brings us to our second observation: Since images are
defined on a lattice, hence f(I, x, y) = f(I|x, y)f(x, y) =
c× f(I|x, y) for some constant c. In other words, the prob-
ability of finding a pixel in the x-y plane is constant over the
domain of definition. Thus, only the estimation of f(I|x, y)
is required.

3refer to first paragraph, Section 4.2.
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In brief, we make the following observations: (1) One
just needs to model and estimate f(I|x, y), (2) good estima-
tors like wavelets and median filters are available for regres-
sion estimates (denoted by r(x, y)) for an image, and (3) the
residuals (ε(x, y) = I(x, y) − r(x, y)) can be modelled us-
ing a plug-in estimator. This suggests that rather than mod-
elling the image data in the joint domain-range space (as in
[3-6]), one might model it specifically as a function defined
over a domain. Thus, we use the following image model
where t = (x, y) is the spatial location:

I(t) = r(t) + ε(t) (1)

It is worth noting that for bandwidth estimation purposes,
it is sufficient if r(·) can be approximated by the regres-
sion model and likewise, the residuals can be approximated
by GGD. In other words, the regression need not yield a
piecewise smooth curve separated by jumps at the segment
boundaries - thus, it is not a chicken-egg problem.

In the next Section, we propose a kernel-based density
estimator for the above model and derive expressions for
asymptotically optimal scale parameters.

3. Analysis
In this section, we introduce the kernel estimator for
f(I|x, y) and analyze its asymptotic MSE (mean square
error) properties. We do this to derive optimal bandwidth
estimates which are critical for segmentation using kernel
density estimation.

Let us define a 3-tuple z ≡ (I, x, y) ≡ (I, t) ∈ R3.
Then, we define a kernel based estimator for the conditional
PDF of I given the spatial location t = [x, y]T as,

f̂I|t(I|t) =
1

m2|H|D
m∑

i=1

m∑
j=1

K(H−1(zij − z)) (2)

where H is a non-singular 3 × 3 bandwidth matrix and
K : R3 → R is a kernel such that it is non-negative, has a
unit area (

∫
R3 K(z) dz = 1), zero mean (

∫
R3 zK(z) dz =

0), and, unit covariance (
∫
R3 zzT K(z) dz = I3). For

data defined on a regular grid, such as for images, D =
1

m2|H|
∑m

i=1

∑m
j=1

∫
R K(H−1(zij − z)) dI can be treated

as a normalization constant.
For computational tractability in MSE calculations, it is

standard practice to do an asymptotic analysis using just
second order statistics. To carry out an asymptotic analy-
sis, we assume that the number of samples, n = m2, tends
to infinity via successive refinement of the sampling grid.
Consequently, {r(tij)} represent the underlying function
r(t) more and more accurately. We assume that the noise
samples are independent, identically distributed irrespective
of the grid size. For the ease of bandwidth estimation, we
also assume that H = diag(hI , hx, hy).

The asymptotic mean square error at any point (I, x, y)
is given as the sum of the square of the asymptotic bias (AB)
and the asymptotic variance (AV),

AMSE(I, x, y) = (AB(I, x, y))2 + AV(I, x, y) (3)

where,

AB(I, x, y) = AB{f̂I|x,y(I|t)}
E[f̂I|t(I|t)] − fI|t(I|t) =

1
2

tr{HHT∇2fI|t}
= {h2

Ia
2 + h2

xb2 + h2
yc2 + (higher orders of H)}

such that,

2a(I, x, y) ∆=
∂2fε|t
∂ε2

2b(I, x, y) ∆=
∂2f

∂ε2
(
∂r

∂x
)2 − 2

∂2f

∂ε∂x

∂r

∂x
− ∂f

∂ε

∂2r

∂x2
+

∂2f

∂x2

2c(I, x, y) ∆=
∂2f

∂ε2
(
∂r

∂y
)2 − 2

∂2f

∂ε∂y

∂r

∂y
− ∂f

∂ε

∂2r

∂y2
+

∂2f

∂y2

(4)

and,

AV(I, x, y) = AV(f̂I|t(I|t))

=
(

(∆x)(∆y)fε|x|t)
∫
R3 K(z)2 dz

n|H|
∆=

d(I, x, y)
nhIhxhy

)
+ (higher orders of n, H) (5)

Equations 4 and 5 bring out the explicit dependence of the
bias and variance on the derivatives of the regression curve
r(x, y), and on the derivatives of the conditional PDF for
the residual, fε|t ≡ fε|t(I − r(t)). In the next section, we
find bandwidths in terms of these expressions.

3.1. Global Bandwidth Estimate
AIMSE, the asymptotic mean-square error integrated over
the whole domain-range space is given by,

AIMSE =
∫

AB2(I, x, y) +
∫

AV(I, x, y) =


 h2

I

h2
x

h2
y




T 
 ‖a‖2 〈a, b〉 〈a, c〉

〈a, b〉 ‖b‖2 〈b, c〉
〈a, c〉 〈b, c〉 ‖c‖2





 h2

I

h2
x

h2
y




+
∆x∆yR(K)

nhIhxhy
(6)

where R(g) ∆=
∫

g(z)2 dz. Optimal bandwidth matrix is
sought by minimizing the above expression, which is a
non-trivial problem. Hence, we suggest an upper-bound
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Figure 2: This figure depicts the need for locally adaptive
bandwidth estimates. (a) 1-d signal with an edge (b) PDF
contours showing a PDF mode at the edge which translates
to a step-like region being discovered there.

for AIMSE and compute parameters to minimize the upper
bound. By applying Cauchy-Schwartz, we get,

AIMSE ≤ (h2
I‖a‖ + h2

x‖b‖ + h2
y‖c‖)2

+
∆x∆yR(K)

nhIhxhy
(7)

The bandwidth parameters that minimize the upper bound
in Equation (7) are,

h�
I =

[
∆x∆yR(K)

√‖b‖ ‖c‖
12‖a‖3

] 1
7

n− 1
7

h�
x =

[
∆x∆yR(K)

√‖a‖ ‖c‖
12‖b‖3

] 1
7

n− 1
7

h�
y =

[
∆x∆yR(K)

√‖a‖ ‖b‖
12‖c‖3

] 1
7

n− 1
7 (8)

and consequently,

AIMSE�(I, x, y)

≤ 21

[
∆x∆yR(K)

√‖a‖ ‖b‖ ‖c‖
12n

] 4
7

(9)

This particular choice of bandwidth bounds the error which
goes to zero, as the number of samples increases, at the op-
timal rate.

In Figure 2, we show a 1-dimensional signal and the es-
timated PDF using the globally asymptotic bandwidths es-
timated using Equation (8). The PDF contours show that
a mode is discovered on the blurred boundary - thus a seg-
ment is discovered on the edge. This is highly undesirable
since a large edge with substantial blur can be broken up
into multiple segments - all present on the boundary be-
tween two regions. This is because of the fact that the
global bandwidth reflects the average properties of the im-
age residues. Since regression residues at large edges lie
typically on the tail of the distribution, this suggests that
global bandwidths may be inadequate to deal with edges
having different heights and blurs. Hence, locally adaptive
bandwidths are needed to adapt to this image structure.

3.2. Local Bandwidth Estimates
We adapt the PDF estimate to local image structure by us-
ing sample point estimators (see pages 185-190, [9]) since
they reduce the asymptotic bias and yield bona fide PDF
estimates. This estimator, give below, has a different band-
width parameter for each image pixel.

f̃I|t(I|t) =
1

m2D
m∑

i=1

m∑
j=1

1
|Hij |K(H−1

ij (zij − z)) (10)

There are several ways to estimate local bandwidths (refer
to Section 3.1, [5]). However, most are computationally in-
tensive and would imply that the best features of the mean-
shift algorithm, its simplicity and speed, would be com-
promised. Hence, we use a very simple estimator, called
Abramson’s square root law [9] which modifies the local
bandwidths Hi using the following rule:

Hij = H ×
{

λ

f(zij)

}γ

(11)

where γ ∈ {0, 1} and λ, the geometric mean of {f(zij)}’s,
is a normalization factor. Abramson suggested taking γ =
0.5. The most attractive property of this law is that it is
simple and it considerably reduces the bias (by 2 orders in
the bandwidth parameters) [6].

4. Resolution-Guided Segmentation
In the pervious sections, we presented the kernel PDF esti-
mator and a scheme to estimate bandwidth parameters. In
the current section, we present our algorithm which is de-
pendent on the (spatial) resolution at which the image is
analyzed.

Humans view signals and the information they convey
at various resolutions - but not simultaneously. When the
signal is processed to reveal information at a certain scale,
analysis at a larger scale is not done, and signal information
at smaller scales is viewed as finer details or noise for the
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analysis at the chosen scale. For the purpose of segmenta-
tion (or edge detection), we adopt this philosophy.

Thus, at any spatial resolution, an estimate of the regres-
sion function is obtained, as also an estimate of the noise
realization. From these estimates, we obtain the bandwidth
parameters to estimate the multi-modal image PDF. Mean-
shift procedure is used to map each pixel to the mode of
the estimated multi-modal PDF, thereby yielding the trans-
formed data. This transformed data is then segmented.

The intensity component of the mapping yields refined
estimates for regression and the noise realization. These
estimates, along with the PDF estimate allows us to esti-
mate the adaptive scale parameters thereby yielding a lo-
cally adaptive mean-shift segmentation. This locally adap-
tive step can be repeated a number of times to define better
estimates but it has been noticed that practically no differ-
ence in PDF estimates occurs by repeated iterations in con-
trast to the criticality of the first two steps. Below, we give
the proposed algorithm.

4.1. Algorithm
1. Regression Estimate: Let θ(t) be a smoothing func-

tion (integral equal to 1 and converges to 0 at infinity).
Denote the smoothing function at scale s as θs(t) =
1
sθ( t

s ). The regression estimate is given by r̂s(t) =
Is(t) = I ∗ θs(t). Derivatives of the regression esti-
mate are given by convolution of I(t) with wavelets
that are components of ∇tθs(t) and ∇t∇T

t θs(t). As
an example, we take θs(t) = N (0, s2I), the Gaussian
function.

2. Global Bandwidth Computation: We estimate the
noise at scale s by ε̂s(t) = I(t) − r̂s(t) = I ∗ (δ −
θs)(t). It has been noted (and as is evident from Fig-
ure (1)) that the difference signal can be modelled as
a Generalized Gaussian Distribution (GGD). GGD is a
parameterized family of distributions. The functions
(a(·), b(·) and c(·) are easily computed in terms of
these parameters as explained in Section 4.2.

3. Local Bandwidth Computation: Once we have the
globally estimated scale parameters, we use these to
estimate the probability at every pixel using Equa-
tion (2) and locally adapt the scale parameters using
Abramson’s law (Equation (11)).

4. Mean Shift: We consider kernels such that K(x) =
k(‖x‖2) where k() is convex and decreasing. Then,
defining a transformation M : R3 → R3 such that for
any p = [I, x, y]T ,

M(p) =

∑
i,j zijk

′
(‖H−1

ij (zij − p)‖2)/|Hij |∑
i,j k′(‖H−1

ij (zij − p)‖2)/|Hij |
(12)

It follows from (Theorem 2 in [5]) that the sequence
{p}k defined by pk+1 = M(pk) in Equation (12) con-
verges to a local mode of the PDF defined in Equation
(2). This convergent process, called mean-shift, when
applied to each image pixel, maps it to its correspond-
ing mode.

5. Segmentation: A boundary between two pixels is de-
tected if the normalized distance between the two pix-
els pi,j and pk,l, ‖M(pi)−M(pj)‖H−1

ij;kl
> 1

2 where

Hij;kl := Hij+Hkl

2 and ‖x‖A := xT Ax . Eventually
and optionally, we discard small regions of size less
than α. A reasonable choice for α = h�

x × h�
y .

4.2. Bandwidth Estimation
To estimate the bandwidths in Equations (8), we need to
compute a(·), b(·) and c(·).

• a(·): GGD for ε is given by, fε(I) =
β

2αΓ( 1
β )

exp(−|I|/α)β where parameters α and β

model the variance and shape of the distribution
(β = 1, 2 give double-sided exponential and Normal
distributions respectively). These parameters and
a(·) are computed directly using the moments of the
histogram of residuals ([8]).

• b(·) and c(·): In this paper we assume that the noise
is i.i.d. and is independent of the signal. Hence, in
Equation (4) (and (5)), second and fourth terms re-
duce to zero. Further, the third term is negligible
(confirmed experimentally) as compared to the first.
Hence, b(I, x, y) ≈ a(I)(I(x, y) 	 ∇xθs(x, y))2 and
c(I, x, y) ≈ a(I)(I(x, y) 	 ∇yθs(x, y))2.

5. Results
We validate the algorithm on real images by considering
its two aspects separately, (1) global bandwidth selection
and (2) adapting the global bandwidths using Abramson’s
square-root law. Both aspects are validated with respect to
ground truth - i.e., we take real images, point out those fea-
tures that pose problems to any segmentation tool and show
how our algorithm performs. We validate the global band-
widths obtained by our algorithm using the segmentation
software called EDISON [2]. EDISON is chosen since it
is a publicly accessible software and it allows us to evalu-
ate our results keeping the post-processing same. Since the
EDISON software assumes hx = hy , we choose the largest
of the two bandwidths for our results. This provides us with
a lower bound performance for the bandwidth estimation al-
gorithm. Locally adapted bandwidths are validated on our
own implementation of mean-shift segmentation algorithm.
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House Tree
s hI hx hy hI hx hy

1 2.8 4.8 4.0 6.2 3.8 2.0
2 4.0 8.0 5.7 7.7 6.7 3.2
4 4.7 10.9 7.3 9.3 10.6 5.6
8 5.9 16.1 10.3 10.6 19.12 9.8

Sailboat Peppers
s hI hx hy hI hx hy

1 4.4 2.9 2.9 3.1 3.0 3.5
2 5.2 4.5 4.6 3.7 3.9 4.9
4 6.2 7.5 7.7 4.8 5.6 7.1
8 7.1 13.5 13.0 6.2 9.3 11.6

Table 1: Bandwidth parameters, (hI , hx, hy), for the four
images. The bandwidths are discovered at each spatial res-
olution (wavelet analysis scale) s = 1, 2, 4, 8.

5.1. Global Bandwidth Selection
In the regression-based framework we presented, the res-
olution at which the image is viewed plays a central role.
Depending upon the resolution (spatial scale) chosen, the
regression function and subsequently the bandwidth pa-
rameters are estimated. Using such an approach, a multi-
resolution segmentation can be defined based on multi-
resolution analysis of a signal. This, however, is the sub-
ject of developing papers: here we study the behavior of the
proposed algorithm at one scale. Hence,we present results
using a single spatial resolution.

We first present two outdoor images - that of a tree in
Figure 3(a) and that of a house in Figure 3(b) in the top
row. These images were chosen to be representative of real
world images. The edges in the house image are straight
lines typical of man-made objects. The edges in the tree im-
age are typical of natural scenes. We depict the estimated
bandwidths for these images at each of the wavelet anal-
ysis scale (the s column) in Table 1. We see that as the
analysis scale increases, both the spatial bandwidth and the
photometric bandwidth increases - this implies that a larger
analysis scale captures properties that are more global and
should lead to larger features getting detected. In this paper
we present results at one analysis scale only (s = 4 for all
images).

Another factor in the choice of these images is that they
have all the complexities that make segmentation difficult
- namely, blurred edges, corners and multiple regions be-
ing present close by. For example, there is considerable
blur between the roof and the sky and the tree and the sky
on the right top corner of image in Figure 3(b). Similarly,
in the house image, one can see sharp corners and places
where more than one region converge, for example where
the slanted roof, chimney and the shadow of the roof con-
verge.

(a) (b)

Figure 3: Results for (a) House and (b) Tree images with es-
timated bandwidths(hI , hx, hy, α) = (4.7, 11, 11, 121) and
(7.7, 7, 7, 49) respectively. The original images are in the
first row, second row contains the mean-shift filtered output
nd the bottom row shows segment boundaries.

In spite of these recognized difficulties, the filtered out-
puts, based on estimated modes at the bandwidths discov-
ered by us, retained features like corners and multiple edges
without rounding them. This is clear from the images pre-
sented in the second row of Figure 3 (a) and (b). Also note
that in the filtered image, presented in middle row of Figure
3 (a), the blurred boundary between the tree and the sky is
sharpened. Consequently, we can say that the bandwidths
estimated are successful in detecting the segments present
in the image.

We chose the Sailboat image in Figure 4(a) to compare
the performance of our algorithm with automatic scale se-
lection to that in [5] where hand-optimized bandwidths are
chosen. One can see that our result, in Figure 4(b), com-
pares favorably (compare with Figure 8 in [5]). We are able
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(a) (b) (c)

Figure 4: Results for Sailboat image - size 512 × 512 (a). (b) depicts the segmented image with overlayed boundaries for
global bandwidths (hI , hx, hy, α) = (6.2, 8, 8, 64). (c) shows the result for adaptive bandwidths using Abramson’s Law
(Equation 11)

to discover all the image structure with automatic band-
width selection that was discovered in [5]. This includes
small structures like the boat, trees at the far side of the lake
as well as large structures like the lake, clouds and the sky.

We chose the Peppers image in Figure 5(a) as it posed
different challenges. It has some regions like the highlights
on the peppers which are very blurry and are difficult to
segment. Moreover, this image brings to fore the limita-
tions of global bandwidth estimation and other assumptions
of our algorithm. Thus, this image clearly delimits the per-
formance of the algorithm while pointing us in the direction
of how to proceed further.

We discuss these issues now: (1) Firstly, our algorithm
is able to delineate the highlight regions (Figure 5(b)), how-
ever we get several segments while we perceive one. We
would like to state though that we empirically observed
that the highlights could be segmented out at other spatial
resolutions. This implies that either (a) An approach that
chooses different bandwidths adaptively in the image is re-
quired, or, (b) A multi-resolution segmentation scheme is
required that detects regions at several resolution levels, and
combines this information together. (2) The algorithm is
not able to handle ramp-like structures. For example, look
at the right boundary of the tall pepper, the bottom bound-
ary of the pepper in the foreground and the left boundary of
the pepper on the right above the really bright pepper. All
these boundaries/ regions have been broken into steps (see
Figure 5(b)). This is due to the fact that the modes of the
PDF are in the spatial-intensity space. Consequently, there
is no structure to handle ramp-like features. A formulation
that deals with these linear structures is thus required.

5.2. Local Bandwidth Selection
In this section, we test whether locally adapting bandwidths
by using Abramson’s law is sufficient to address the prob-
lems mentioned at the end of the last section. These results
are presented in Figures 4(c) and (5)(c). Where as no ap-
preciable difference can be noticed for the Sailboat image
(between Figures 4 (b) and (c)), some difference between
Figures 5 (b) and (c) is indeed visible for peppers image.
Specifically, in Figure 5(c), small-scale changes (small re-
gions; small local contrast between the two halves of the
pepper in the foreground) are better estimated but problems
due to piecewise linear (not constant) regions and large blur
remains.

6. Discussions and Conclusions
In this paper, we presented an automatic bandwidth selec-
tion procedure for mean-shift based image segmentation.
The regression-based model we used enabled us to develop
a simple plug-in bandwidth estimator which is fast and
easy to compute. We also showed that the bandwidths se-
lected are consistent and the particular choice of bandwidths
bounds the asymptotic mean square error for the estimated
image PDF. This error asymptotically goes to zero at the op-
timal rate. We also validated the bandwidth selection pro-
cedure with results on real data.

Further, the bandwidth selection procedure gives a cen-
tral role to the spatial resolution at which the image is ana-
lyzed which we feel is a natural way of doing things as hu-
mans tend to view signals at different resolutions too. This
feature of our algorithm can be used a central engine of a
multi-resolution segmentation algorithm. This is an inter-
esting issue for further research.

We also noticed certain drawbacks of our algorithm: (1)
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Figure 5: Results for Peppers image - size 512 × 512 (a): (b) depicts the segmented image with overlayed boundaries for
global bandwidths (hI , hx, hy, α) = (4.8, 7, 7, 49). (c) shows the result for adaptive bandwidths using Abramson’s Law
(Equation 11)

Firstly, large blur could not be handled, and (2) Secondly,
ramp-like structures are broken into steps. We explored
whether these could be addressed by using locally adaptive
bandwidths generated by applying Abramson’s square root
law. Our results were negative. These lead us to believe
that (A) problem (1) needs to be addressed either using a
multi-resolution segmentation approach, or by a more so-
phisticated locally adaptive bandwidth estimation approach
(we think this is an open research issue), and (B) Ramp-
like structures can only be addressed by bringing in explicit
information about image gradients not just in bandwidth es-
timation but in the theoretical formulation of image PDF as
well.
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