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Abstract
Statistical background modelling and subtraction has

proved to be a popular and effective class of algorithms for
segmenting independently moving foreground objects out
from a static background, without requiring any a priori in-
formation of the properties of foreground objects. This pa-
per presents two contributions on this topic, aimed towards
robotics where an active head is mounted on a mobile ve-
hicle. In periods when the vehicle’s wheels are not driven,
camera translation is virtually zero, and background sub-
traction techniques are applicable. Parts of this work are
also highly relevant to surveillance and video conferencing.

The first part of the paper presents an efficient proba-
bilistic framework for when the camera pans and tilts. A
unified approach is developed for handling various sources
of error, including motion blur, sub-pixel camera motion,
mixed pixels at object boundaries, and also uncertainty in
background stabilisation caused by noise, unmodelled ra-
dial distortion and small translations of the camera.

The second contribution regards a Bayesian approach to
specifically incorporate uncertainty concerning whether the
background has yet been uncovered by moving foreground
objects. This is an important requirement during initiali-
sation of a system. We cannot assume that a background
model is available in advance since that would involve stor-
ing models for each possible position, in every room, of
the robot’s operating environment. Instead the background
model must be generated online, very possibly in the pres-
ence of moving objects.

1. Introduction
This paper discusses work aimed towards building a sys-

tem for segmenting moving foreground objects from a static
background for use with a mobile observer, such as a robot,
equipped with a pan/tilt head. A hierarchy of algorithms can
be employed, selected according to the camera’s motion.

∗Visit the website to see the movies accompanying this paper. This
research was supported by the VISCOS project funded by the Swedish
Foundation for Strategic Research, and also by a Marie Curie Fellowship
of the European Community programme “Improving Human Research Po-
tential” (Contract no. HPMFCT-2000-00650).

The simplest case is when the camera is static; neither
the vehicle nor the active head moves. Background pixels
maintain the same location in the image over time, and their
depth in the scene is irrelevant. Next in complexity is the
case when the camera rotates due to pan or tilt control sig-
nals to the active head. Provided the motion parameters can
be obtained in some manner, they can be used to relate pix-
els in the current image to those of a reference image or
mosaic. Thankfully, the depth of points in the scene is still
irrelevant. A third, and much more complicated, situation
arises when the camera also translates due to the vehicle
being driven. The number of parameters increases vastly;
depths in the scene must be computed, as must parameters
for camera translation.

We present techniques for the first two cases listed above,
motivated by the observation that a robot typically spends a
significant proportion of its time with its wheels stationary.
Our work is based on statistical background modelling and
subtraction [4, 19, 15, 8, 21, 17]. The general idea is to
obtain a per-pixel background model, and each pixel in a
new image is examined to see whether it is feasible that it
was drawn from that pixel’s background model or not.

Although there is a great deal of literature on background
modelling, and we shall shortly review some representative
papers, there are some important issues which have received
little attention previously, and which are crucial for satisfac-
tory performance in our application. Hence,

• for pan/tilt heads we formulate a probabilistic, uni-
fied and efficient approach for coping with inaccura-
cies due to motion blur, mixed pixels at object bound-
aries, and errors in image stabilisation caused by noise,
small camera translations or minor errors in calibration
parameters such as focal length or radial distortion.

This algorithm is not just relevant to robotics, we also an-
ticipate it being beneficial in other scenarios involving ac-
tive cameras. We use a mechanism for mixed distributions
previously derived by Kitamoto [11] for classifying aerial
photography. To our knowledge this approach is novel
within motion segmentation. We demonstrate a fast algo-
rithm based largely on separable convolutions.
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The second contribution concerns initialisation:

• we present a Bayesian classification algorithm which
explicitly models the possibility that the background
has not yet been uncovered by moving foreground ob-
jects.

The hypothesis that the background has not been seen is
marginalised out to obtain the posterior probability that a
given pixel in the current image belongs to the background.
The evidence to support such hypotheses is gathered by
comparing the compactness of distributions, and the length
of time a stable component has been observed.

This is not an issue in, for instance, surveillance where
one can accept either a separate, batch initialisation or on-
line training with poor results until the model settles down.
However, a mobile robot must be able to enter an unfamiliar
environment and, once it has come to a stand-still, be able
to provide a meaningful output as soon as possible, giving
an honest estimate of how certain, or uncertain, the classi-
fication is. Thus initialisation cannot be considered a sepa-
rate, offline process. Furthermore, it is not feasible to store
background models for every location within the operating
environment, instead they must be obtained online.

The remainder of this paper is organised as follows. Sec-
tion 2 provides a description of previous work on back-
ground modelling and subtraction, placing particular em-
phasis on the algorithm of Stauffer and Grimson [19] on
which we build. Section 3 introduces our technique for
pan/tilt heads, while in Section 4 Bayesian reasoning is
used to develop expressions for the posterior probabilities of
background/foreground membership, incorporating the no-
tion that the background might not yet have been observed.
Section 5 presents experimental results whilst a critical dis-
cussion of our methods is provided in Section 6.

2. Previous work
In [12] Long and Yang suggest building a background

model for independent motion segmentation as an alter-
native to image differencing between subsequent frames.
More recently, there has been interest in algorithms with a
sound statistical grounding [4, 19, 15, 8, 21, 17] with mod-
els which automatically adapt to the observed noise levels
rather than requiring a threshold set manually. Most tech-
niques are pixel-based: a model is built at each location in
a reference image (or mosaic). The performance of back-
ground subtraction techniques can be characterised by the
number of false alarms and misdetections [5].

There is a surprisingly small amount of literature which
specifically deals with bootstrapping background models,
and the assumption in almost all techniques is that the back-
ground was actually visible at some stage. One exception is
a technique presented by Long and Yang in [12], but it is
prohibitively costly. Another is a sequential algorithm due

to Chien et al. [2], but there the background model is nei-
ther statistical nor adaptive. Gutchess et al. [6] use net optic
flow in a neighbourhood around each pixel as an indicator
that background is being uncovered. Yet even they require
that the background is visible at some stage, and their tech-
nique is batch rather than sequential.

For moving cameras, Irani et al. [9] suggest a few po-
tential blending schemes for creating static mosaics from
dynamic scenes in the presence of camera motion. Median
filtering is commonly used in the literature. In their work,
no consideration is taken to noise levels varying either from
pixel to pixel, or from sequence to sequence (without man-
ual intervention at least). Other noteworthy publications
within mosaicing for motion segmentation are [13, 10, 1].

Rowe and Blake [18] built a statistical background mo-
saic model for an active head. Mittal and Huttenlocher [14])
and Ren et al. [16] both extended Stauffer and Grimson’s
technique [19] to rotating cameras by incorporating a search
for matching pixels within a region in the mosaic to accom-
modate registration errors. [16] weights the candidate loca-
tions according to a probabilistic spatial model.

2.1. Review of Stauffer and Grimson’s algorithm
Our work uses the Gaussian Mixture Model (GMM) for-

mulation developed independently by Stauffer and Grim-
son [19] and Friedman and Russell [4]. This scheme has an
appealing statistical formulation, allows multimodal back-
ground models, and the background can change with time
to accommodate slow lighting variations and objects blend-
ing into, or permanently leaving, the background.

The problem is formulated sequentially as follows: An
image generation model Mt is assumed available for
each pixel from previous measurements {Z0,Z1, ...Zt−1}.
Given the current measurement Zt, the first aim is to deter-
mine whether this pixel was drawn from the background or
foreground model. Subsequently, Zt is used to update the
model. Additionally, the model at t = 0 must be defined.

The image generation process is described by a GMM

P (Zt |Mt) =
H∑

h=1

αhN (µh, Σh) ,

N (µh, Σh) =
1

(2π)d/2|Σh|1/2
e−

1
2 (Zt−µh)

�
Σ−1

h (Zt−µh)

where d is the dimensionality of the measurement space and
each Gaussian is described by its mean µ and covariance
matrix Σ. The Gaussians are weighted by factors αh where∑

h αh = 1. | · | denotes the matrix determinant. The chan-
nels (RGB or YUV) are considered independent, that is

Σh =


 1vh 0 0

0 2vh 0
0 0 3vh


 =


 1σ

2
h 0 0

0 2σ
2
h 0

0 0 3σ
2
h


 .

In this paper left subscripts refer to the channel number, and
will be dropped wherever possible.
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This model contains one (or more) Gaussians to model
the background, and the foreground is modelled by addi-
tional Gaussians. To gather the component(s) that corre-
spond to the background first, the Gaussians are ordered by
decreasing (αh/1σh), following the notion that these com-
ponents not only explain much of the data (high αh), but are
also sharply peaked (low σh).

To determine the number of components C belonging to
the background, a threshold T is specified such that

C = arg min
c

(
c∑

h=1

αh > T

)
(1)

This permits some pixels to have a multimodal background
model to accommodate, for instance, monitor flicker, rotat-
ing fans or foliage of trees blowing in the wind.

A current measurement Zt, is assigned, if possible, to
one of the components in the GMM by accepting the first
component for which

‖Zt − µh‖ < κσh (2)

for all channels. κ is a constant of the order 2–3. The label
h′ of this component determines whether the pixel is back-
ground or foreground in a binary segmentation map. The
parameters of this component are then updated according to
an exponential weighting scheme

α′
h ← (1− δ)α′

h + δ

µ′
h ← (1− δ)µ′

h + δZt

σ′2
h ← (1− δ)σ′2

h + δ(Zt − µ′
h)�(Zt − µ′

h)

where δ determines the adaptation rate. For the other com-
ponents h �= h′ the mean and variance remain unchanged,
but the αh are modified according to αh ← (1− δ)αh. [14]
argues that constant weighting is preferable in some circum-
stances, such as when few observations are available.

If the test in eqn (2) fails for all components in the GMM,
the pixel is labelled as foreground in the current image, and
the least significant component of the GMM is replaced by

αh = δ, µh = Zt, σ2
h = σ̄2

where σ̄2 is some initial high variance. This scheme is also
used to initialise the model at time t = 0.

The scheme in eqn (2) for obtaining a binary segmenta-
tion map was chosen in [19] as an approximation to the true,
Maximum A Priori (MAP) solution, to permit a real-time
implementation (in 1999). For the MAP solution (indeed
adopted in [16]) we introduce the discrete (boolean) vari-
able A such that A = A1 denotes that the pixel was drawn
from the background distribution, and A = A2 implies that
the pixel belongs to the foreground. We seek the posterior
probability P (A1 | Z) via Bayes’ Rule

P (A1 | Z) =
P (Z|A1)P (A1)

P (Z)
=

P (Z|A1)P (A1)∑
j P (Z|Aj)P (Aj)

The likelihoods P (Z|A1) and P (Z|A2) are probability den-
sity functions (PDF’s), integrating to unity. Assuming, for
the sake of illustration, that eqn (1) dictates that C = 1,

P (Z|A1) = N (µ1, Σ1), and

P (Z|A2) =
1∑H

h=2 αh

H∑
h=2

αhN (µh, Σh) (3)

The remaining terms are clearly

P (A1) = α1 and P (A2) =
H∑

h=2

αh , (4)

giving intuitive results for the products P (Z|Aj)P (Aj).
The component h′of the GMM to update is that which max-
imises αhN (µh, Σh).

If all likelihoods N (µh, Σh) are very small the output
will be somewhat arbitrary. This could be remedied by sup-
plementing the GMM with a uniform distribution to account
for a new foreground object appearing in view. Alterna-
tively the original test of eqn (2) can be applied.

3. Background subtraction with an active head
Any scheme for background subtraction with a rotating

camera must first compute the apparent background mo-
tion between the current image and the mosaic (reference
image). This motion is characterised by an invertible one-
to-one mapping T between pixel coordinates in the mosaic
(x, y) and the current image (x′, y′). Many papers have
been written on the robust computation of this transforma-
tion, using either corner features or the intensity values. We
assume that the calibration parameters (including radial dis-
tortion) are known reasonably accurately, leaving just two
parameters, the pan and tilt angles. These are computed
robustly from corner features with the MLESAC algorithm
[20] using the mosaic to derive the reference image.

In principle, once this transformation has been found, the
algorithm for statistical background modelling and subtrac-
tion can proceed largely as before. A larger lattice (mosaic)
of GMM’s than the original image is required since the ag-
gregate field of view is wider. Pixels (x′, y′) in the new
image can be classified using the GMM at location (x, y)
in the mosaic. The GMM at location (x, y) is subsequently
updated using the observation from (x′, y′).

However, we cannot expect motion estimation to be per-
fect due to image noise and imperfections in the geometric
model caused by inaccuracies in the calibration parameters.
With regard to foreground/background segmentation, geo-
metric errors of just a single pixel could easily cause a pixel
in the current image to be misclassified, merely because it
is not being compared with the appropriate model, which
is contained in one of the neighbouring locations in the lat-
tice. The problem is exacerbated by the fact that the ob-
served signal could be generated by a mixture of pixels in
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Figure 1. Examples of beta distributions

the background model due to sub-pixel motions or motion
blur. All these errors could be acute in areas of high texture.

3.1. Modelling mixed pixels
We now present a model which can successfully classify

pixels in the presence of all these sources of error within a
single mechanism. In all cases the observation Z at a pixel
in the current image is a random process Z which was gen-
erated by a mixture of K random processes,

Z =
∑
k∈R

akZk + E (5)

where R is a region of K pixels around the location (x, y)
in the mosaic of GMM’s, and E is a noise term, indepen-
dent of k and whose distribution is modelled as a zero mean
GaussianN (0, ΣE). The variables ak describe the area pro-
portions of pixel k such that 0 ≤ ak ≤ 1 and

∑
k∈R ak = 1.

Zk is a Gaussian from the GMM (more on this later).
The observation likelihood conditioned on the vector

a = (a1, a2, ...aK)� is given by the convolution of the in-
dividual PDF’s

P (Z|a) = P (Z|a1) ∗ ... ∗ P (Z|aK) ∗ PE(Z) (6)

where ∗ denotes convolution and PE(Z) is the independent
noise term. a can be eliminated by marginalization to yield
the PDF of the so-called Mixel Distribution (MD)

P (Z) =
∫

P (Z | a) P (a) da (7)

where P (a) is the prior distribution of a. We assume that
the priors P (a) are described by a K − 1 dimensional beta
distribution (a Dirichlet distribution),

P (a | φ) =
Γ(ϕ)∏K

k=1 Γ(φk)

K∏
k=1

aφk−1
k

where Γ is the gamma function, the parameters φ =
{φ1, φ2...φK} describe the shape of the distribution, and
ϕ =

∑K
k=1 φk. Examples are given in fig 1 for K = 2.

This type of model was previously used by Kitamoto
[11] for classifying pixels from aerial images into classes
such as cloud and sea. It has also been used with K = 2 in
alpha matting [22] where the aim is to recover values of αi

at each pixel for superimposing fine-structured foreground
objects (such as hair) onto a background.

The PDF in eqn (7) is computationally intractable and
possibly multimodal. We settle for the same expedient as
Kitamoto by approximating the PDF by its first two mo-
ments. Indeed, Kitamoto derived closed-form expressions
for the mean and covariance of the mixel distribution as

µMD =
∑K

k=1 φkµk

ϕ
, (8)

ΣMD = ΣE +
∑K

k=1 φk(φk + 1)Σk

ϕ(ϕ + 1)
+

∑K
k=1 φk(ϕ−φk)µkµk

� −
∑K

k=1

∑K
f=1,f �=k φkφfµkµf

�

ϕ2(ϕ + 1)

We must clarify that the subscripts k denote the position
in the region R, they do not refer to components within a
pixel’s GMM. ΣE is the pixel-independent noise, as before.

The mean value of the MD takes an intuitive form as
a weighted mean of the means of the individual random
variables. Assuming that the covariance matrix is diago-
nal, some simple manipulation (which we omit here due to
space limitations) of Kitamoto’s expression leads to an ex-
pression for the variance lσ

2
MD of each channel l

lσ
2
MD =

∑K
k=1 φk(φk + 1) lσ

2
k

ϕ(ϕ + 1)
+

∑K
k=1 φk lµ

2
k

ϕ(ϕ + 1)
− lµ

2
MD

ϕ + 1
+ lσ

2
E . (9)

From eqns (8) and (9) it is evident that the terms involving
uk can be computed by separable convolutions over the en-
tire mosaic (or a region of interest therein): we assume that
R is of fixed size w × w = K centred on the current pixel,
and that {φk} can be described by a separable mask of size
w. In our work we set w = 7 when using small (176×144)
input images. {φk} is defined by the separable mask bb�

where b = (0.1, 0.13, 0.16, 0.18, 0.16, 0.13, 0.1)�.
The mask {φk(φk +1)} in eqn (9) does not lead to a sep-

arable filter kernel, the matrix has rank 2, but for our choice
of b (and all others we considered) the second singular value
d2 is at least a couple of orders of magnitude smaller than
the first, d1. The matrix is therefore well approximated by
the closest matrix in Frobenius norm, which is given by set-
ting d2 = 0. A separable kernel is then obtained as

√
d1u1

where u1 is the first left singular vector of the mask matrix.
In summary, both µMD and ΣMD, can be computed by

sums of terms formed by separable convolution. The com-
plexity of separable convolutions is linear in w, while the
techniques in [16] and [14] scale as w2.

3.2. Implementation details
Although this forms the basis of our approach, there are

a few remaining issues to discuss. First, this argument has
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primarily been based on dealing with errors in background
registration. We will therefore assume that all the first com-
ponents, h = 1 in the region R of the GMM 1 represent the
same layer (background or foreground), so it is the means
and variances of this component which are input to eqns (8)
and (9). Pixel classification proceeds as in Section 2.1, but
now the first component of the GMM is replaced by the
MD, µ1 ← µMD and Σ1 ← ΣMD.

If the random variables which comprise the MD were
not drawn from the same layer, but from a mixture of back-
ground and foreground, the resulting observation model
will tend to have a higher variance (assuming that inter-
layer variation is larger than intra-layer variation). Thus
while our scheme will reduce the false alarm rate, there is
also an increased risk of misdetections. We are currently
investigating the explicit incorporation of this notion in our
Bayesian framework

The second matter concerns the class (pixel) indepen-
dent noise term E in eqn (5). Until now we have modelled
the variation within each class rather than the independent
noise process, not that we have really had to distinguish be-
tween the two. Consider though what happens in a region R
of uniform colour (µ is constant) with identical class vari-
ances (Σ =const = Σ̄) over the region R. If we neglect
ΣE, then ΣMD is less than Σ̄ unless φ, and thus also a, has
the form {0, 0, ...1, ...0}. Since this effect can be consider-
able, the model is clearly lacking in some respect. Thus, for
each region and channel we identify some common noise
variance lσ

2
E and subtract it from each lσ

2
k before applying

eqn (9). We select lσ
2
E as the minimum lσ

2
k in the region

R, lσ
2
E = min(lσ

2
1 , ...lσ

2
K), denoted lσ

2
min. This procedure

does not incur a significant penalty on computation time.
Eqn (9) can be rewritten as

lσ
2
MD =

∑K
k=1 φk(φk + 1) lσ

2
k

ϕ(ϕ + 1)
+ β lσ

2
min

+
∑K

k=1 φk lµ
2
k

ϕ(ϕ + 1)
− lµ

2
MD

ϕ + 1
, (10)

β = 1−
∑K

k=1 φk(φk + 1)
ϕ(ϕ + 1)

, (11)

which maintains the separable nature of the computations,
and finding the minimum within a rectangular block is a
common, cheap separable operation in morphological fil-
tering. Nor is an additional pass through the data necessary.

A third issue concerns the further components of the
GMM. Naturally, we could compute an MD in a similar
manner by assuming that all components h = 2 of the
GMM are drawn from the same object. Since foreground
objects tend to be smaller than background objects, there is
a very distinct risk that this assumption will be violated. In-
stead we assume that ΣMD − Σ from the first component of

1assumed sorted by decreasing α/σ as described in Section 2.1

the central pixel in R gives a fair estimate of the required in-
crease in variance of the underlying random process which
generated also the further component of the GMM. The
mean of the original component is assumed unchanged.

Once a pixel has been classified as background or fore-
ground, the GMM at location (x,y) is updated according to
the scheme outlined previously in Section 2.1. This is dif-
ferent to [16, 14] who update the pixel within the region R
which the current measurement best conforms with. Thus
our mosaics could appear slightly more blurred than theirs.

Experimental results are presented in Section 5.

4. Dealing with covered background
Stauffer and Grimson’s algorithm [19] described in Sec-

tion 2.1 makes the fundamental assumption that the back-
ground has been seen, C ≥ 1. If during the first few frames
slowly moving foreground objects are present, these are im-
mediately accepted as background, resulting in many mis-
detections. This is not intended to be a criticism of Stauf-
fer and Grimson’s algorithm. In their application with a
surveillance camera which operates over many days, they
are quite prepared to accept that the output becomes reli-
able only after a certain period of time. It is our require-
ment of a meaningful output as soon as possible, which mo-
tivates a new algorithm. Furthermore, we anticipate that a
mobile robot will observe not just people who are walking,
but also people standing or sitting relatively still, possibly
gesturing to the robot to give it commands. We cannot ex-
pect our algorithm to segment out foreground pixels in uni-
formly coloured regions if the background is never revealed
at that pixel’s location. However, there is hope if the ob-
ject is textured and moves slightly from side to side. Intu-
itively, pixel-based information is still available via frame-
differencing.

To achieve these goals, we permit only a unimodal back-
ground model during initialisation. In the future we intend
to investigate automatically relaxing this requirement once
we are reasonably sure that the background has been seen.

4.1. Pixel classification
We now describe our novel approach to incorporate the

notions (i) that the background might not yet have been
seen, and (ii), if it has been seen we are not sure which
component of the GMM contains it. Thus we supplement
the model of Section 2.1 with a discrete random variable B
with possible values {B1, B2, ..., BH+1} as follows

B = B1 The background has been observed and is
correctly identified as such in the most sig-
nificant part of the GMM.

B = Bi

i ∈ {2, ...H}
The background has been seen, but is con-
tained in the ith component of the GMM.
The first component represents foreground.

B = BH+1 The background has not yet been visible.
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H is the number of Gaussians in the GMM, as previously.
The posterior probability of membership, conditioned on

Z and also on some model parameters M is given by apply-
ing the sum and product rules of probabilities as well as
Bayes’ rule:

P (A1|Z,M) =
∑

i

P (A1, Bi|Z,M)

=
∑

i

P (A1|Bi,Z,M)P (Bi|Z,M)

=
∑

i

P (Z|A1, Bi,M)P (A1|Bi,M)P (Bi|Z,M)∑
j P (Z|Aj , Bi,M)P (Aj |Bi,M)

.(12)

Bi is clearly independent of the current measurement, so
P (Bi|Z,M) = P (Bi|M). In our current implementa-
tion the evidence M consists of two components. Follow-
ing on from the philosophy introduced when ordering the
components in the GMM in Section 2.1, the recovered vari-
ance is clearly of some use, as is the number of times Ni

each component has been seen, thus M = {Σ,N} where
Σ = {Σ1, ..., ΣH} and N = {N1, ..., NH}.

Applying Bayes’ rule yields

P (Bi | Σ,N) =
P (Σ | Bi,N) P (Bi |N)∑
i P (Σ | Bi,N) P (Bi |N)

where
∑

i P (Bi | N) = 1. Assuming that the covariance
matrices Σi in the GMM are independent for different i,

P (Σ | Bi,N) =
H∏
i′

P (Σi′ | Bi,N) .

The key point is that if i′ = i this component corresponds
to background, and we expect a low signal variance. On the
other hand, for i′ �= i we expect a higher variance corre-
sponding to a foreground object. Since we have very little
past history, we lack a pixel-based reference for what con-
stitutes a viable background distribution, and we must in-
stead settle for adopting a more global measure. For each
channel, l, the median variance lvmed is computed over
the entire image from the first components h = 1 of the
GMM’s. For this variable to be robust at least 50 % of the
pixels must either be background or covered by a moving,
but uniformly coloured, foreground object, in which case a
purely pixel-based method is doomed to fail regardless. For
each i ∈ {1, 2, ...H} we model the likelihood of the vari-
ance Σi conditioned on Bi as an exponential PDF,

P (Σi′ |Bi,N) =
1

1λi′ 2λi′ 3λi′
e
−( 1v

1λ
i′

+ 2v

2λ
i′

+ 3v

3λ
i′

)

In general the parameters 1λi, 2λi, 3λi are not equal since
the channels have different noise characteristics. For clarity
of presentation we concentrate on a single channel and drop

the left subscript. We define one set of parameters, λi, for
i′ = i and another set, λi′ , for i′ �= i by requiring that the
PDF’s for each channel intersect at some multiple γ of the
global, median variance

1
λi′

e
− γvmed

λ
i′ =

1
λi

e
− γvmed

λi .

This gives one constraint on λi′ and λi. A second is pro-
vided by specifying the ratio, r∗ of the PDF’s at v = 0,

1
λi

= r∗
1

λi′
.

For reliance on N, we adjust the r∗ parameter as

ri ← (r∗ − 1)ρi + 1, ρi = min(1, Ni/Nmax)

where Nmax is a time constant. The parameters r∗ and γ
are also provided by the user. We use r∗ = 4 and γ = 4.

For i ∈ {1, 2, ...H} we let P (Bi | N) = Ni/(2Ntot),
and setting P (BH+1 | N) = 1/2 then gives equal total
prior probability to the hypotheses that the background has
been seen {B1...BH} or not {BH+1}.

There are still some terms remaining in eqn (12). The
terms P (Z|A1, Bi,M) follow the expressions given in Sec-
tion 2.1, and contain a single component i from the GMM.
Similarly, the terms P (Z|A2, Bi,M) correspond to the re-
maining terms in the GMM. Since we have limited faith in
the recovered model during early frames, we additionally
apply a Gaussian hyper-prior with variance Σ∗ to the mean
of each component of the GMM, which by the convolution
properties of Gaussians simply leads to the variance of the
original Gaussian being replaced as Σi ← Σi + Σ∗ where
we choose Σ∗ as Σ∗ = (1/ρi − 1)Σi. Additionally we in-
troduce a uniform component p = 1− ρi which during the
first frames accounts for most of the data, but subsequently
vanishes. Assuming the signal lies in the range [0,1]

P (Z|A1, Bh,M) = (1− p)N (µh, Σh) + p .

For i ∈ {1, 2, ...H} we set

P (A1|Bi,M) =
1
2

+
(

Ni

Ntot
− 1

2

)
ρi, (13)

where Ntot =
∑H

i=1 Ni. This implies that we use constant
rather than exponential weighting in these early frames, fol-
lowing [14]. We define P (A1|BH+1,M) = (1− ρH+1)/2
where ρH+1 = max(1, Ntot/Nmax). By the sum rule,
P (A2|Bi,M) = 1− P (A1|Bi,M).

4.2. Implementation details
The complete algorithm largely follows that outlined in

Section 2.1. Our contribution lies in replacing the pixel
classification stage. As stated above, we update the GMM’s
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Figure 2. Segmentation results from a sequence taken with a
rotating camera, comparing our algorithm with that in [19].

using constant rather than exponential weighting. We se-
lect which component of the GMM to update using the
MAP scheme mentioned in Section 2.1. The algorithm re-
quires three additional parameters, r∗, γ and the time con-
stant Nmax, to be set manually.

With a moving camera, the most likely reason for ob-
serving high variances in the GMM is frequently not that the
background has not yet been seen, but sub-pixel motion in
regions of high texture. Therefore, the approach presented
here is, as yet, unsuitable with rotating cameras.

5. Experiments
The algorithms presented in this paper were tested on

various sequences using different cameras. Both methods
run at 10 Hz on 176× 144 images on a 2GHz P4 laptop.

Experiments with rotating cameras. The algorithm of
Section 3 for pan/tilt heads was tested on a sequence ob-
tained with a DV camcorder. Fig 2 demonstrates the re-
sults and compares them with the algorithm of Stauffer and
Grimson[19]. The sequence is interesting in that there are
both areas of highly and little cluttered background. Our al-
gorithm performs well. Relative to Stauffer and Grimson’s
technique there are few false alarms, but misdetections can
arise, as anticipated. For instance, misdetections can occur
when skin occludes the wooden bookshelf in textured areas,
due to their similar colour. Note that results are good where
the blue jeans of the subject cover the blue sofa.

Experiments with static cameras. The algorithm pre-
sented in Section 4 for reasoning about whether the back-
ground has been seen or not, is tested on the “silent” MPEG-
4 test sequence. The results in fig 3 are very satisfactory.
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Binary
mask
from our
method

Morph-
ological
filter

S&G’s
method

Figure 3. Segmentation results from three frames of the “silent”
sequence. The top row shows the original sequence, the second
the MAP output of the algorithm of Section 4. Dark areas in-
dicate foreground, white background, and grey areas cannot be
labelled with any degree of certainty. A binary segmentation
mask derived from the MAP output is shown in the third row,
while applying greyscale morphological filters to the MAP out-
put yields the fourth. For comparison the binary output from
Stauffer and Grimson’s method is also shown.

Initially the MAP output from our method indicates a great
amount of uncertainty, but as more data is gathered, the
model matures and the output becomes more certain. Our
algorithm successfully segments out the entire head, and in-
dicates that the torso is uncertain throughout the entire se-
quence. Fig 3 also compares our technique with the method
of [19] which unsurprisingly accepts more of the person as
background. On the other hand, our algorithm is more sen-
sitive to shadows: more of the contour of the lady’s shadow
is segmented out as foreground in the right of the image.

We also demonstrate improvements possible using mor-
phological filters in a post-processing stage. However, such
filtering inevitably removes some of the finer detail; how
much depends on the size of the structure element.

We briefly present results for further sequences in fig 4.
We conclude that our technique works well for images
with high signal to noise ratio (“Mother and daughter” se-
quence), and also performs slightly better than [19] with
poor quality inputs (“Lab” sequence) when noise tends to
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Figure 4. Applying the algorithm of Section 4 to a variety of
sequences. The results are discussed in the main text.

be large in comparison with signal variations from slight
motions of a rather uniformly coloured foreground. With
the “hall monitor” sequence, the input data is also rather
noisy. This example is merely included to illustrate that the
extra machinery introduced by our algorithm does not have
a destabilizing effect in cases where the background is in-
deed visible at some stage in the sequence.

6. Discussion and conclusions
This paper presented two novel algorithms for classify-

ing pixels in new images into foreground or background by
detecting independent motion relative to a statistical model
of the background appearance. The techniques were pri-
marily motivated by applications in mobile robotics.

The first algorithm was developed for panning and/or
tilting active heads and gave a unified approach to han-
dling motion blur, inaccurate motion estimation, geomet-
ric calibration errors, and mixed pixels at motion bound-
aries. Despite approximating an intractable PDF by its first
two moments, satisfactory results were obtained. Separable
convolutions permit an efficient implementation, making it
faster than previous approaches. In addition to use in mo-
bile robotics, we anticipate the method will be of great value
also in video surveillance and conferencing.

The second technique specifically modelled the notion
that the background might not yet have been uncovered dur-
ing early stages of operation. To this end we examined the
variances of the GMM’s components. This limited the al-
gorithm to use with high signal-to-noise cameras on a static
head. In the future this requirement could be relaxed by in-
corporating, into the same framework, further information

obtained from a neighbourhood around the pixel. Net flow
as in [6] or block matching as in [15] are natural candidates.

There is still much work required before our system can
be termed complete. Robust operation requires mechanisms
for handling shadows and rapid, global changes in illumina-
tion. This can be aided by the incorporation of stereo infor-
mation into the same framework [3, 7].
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