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Abstract

The algorithm presented in this paper aims to segment
the foreground objects in video (e.g., people) given time-
varying, textured backgrounds. Examples of time-varying
backgrounds include waves on water, clouds moving, trees
waving in the wind, automobile traffic, moving crowds,
escalators, etc. We have developed a novel foreground-
background segmentation algorithmthat explicitly accounts
for the non-stationary nature and clutter-like appearance of
many dynamic textures. The dynamic texture is modeled by
an Autoregressive Moving Average Model (ARMA). A ro-
bust Kalman filter algorithmiteratively estimatestheintrin-
sic appearance of the dynamic texture, aswell astheregions
of theforeground objects. Preliminary experimentswith this
method have demonstrated promising results.

1 Introduction

This paper describes a framework for detection and segmen-
tation of foreground objects in video, when the background
is a dynamic texture. In a broad sense, dynamic textures
exhibit repetitive patterns in space-time. Example dynamic
textures are shown in Fig. 1. Foreground objects are those
that appear in front of a dynamic texture with distinctive
statistics in space-time. Real world examples include ships
on the sea, people riding an escalator, etc. It is assumed that
foreground objects are distinctive in at least their spatial or
temporal statistics. For instance, the foreground objects and
dynamic, textured background might have similar color dis-
tributions, but differ in their motion patterns.

The non-stationary nature and clutter-like appearance of
dynamic textures cause many traditional background sub-
traction methods to fail, since these methods assume a static
or slowly changing background. We propose an algorithm
that explicitly models the dynamic, textured background via
an Autoregressive Moving Average (ARMA) model [16].
Although ARMA is a first-order linear model many dy-
namic textures can be well captured by it [3]. A robust

Figure 1: Examples of dynamic textures.

Kalman filter algorithm is used in estimating the intrinsic
appearance of the dynamic texture. The foreground ob-
jectregions are then obtained by thresholding the weighting
function used in the robust Kalman filter.

2 Related work

A fundamental problem in surveillance and monitoring
is the extraction of the interesting foreground regions or
objects, given an incoming video of the scene. Several
foreground-background segmentation algorithms have been
proposed to solve this problem, including algorithms based
on background subtraction, color distributions, motion, as
well as range and stereo.

In one of the earliest works [9] the foreground object is
detected by subtracting the current picture from the stored
background picture, and then applying a threshold to the
resulting difference image. The method obviously fails if
the background is dynamic. Recently, it has become pop-
ular to model the pixel-wise color distribution of the back-
ground though statistical methods. In [4, 17] the color dis-
tribution of each background pixel is learned using a Gaus-
sian mixture model, and these mixture models are contin-
uously updated to adapt to slow background changes. In
[14] each pixel is modeled using a Kalman filter. These
methods all address the problem of segmentation given a
dynamic background. However, they do not take advantage
of inter-pixel correlation and global appearance. Thus, they
may fail to extract objects when the color distributions of
the foreground and background are similar.

Other approaches such as [6, 11] use region-based fea-
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tures (e.g., block correlation) to detect the foreground ob-
ject(s). Change detection between consecutive frames is
achieved via block matching; thus, the foreground object(s)
can only be detected at a coarse scale unless a multiscale-
based approach is used.

Some approaches take advantage of depth information.
Background subtraction methods that rely only on depth [8]
may be unreliable when the foreground objects are too close
to the background. Combined use of depth and color is
proposed in [5]. However, the approach assumes the back-
ground scene is relatively static. In addition, only indoor
experimental testing was reported.

Motion-based approaches have also been proposed. For
instance [22] proposes an algorithm to detect salient motion
by integrating frame-to-frame optical flow over time; thus,
it is possible to predict the motion pattern of each pixel. The
saliency measure is then computed to detect the object loca-
tions. This approach assumes that the object tends to move
in a consistent direction over time, and that foreground mo-
tion has different saliency. This algorithm may fail when
there is no obvious difference between the motion fields of
the foreground and background.

Some approaches exploit spatiotemporal intensity vari-
ation. For instance [10, 12] employ analysis of XT or YT
video slices. By detecting the translational blobs in these
slices, it is possible to detect and track walking people and
recognize their gait. The method may perform inaccurately
if both foreground and background objects exhibit periodic
motion, as in the case of some dynamic textures. A related
approach [21] assumes that the foreground object is moving
with a certain velocity.

Robust statistical methods could help in improving
foreground-background segmentation methods. Robust
methods have been used in motion estimation [1], and in
conic fitting [23]. In [19] a robust Kalman filter is used
in tracking explicit curves. In [2] a robust principal compo-
nents analysis (PCA) formulation is proposed that addresses
the intra-sample outlier problem of conventional PCA train-
ing. In [13] a robust Kalman filter framework for recovery
of moving objects’ appearance is proposed; however, the
framework does not model dynamic, textured backgrounds
— only the dynamic foreground. Furthermore, the method
does not account for the state covariance in the Kalman
filter’s update equations. Related work in robust Kalman
filters can be found in Communication and Control; e.g.,
[20], which considers parameter disturbance, and the robust
Kalman filter is realized via convex optimization.

3 Dynamic texture formulation

Following [16] a dynamic texture can be formulated via a
generative model. Suppose that at each time instant £ we ob-
serve a noisy version of the image I(t) = C X (t)+u+w(t),

where w(t) ~ N(0, R) is the Gaussian probability den-
sity function with covariance R, u € R™ is a constant
vector (DC), and m is the number of the pixels in the im-
age. The vector X € R" describes the dynamic texture’s
state. The orthogonal matrix C' is m x n, where m >> n.
The columns of this matrix could be principal components,
wavelet filter banks, etc. To simplify our derivation, we will
assume that the DC component is removed, and therefore
our observations take the form Y'(t) = CX(t) + w(t). In
our notation we will define X; = X (¢), and ¥; = Y (¢).
Thus, the autoregressive model of dynamic texture is:

Xip1 =
}/t =

AXy + vy,
CXt + Wt,

Xo = zo;v: ~ N(0,Q) )
Wy ~ N(O,R)

where the state evolution matrix A is n x n and assumed
stable |A| < 1, and the state noise is v; ~ N(0,Q). The
generative model is:

PXa|X) = s XX QT (XA

1 _ T p—1 _
p(Yi| X)) = s9e” 2 (Y= CX) R (Yi—CXy) )

where s; = 1/4/(2m)"?|Q| and s2 = 1/4/(2m)™|R| are

used to normalize the exponential form.

Estimation of the model parameters can be realized using
PCA and maximum-likelihood training [16]. Robust PCA
methods [10] could also be used in training.

4 Object detection and segmentation

The challenge of foreground segmentation given dynamic
textured scenes is that the background is continuously
changing. This causes classical foreground-background
techniques to fail. Alternative methods, e.g., modeling the
color distribution for each pixel [4], may fail if the object
has a similar color distribution to that of the background.

We propose a novel method that estimates the state pa-
rameters of the dynamic, textured background in the pres-
ence of the foreground objects. Given an estimate of the
dynamic background’s appearance, extraction of the fore-
ground objects is easily attained. We formulate this ap-
proach using a robust Kalman filter to iteratively update the
state of the dynamic texture ARMA model and to determine
a mask image for the foreground objects.

4.1 Dynamic background updates

If no foreground objects were present, the new state of
the dynamic texture could be estimated by maximizing the
probability of X, given the observation Y; and previous
state sequence X; = [X7Z . X7 ,,..., XT]" used to pre-
dict the current state. To simplify the model, we use the
Markov assumption, i.e., the current state only depends on
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the previous one X; = X;_; . Thus

X, = argmaxp(X,[Y,, X, ). 3)

Using Bayes formula, the posterior probability becomes:

p(Ye| X, Xo—1)p(Xe| Xi—1)
p(Y2)

where p(Y}) is prior distribution of observation Y;. The ob-
servation Y; is independent of the previous state X;_; in the
presence of X, since Y; is generated by the state X only.
Thus (3) is reduced to:

p(Xe|Yy, Xio) =

“4)

X, = argm)gXp(lélXt)p(Xt\Xt_l). &)

The state inference can be converted to the standard Kalman
filter solution if we assume that the observation density and
state transition density are Gaussian distributed. The state
estimate can then be obtained by minimizing the following
criterion function, by taking the logarithm of (5) and (2):

J = (Y, —CX)TR' (Y, —CXy) +
(X = XD)TQ (X - X)) (©)
where X is the estimated and X — the predicted value:

X7 =AX; . (7

4.2 Updatesin the presenceof outliers

Foreground objects can be considered as outliers of the dy-
namic texture model. In the above Kalman filter formula-
tion, these outliers would corrupt our estimates of the dy-
namic texture parameters; as a consequence foreground-
background subtraction performance would be significantly
degraded. To address this, the state vector estimation prob-
lem can be reformulated using robust estimation. Since we
assume R is a diagonal matrix, the first term of (6) can be
written as:

J1=Z((n—[0

which corresponds to the weighted least square criterion.
For simplicity, the subscript ¢ is omitted here. Robust esti-
mation can be formulated as an M-estimator [7] which con-
structs the function as:

Ji= Zp X)) ©)

X]i)/Uz‘)27 0; = \/Ez 3

where p is the robust error norm. The minimization of (8)
can be realized by solving:

ﬁ:o, forj=1,...,n
Ly

zi = (Y — [CX);)/oi (10)

Here ¢ is the influence function for the robust error norm
employed [7]. If we define a weighting function:

w(z) = LE). (11)
Zi
Then (10) becomes:
zm:w(z)z 0z =0, forj=1,. (12)
i=1 Z z@xj

This yields the re-weighted least squares problem:
k : k—1y,2
= . °. 13
arg min Eﬂ w(z; ")z (13)

Here the function w is evaluated in each step k, given the
new state estimates. The form of function w depends on the
robust error norm employed. Substituting (13) in (10) we
obtain:

Zw ——O forj=1,....n (14)
pt axj

We can rewrite the above equation in matrix form, and then
the criterion function for the robust Kalman filter can be
written:

JE = (Y —CX®TMFIRY(Y — CXF) +
(XF - XT)TQ (X - X7) (15)
where M*~1 is the weighting matrix at step k:
MRt = diag(w(zF 1), w(zEY), . . wzEY). 16)

The matrix M k=1 is updated in each step k using the new
state X*.
In summary, the robust Kalman filter algorithm is:

1. Compute the modified PCA matrix
C'= (P CT + RMTC(PrCTMTC)™ (17)
2. Compute Robust Kalman Gain
K=" "mc) et (18)

3. Update estimate with measurement Y;

X=X, + KM(Y, - CX]) (19)
4. Update the error covariance P;
P.=(I-KMC)P~ (20)

The derivation of these equations is given in the Appendix.

The computational complexity of the above process is
O(m?n + n®), where m is the dimension of observation
vector, and n is the dimension of ARMA model parameters.
The m? term dominates, since in our application m >> n.
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4.3 Segmentation algorithm summary

The algorithm for segmenting foreground objects from dy-
namic texture scenes can now be summarized:

1. Form the foreground mask image by calculating the
weighting function, w(z;), given the observation vec-
tor Y and the initial state vector X (calculated a priori
in the absence of foreground objects).

2. Use the mask image to form the diagonal weighting
matrix M and solve for X via the robust Kalman filter.

3. Go to step 1 until the maximum iteration number is
reached (fewer than 5 in our implementation).

In our experiments, we used the Cauchy robust error
norm. The weighting function for this norm is

1

w(zi) = 1+ (2;/c)?

2y
As for the selection of the parameter ¢, in principle, smaller
values of ¢ make the detector more sensitive to noise, and
can lead to a higher likelihood of false alarms. The param-
eter ¢ can be selected as a multiple of the average of the
dynamic texture state variance ;. Alternatively, a appropri-
ate value for c can be determined empirically by examining
the ROC curve generated with appropriate test sequences of
texture and foreground objects.

5 Experiments

In the experiments, we first reduce the width and height of
the input images by half so that the program can be run ef-
ficiently. This leads to the observation vectors with dimen-
sion about 20000. The number of eigenvectors we used is
80 to keep 95 percent of energy. We implemented the algo-
rithm in Matlab 6.1, and the computation speed is about 8
seconds per frame on an Athlon, 1.6 GHz PC.

Both synthesized and natural data are used for testing our
system. Among these data, 96 frames are used to train the
parameters for the ARMA model, including state transition
matrix, measurement error covariance, state error variance
and the initial state vector. In addition, both training data
and testing data are grayscale images converted from the
original color images such that the algorithm cannot take
advantage of the color information.

The synthesized test videos include dynamic texture se-
quences selected from [18]. The synthesized images are
created using these dynamic texture images as background,
with moving foreground shapes added. The testing image
size is 170 x 115. The color distribution of the synthetic
moving object is similar to that of the background; this en-
ables us so to test the algorithm’s ability to detect objects
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Figure 5: The detection result used GMM as a comparison. (a)
Original images sequence. They are the same as the sequence in
Fig. 2. (b) Using high threshold. (c) Using low threshold.

(a) ---
(b)

Figure 6: Another example of detection used GMM. (a) Original
image sequence (same as the sequence in Fig. 3). (b) The results
under the best threshold setting.

that have similar color distributions with the background.
Example images from the experiment are shown in Fig. 2.

Yet another data set consists of video segments captured
from natural scenes and objects. The frame size of the video
is 320 x 240. We reduce the widths and heights of the video
frames by a factor of 2. The detection results are shown in
Figs. 3 and 4.

For comparison, we implemented a simplified Gaussian
Mixture Model (GMM) approach. The sophisticated ver-
sion with parameter updating is described in [4, 17]. The
parameter updating is not implemented here. But since we
use a short sequence to test, this implementation and results
suffice to show the weakness of the GMM-based approach if
the foreground and background have similar grayscale dis-
tributions, especially if the background has substantial mo-
tion. As shown in Fig. 5, the GMM based algorithm cannot
accurately detect the objects by either setting a high thresh-
old, or low threshold. In Fig. 6, we deliberately adjust the
threshold so that the simulated model can achieve the best
result. It is clear that when the grayscale distribution of the
foreground and background objects is similar, the GMM-
based algorithm fails to extract the foreground objects (the
fountain case) or output accurate results (the escalator case).

6 Conclusion

In this paper, we proposed an algorithm that segments fore-
ground objects from dynamic, textured backgrounds. We

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE



©

Figure 2: Example of foreground object segmented from dynamic texture scene. The object is synthesized using similar color and with
irregular shape. (a) Sequence of images with moving synthesized foreground object. (c) The detected object region.

--

(©) ' - '

(b)

Figure 3: Another example of foreground object detection in real data. (a) Image sequence of moving escalator. (b) Moving escalator
with ball. (c) Detected object region.
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Figure 4: The third example of foreground objects detection in real data. (a) Sequence of waving river. (b) Waving river with floating

bottle. (c) Detected foreground object region.

derived robust Kalman filter equations to achieve this pur-
pose. The experiments showed that the algorithm can suc-
cessfully segment the foreground objects, even if they share
a similar grayscale distribution with the background. Fur-
thermore, segmentation results could be further improved
via the customary post-processing via morphological oper-
ations on the foreground mask.

Many extensions can be made to the basic algorithm. For
example, the spatiotemporal consistency of the foreground
objects can be modeled to stabilize the robustness of fore-
ground object extraction, using a method such as proposed
in [15]. In our current implementation, the Kalman filter
model is only trained using the empty scenes; however, we
could use the Robust PCA method in [2] to train the ARMA
model on non-empty scenes in the future. Furthermore, to
account for background changes over time, the parameters
could be updated in a certain time period, and some prepro-
cessing could be adopted to filter out noise, for instance, by
using band-pass filters. Finally, our current ARMA model
only takes grayscale images as input; however, the model
could be readily extended to color imagery [3].
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Appendix

Note: In order to have notation consistent with most Kalman
Filter derivations, the symbol H will be used to denote the state
evolution matrix. In our approach H = C, as described in Sec.4.1

Appendix 1. Derivation of State Estimation

In order to obtain the optimal estimation of the state vector,
we need to minimize the following error criterion function:

Let N =(H'M*R™'H+Q ") and K = N"'HTR™*. Then
2 = XT="-XTH"YM*R'HN '+ X T
= X=KM‘Y-HX)+X" &)

This is the modified state vector update equation in the presence
of the diagonal weighting matrix M.

Appendix 2. Derivation of Kalman Gain

According to (3), we seek to minimize the estimation error:
X=X +KMY —-HX") “4)

The state prediction error vectoris e~ = X — X, and the state
estimation error vector is e = X — X. Therefore

e = X-X
= X-X —KMY —-HX")
= e —KM(Y -HX") 5)
The overall estimation error is:
e = Ele"¢
= E[(e —KM(Y —HX ))"(e” — KM(Y — HX))]

(0)
In order to minimize the estimation error, we set the partial differ-
ential of the error respect to K equal to zero
0¢?

o = 2Bl ~KM(Y-HX")(Y-HX")"M")] =0

(7

Note that M(Y — HX ™) = M(He™ +v)
(7) = E[(e —KMHe — KMuv)((e "TH" +v")M™)]
= P H'M"—-KMHP H"M" - KMRM" =0
= KMHP H" +RM" =P H"M" ®)

Note that the underlined equation is singular. We need to use

pseudo-inverse to get the solution:
1T

K=(H"MH)'H ©)
where H' = (HP"HT + R)IMTH(P"H"MTH)™!.

Appendix 3. Derivation of State Covariance

Again we note that M(Y — HX™) = M(He + v).
Plugging this into (4) we get:

e=e —KM(He +v)=UI—-KMH)e — KMv (10)

_ AT 2k p—1 o
o= (lf N I{X)T M IRA (YA_ HX) + Then the state covariance matrix is:
(X -X)TQ (X -X") (M .,
97 T 4 P = Elee']
ox — Y- HX)(MTRTH) — (I-KMH)P~(I-KMH)" + KMRMTK”
F2X - X)TQ =0 (I~ KMH)P~
= (Y-HX)"(M'R'H) =X -X)TQ"" +(KMH -1)P"H"M" + KMRM"|K™ (11)
= (YT - X_THT)MkR_IH The underlined term is zero according to (8), thus
+XQ T+ HT MR H) P=(I-KMH)P". (12)
= XT"H"M*RT'H+Q™) ®)
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