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Abstract
Concept learning in content-based image retrieval (CBIR)
systems is a challenging task. This paper presents an active
concept learning approach based on mixture model to deal
with the two basic aspects of a database system: chang-
ing (image insertion or removal) nature of a database and
user queries. To achieve concept learning, we develop a
novel model selection method based on Bayesian analysis
that evaluates the consistency of hypothesized models with
the available information. The analysis of exploitation vs.
exploration in the search space helps to find optimal model
efficiently. Experimental results on Corel database show the
efficacy of our approach.

1 Introduction
Visual concept learning is challenging in content-based im-
age retrieval (CBIR) because there exists a big gap between
low-level visual features and high-level human concepts.
The mechanism of relevance feedback allows a user to la-
bel retrieved images as positive or negative depending upon
whether or not the images contain the concept that the user
is seeking. The system can dynamically update the rel-
evance of images to be retrieved by using the techniques
such as query shifting [1], relevance estimation [2] [3] and
Bayesian inference [4]. However, these methods are not
systematic concept learning methods, but results in only the
adaptations of relevance feedback. Once the user is done
with a query and starts a new query, the knowledge gained
by the system with this iteration is lost.

Recently, some CBIR systems exploiting meta knowl-
edge for retrieval performance improvement have appeared
[5] [6]. These systems can improve retrieval performance
with retrieval experiences in conjunction with relevance
feedback. However, none of them presents a system model
that can be used for systematic concept learning.

In this paper, we model the database image distribution
in feature space as Gaussian mixture [7], and our task is to
estimate this model (called model fitting) to achieve concept
learning. Model fitting task for mixture model generally
includes two steps: (1) model selection, i.e., estimate the
number of components; (2) parameter estimation. Model

selection is the prerequisite for parameter estimation, and it
is a more challenging and unsolved task.

In unsupervised learning literature, if the true number of
components in mixture model c is known to be in the range
{cmin, . . . , cmax}, it can be generally selected according to
some criterion function by

ĉ = arg max
c

{F(Ψ̂c, c), c ∈ {cmin, . . . , cmax}} (1)

where Ψ̂c is the mixture parameter estimation when the
model is assumed to contain c components, and the crite-
rion function F(Ψ̂c, c) usually consists of two terms as

F(Ψ̂c, c) = − log p(x | Ψ̂c) + P(c) (2)

The first term is the log-likelihood of the data for the model,
and the second term is to penalize higher values of c. Many
researchers attempted to select model by using the criterion
functions with this form such as minimum message length
criterion (MML) [8], Bayesian inference criterion (BIC) [9]
and Akaike’s information criterion (AIC) [10]. These meth-
ods are proved to be effective for some data in unsupervised
manner; however, they are often frustrated by the fact that
optimal values of criterion function do not necessarily lead
to better model selection or data partition.

Some semi-supervised learning papers [11][12] have ap-
peared in an attempt to improve the model fitting. The most
lethal weakness of these approaches is that they are only for
parameter estimation and do not deal with model selection.
Thus, their practical applications are limited.

The concept learning of our system with regard to the
mixture model necessitates model selection, i.e., accessing
the number of components. Model selection is not consid-
ered in Vasconcelos’ approach [7], which is one of the most
famous approaches adopting mixture model into multime-
dia retrieval research. The integration with relevance feed-
back mechanism of our system makes it possible to carry
out model selection in a semi-supervised manner, which is
still an unexplored research topic to date.

Figure 1 illustrates our system framework with active
concept learning and concept knowledge transplantation.
The contributions of this paper is: a new active learning ap-
proach for mixture model fitting, including a model selec-
tion method and a user directed semi-supervised EM (SS-
EM) algorithm. Besides, the retrieval experiences derived
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Figure 1: System diagram with active concept learning
and concept knowledge transplantation for dynamic image
databases.

from previous users’ feedback are used to achieve concept
learning, which may help to improve future retrieval perfor-
mance [13]. A concept knowledge transplantation approach
can deal with the cases of image insertion and query images
being outside the database efficiently [14].

2 Motivation
We assume that the database image distribution in fea-
ture space is a c-component Gaussian mixture C =
{C1, . . . , Cc} [7], whose probability density function is

f(x; Ψc) =
c∑

i=1

πifi(x;µi,Σi) (3)

where x is d-dimensional feature, fi(x) are component den-
sities and πi (i = 1, 2, . . . , c) are component proportions (
0 ≤ πi ≤ 1 and

∑c
i=1 πi = 1 ). The component den-

sities are specified by means µi and covariances Σi. Ψc

is the vector containing all the unknown parameters i.e.,
Ψc =

⋃c
i=1{πi, µi,Σi}. For our image database system

with N images, there are c concepts each of which is cor-
responding to one component. If c is known, the task of
concept learning is accomplished by estimating the mixture
model parameters Ψc.

Given a set of N i.i.d samples X={x1, x2, . . . ,
xN} (corresponding to the visual feature vectors of N
database images) from model (3), let the associated bi-
nary component-indicator vectors for X be Z={z1, z2,
. . . , zN}, where zj = (zj1, . . . , zjc) with zji ={

1 if xj is from ith component
0 otherwise

, for j = 1, 2, . . . , N ;

i = 1, 2, . . . , c. The EM algorithm can be used to estimate
all these model parameters (see [15]).

2.1 System events

An image retrieval system with relevance feedback mecha-
nism may encounter two kinds of events at any time dur-
ing the long-term running: users’ queries and database
changes (i.e., image insertion or removal). We model the
occurrences of these two events as Poisson random pro-

cesses, whose distributions are P [N (t) = k] = (λit)
k

k! e−λit

(k = 0, 1, . . ., and t is the system running time) with i = 1
and 2 respectively . The ratio of the two distribution param-
eters r = λ1

λ2
specifies the relative occurrence rate of these

two events.
Since different users make a variety of queries and

perceive visual content differently, they may provide dif-
ferent sets of positive and negative labeling information,
each of which is defined as a retrieval experience E =
{X+,X−}, where X+ = {x+

1 , x+
2 , . . . , x+

N+} are labeled
as belonging to (positive for) a certain but unknown com-
ponent (concept) while another portion of samples X− =
{x−

1 , x−
2 , . . . , x−

N−} are labeled as NOT belonging to (neg-
ative for) that unknown component (concept).

2.2 Active model fitting
To accomplish the task of concept learning for the image
database, we should do model fitting over the data whose
population is continually changing due to dynamic nature
of the database. Since retrieval experiences contains pos-
itive and negative labeling information, they can help the
model fitting; thus, our model fitting is in a semi-supervised
manner. Moreover, the fitting should be updated actively
with the new retrieval experiences being obtained and im-
ages being added to or removed from the database.

Assume that the true number of components in the mix-
ture model is known to be in the range of {cmin, . . . , cmax}.
At time t of the system running, let the system has obtained
ι(t) retrieval experiences and the current image data is X (t),
our task is to find an optimal mixture model

M̂ = arg max
M∈Ω

prob{M | X (t), E1, . . . , Eι(t)} (4)

where Ω is the search space containing all possible models
in the range of {cmin, . . . , cmax}. The model M is speci-
fied by the number of components c and the parameter esti-
mation Ψc. Note that when ι(t) = 0, the problem becomes
the traditional unsupervised mixture model fitting task in [8]
[9] [10]. For convenience, we omit “(t)” in the notations for
X (t) and ι(t) in the following texts.

3 Technical approach
In this section, we first introduce our previous work [13]
[14], and then present the model fitting algorithm.

3.1 Concept learning and transplantation
In order to capture and accumulate previous users’ retrieval
experiences in the long-term history, we designate a posi-
tive matrix PN×c and a negative matrix QN×c to represent
this kind of knowledge. With the accumulated knowledge
contained in P and Q, the component-indicator vector el-
ements can be modified. This modification step is inserted
between E-step and M-step so that the concept learning re-
sult is closer to human understanding. To avoid clustering
that lags behind retrieval experience derivation, we imple-
ment user directed SS-EM algorithm after every s (s ≥ 1)
retrieval experiences, where s is the update step.
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The knowledge of mixture model estimation derived
from concept learning of the image database can help to
improve retrieval performance. For the initial K nearest
neighbor (K-NN) search, the Euclidean distance in the fea-
ture space from one database image xj (j = 1, 2, . . . , N )
to the query xq is proposed to contain two terms: feature-
based term and concept-knowledge-based term. As the con-
cept learning is improved with the retrieval experiences in-
creased, the second term should be given more credit.

When a new image is inserted or an image is removed
from the database, the matrices PN×c and QN×c are modi-
fied based on the model estimation. If the query image does
not belong to the database, the system extracts its visual
features, computes component-indicators, and implements
K-NN search using the distance measurement mentioned
in the last paragrah. Compared with the traditional K-NN
search that is solely based on visual feature Euclidean dis-
tance measurement, this approach yields better retrieval per-
formance since concept knowledge is adopted.

3.2 Model selection
If we initially select the model with the true number of com-
ponents, the fitting (only parameter estimation in this case)
with increased retrieval experiences will lead to the model
estimation which is very close to groundtruth model. This
can be achieved by our user directed SS-EM algorithm in
Section 3.1. On the other hand, if the initial assumption on
the number of components is not correct, the fitting over
time will never yield a good model estimation (at least it
will be worse than the case based on the true number of
components after enough time).

The previous retrieval experiences obtained by the sys-
tem can be used in selecting the optimal model. An obvious
way to achieve this idea is: the system keep all the candi-
date model fittings with {Ψcmin

, . . . ,Ψcmax
}. Whenever a

new retrieval experience is obtained, the system update all
of these fittings by our SS-EM algorithm. At any time, the
optimal model is the one which is most consistent with the
feature data and the positive and negative information con-
tained in the previous retrieval experiences.

However, when the range of {cmin, . . . , cmax} is large,
and the computational load of EM algorithm is heavy, the
updating for all the candidate models will be very slow;
thus, the model fitting may lag far behind the available re-
trieval experience, i.e., the system cannot digest the retrieval
experiences on time.

To overcome this computational load problem, we pro-
pose an adaptive model selection approach. Assume that
the system allows the computation of EM algorithms for K
(1 ≤ K < cmax − cmin + 1) models at the same time (K
is determined by the computation capability of the system
computer), we select K out of cmax − cmin + 1 models
based on their consistencies with the data and the previous
retrieval experiences. The consistency of a model Mc with

ι retrieval experiences can be measured by its probability
given the data and these retrieval experiences:

prob(Mc | E1, . . . , Eι;X )

=
prob(E1, . . . , Eι | Mc;X )prob(Mc | X )

prob(E1, . . . , Eι | X )

∝ prob(E1, . . . , Eι | Mc;X )prob(Mc | X ) (5)

= {
ι∏

i=1

prob(Ei | Mc;X )}prob(Mc | X ) (6)

The condition for independency required for the deduction
from (5) to (6) will be discussed later in this section. For a
single retrieval experience E , we have

prob(E | Mc;X )

=

c∑
i=1

{
N+∏
j=1

prob(x+
j ∈ Ci)

N−∏
j=1

prob(x−
j �∈ Ci)}

=

c∑
i=1

{
∏

j∈J+

τji

∏
j∈J−

(1− τji)} (7)

where J+ = {j+
1 , j+

2 , . . . , j+
N+} and J− =

{j−1 , j−2 , . . . , j−N−} are the indices for the image in
X+ and X− respectively, and τji is conditional expectation
that the image xj belongs to Ci.

The term prob(Mc | X ) appeared in (6) can be derived
by the likelihood function in the unsupervised learning pro-
posed in [16]

L(Ψc,X ) = log p(X | Ψc) + log

c∑
i=1

N∑
j=1

τji log τji (8)

where the second term is the estimated entropy used to pe-
nalize the model for its complexity (high value of c). Since
there are cmax−cmin+1 candidate models, we approximate
the models’ probabilities as

prob(Mc | X ) � exp{L(Ψc,X )/Lmax}∑cmax

k=cmin
exp{L(Ψk,X )/Lmax} (9)

where Lmax = maxc∈{cmin,...,cmax} |L(Ψc,X )|, which is
used to normalize the likelihood functions.

We define Mc’s consistency with the data X and ι re-
trieval experiences as the log-based value of (6)

cons(Mc; E1, . . . , Eι,X ) (10)

=

ι∑
i=1

log prob(Ei | Mc;X ) + log prob(Mc | X )

which appropriately represents the probability prob(Mc |
E1, . . . , Eι;X ). By (7), (8) and (9), the value of (10) can be
computed. Note that when ι = 0 (no retrieval experience),
the consistency only depends on the second term of (10),
which is derived from the model likelihood function for un-
supervised learning. This is the case at the very beginning
of the system running. With retrieval experiences increased,
the unsupervised criterion represented by the second term
of (10) exerts less influence while the accumulated retrieval
experiences plays a more important role on the consistency
measurement.
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The current optimal model is

ĉopt = arg max
c∈{cmin,...,cmax}

cons(Mc; E1, . . . , Eι,X )

(11)
The selection of K out of cmax−cmin+1 models for SS-EM
updating should be based on the models’ current consisten-
cies. However, we do not directly choose the K models
which have highest consistency values; instead, we give op-
portunity of being selected to each of the cmax − cmin + 1
models, whose probability is

prob(Mc) =
exp{ηt · cons(Mc; E1, . . . , Eι,X )}∑cmax

i=cmin
exp{ηt · cons(Mi; E1, . . . , Eι,X )}

(12)
where η is a parameter to be discussed later. This equation
implies that models with higher consistency values have
better chances of being selected. Thus, the search direction
for optimal model tends to be towards the models which
have good consistencies with the feature data and the accu-
mulated retrieval experiences. In other words, the optimal
model search should exploit the current model estimation.
On the other hand, due to the possibility that the model esti-
mation based on the true number of components may not be
good (especially at the early stage), we still give chances to
the models with lower consistency values, i.e., we want to
explore the whole search space. The relationship between
exploitation and exploration changes with time t increased:
at the early stage, exploration is more important so that all
of the candidate models have chances to be selected for up-
dating with retrieval experiences. With more retrieval ex-
periences improving these model estimations, exploitation
becomes the main concern since the model with good con-
sistency is very likely to be the optimal model. The term ηt
in (12) assigns the probabilities for models being selected
for SS-EM updating in the way that reflects this exploita-
tion & exploration relationship.

The independency condition for the deduction from (5)
to (6) may not be satisfied if all the obtained retrieval experi-
ences are used to measure model consistency. For example,
if two retrieval experiences with the same image sets (they
are not independent) are both counted in the computation
of (6) to measure model consistency, the positive and nega-
tive information contained in these two experiences may be
overly used; thus, the derived consistency may not correctly
reflect whether or not the model is good. To avoid this prob-
lem, we select retrieval experiences for each pair of which
have no overlap, i.e., no common images. However, this
condition is too strict for the system to obtain enough re-
trieval experiences for consistency measurement. Thus, we
allow each pair of selected retrieval experiences to share a
small percentage of common images. We set an indepen-
dency threshold � such that the maximal allowed number
of common images between two retrieval experiences is �l
(l is the number of images that are presented to the user at
each relevance feedback iteration). Thus, enough retrieval
experiences can be accumulated and the condition for in-

dependency is not deteriorated. Another advantage of this
experience selection method is that it alleviates the load of
computation for consistency; otherwise, the retrieval expe-
riences used for consistency computation may tend towards
infinity with time t increased.

For consistency computation, there is an overflow prob-
lem that cannot be ignored. For (7) whose computation in-
volves the multiplications of many probabilities, if there ex-
ist some probabilities whose values are zero or very small,
it may leads that prob(E | Mc;X ) is zero. This will cause
overflow problem for computing log-based value in (10). To
avoid this overflow problem, we adopt a small value thresh-
old ε to prevent the probabilities from being too small in the
way that

τji =
τji + ε

(1 + cε)
(13)

for j = 1, 2, . . . , N ; i = 1, 2, . . . , c. We use ε = 0.01 in
this paper.

From (10), we observe that consistency value becomes
smaller with ι increased (more retrieval experiences). Al-
though this does not influence the ranks of the model con-
sistencies at time t, it influences the probabilities for the
models being selected for updating as shown in (12). Set
the summation of the image numbers in all the ι retrieval
experiences is S, the model consistency in (10) can be re-
garded as the summation of S + 1 log-based probabilities.
Thus, we normalize the consistency by dividing the expres-
sion in (10) with S +1. Figure 2 summarizes our algorithm
for the active model selection.

4 Experiments
We use the database containing 1,200 images and 12 classes
[13]. To validate the concept learning result from the algo-
rithm, we compare the clustering result R = {R1, . . . ,Rĉ}
with the groundtruth mixture model C = {C1, . . . , Cc} by
using Jaccard coefficient (JC) [13]. One of the advantages
of Jaccard coefficient is that it can evaluate a clustering re-
sult whose cluster number is not necessarily the true com-
ponent number.

We randomly select 800 out of the 1,200 images as the
initial database images X (0), i.e., N = 800, and insert the
other 400 images during the system’s running. We set the
system running time as t = 0, 1, 2, . . .; at each t, one of the
events happens: user query or image insertion. This is a ran-
dom process derived from the two events’ poisson random
processes with their relative occurrence rate r (r = 16). Our
active concept learning approach with model selection on
the database is implemented with cmin = 10, cmax = 13,
the number of models selected for SS-EM updating K = 1,
the independency threshold � = 0.25, the update step is
s = 10.

At the initial stage of the system running, since the mod-
els’ consistencies with the limited retrieval experiences may
not have convincing statistical significance, we give all the
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• t = 0.

• Given the data X (t), the range for the number of compo-
nents {cmin, . . . , cmax}.

• Implement standard EM algorithms on X (t) with re-
gard to cmin, . . . , cmax, and get parameter estimations
Ψcmin , . . . , Ψcmax .

• Repeat (t = t + 1)

(a) When: new user executes retrieval and get retrieval ex-
perience Et:

1. X (t)← X (t− 1).

2. Count Et for consistency measurement if the condi-
tion for independence with threshold � is satisfied;
otherwise, go to “Repeat”.

3. Compute consistencies for Mcmin , . . . ,Mcmax by
(10), and normalize by dividing them with S + 1.

4. SelectMĉopt as current optimal model by (11).

5. Randomly select K models for SS-EM updating by
the probabilities given in (12) and get K updated pa-
rameter estimations. Prevent component-indicator el-
ements to be 0 by (13).

(b) When Image I+ is added: X (t)← X (t− 1)
⋃

I+.
(c) When Image I− removed: X (t)← X (t− 1)− I−.

Figure 2: Active model selection algorithm.

models equal probabilities to be selected for SS-EM updat-
ing, instead of assigning the probabilities by (12). This con-
servative strategy refrains the possibility that the model with
the true number of components is discarded for future up-
dating because of its low consistency initially. We set this
initial stage to be t ∈ [0, 200]. After the initial stage, the
probabilities are assigned by (12), where we set η = 0.5.

Figure 3 shows the active model selection process. From
Figure 3(a), we observe the oscillations of the consistency
values for all the models from t = 0 to t = 80 due to the rea-
son that the retrieval experiences are limited initially. Then
all the consistency curves become relatively smooth, and the
consistency of M12 gradually increases with a slow speed
(Figure 3(b)). This means that the model with true number
of components fits the obtained retrieval experiences bet-
ter. Another observation is that M12 has the highest con-
sistency after t = 140; thus, M12 is always regarded as the
current optimal model by the system (Figure 3(c)). After
t = 200, M12 has the dominant probability to be selected
for SS-EM updating.

Figure 3(d) shows that the model fitting is improved dur-
ing the process of the active concept learning as more re-
trieval experiences are obtained. Note that in spite of the
overall increasing trend for the JC curve, the JC value oc-
casionally decreases after SS-EM updating, which is caused
by the reason that the concept (component) sought by the
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Figure 3: Active concept learning process.

user may not be correctly identified. Figure 3(e) presents
the improvement in retrieval performance with increased t.
At time t, we select an image in this database as the query,
implement our retrieval strategy, and repeat this experiment
by changing query until each of the database images has
been selected as a query. Then we compute the average
precision at each iteration. With increased retrieval experi-
ences, the average precision is improved, especially at ini-
tial K-NN search iteration. This has deep significance for
retrieval performance in practical applications since users
usually don’t have enough patience to repeat relevance feed-
back iterations to search the images.

To demonstrate the efficacy of our concept knowledge
transplantation method, at the moment t when a new im-
age is inserted during active concept learning process, we
use the rest of the images outside the database (i.e., the
1,200 images -X (t)) as queries and simulate the relevance
feedback iterations by using the knowledge transplantation
method. In Figure 3(f), the average retrieval precision at it-
eration 0 increases with more images being inserted to the
system due to the reason that concept learning is improved
since more retrieval experiences are obtained in the process.
Note that another factor that improves the precision is that
with more images being inserted, there are more relevant
images within each class; thus, the probability that relevant
images are selected increases.
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(a) Query image is outside the database.
User is looking for sunset images.

(b) no retrieval experience (t = 0): precision = 7
20

(c) t = 800: precision = 17
20

Figure 4: Retrieval precision is improved as retrieval expe-
riences are increased.

Figure 4 shows two different retrieval results with the
same query image in (a) (outside the database) at different
running time. In (b), there is no retrieval experience, and
K-NN search only yields 7 out of 20 sunset images (row 1:
1, 2, 5; row 2: 2; row 3: 5; row 4: 1 and 4); In (b), when
t = 800, 17 sunset images are presented (except the 4th
image on row 2, the 1st image on row 3 and the last image
on row 4) by our concept transplantation approach.

5 Conclusions
This paper proposed an active concept learning approach
for dynamic image databases. The model selection in a
semi-supervised manner, which is still an unexplored topic
to date, is achieved with the help of user directed semi-
supervised EM algorithm, and the exploitation vs. explo-
ration analysis makes the model selection efficient. Our ex-
perimental results show that the concept learning results can
help to improve retrieval performance.
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