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Abstract

Natural images are highly structured in their spatial con-
figuration. Where one would expect a different spatial dis-
tribution for every image, as each image has a different spa-
tial layout, we show that the spatial statistics of recorded
images can be explained by a single process of sequential
fragmentation. The observation by a resolution limited sen-
sory system turns out to have a profound influence on the
observed statistics of natural images. The power-law and
normal distribution represent the extreme cases of sequen-
tial fragmentation. Between these two extremes, spatial de-
tail statistics deform from power-law to normal through the
Weibull type distribution as receptive field size increases
relative to image detail size.

1. Introduction

Vision provides an enormous amount of information
about our physical environment. A general purpose vision
system is concerned with the processing of visual sensory
information for the purpose of acting, reacting and reflect-
ing on a constantly changing environment. The human vi-
sual system is an example of such a general vision system
very well adapted to its task.

We start with the prerequisite that any general sensory
system will adapt itself to the outside world, specifically to
the stochastics of the input signals [2]. When that point
of departure is accepted, we note that the statistics of the
sensory input are dominated by physical laws of image for-
mation [9]. These physical laws are basically domain in-
dependent, as they cover the universally applicable laws of
light reflectance from materials. In addition, statistics of
the sensory input may be shaped by the structure of our en-
vironment. For example, parts of an image which deviate
from the common structure around us are likely to contain
perceptually salient details. Hence, our motivation to study
the statistical regularities in natural images as it implies a

better understanding of cognitive vision systems.

Equipped with an infinitely precise sensor we would see
details around us at all scales. This view in all its full com-
plexity is useless to the observer as it would swamp the
perceptual processing system. To escape the influx of so
much information, a large reduction in information is im-
plemented at the retina where the outside world is integrated
over discrete sensory receptive fields. The observation by
receptors of finite size imposes spatial coherence to the pic-
ture while reducing the complexity of the observed scene.

The spatial statistics of large ensembles of natural im-
ages are known to be scale invariant [18]. That is, when ex-
amining the marginal distribution of derivative filters or gra-
dient magnitude, an inverse power-law distribution is found
in the Fourier domain. However, the statistics of individual
images may vary across scale. Consequently the statistical
properties for individual images are affected by the obser-
vation at finite resolution.

The question is which laws govern observed natural im-
age statistics? In previous work, we theoretically derived
natural image statistics to follow a sequential fragmenta-
tion process [8]. In the current paper, we conduct a large
scale experiment on a representative collection of every day
scenes, containing almost 50,000 images. Statistical anal-
ysis of the data results in a significant finding that natural
image statistics obey the sequential fragmentation process,
of which the Weibull distribution is the general solution.
Hence, we put the empirical findings, for a few images, of
Mallat [14] and Simoncelli [19] into a much broader per-
spective. We provide an alternative theory for the dead-
leave model proposed by Matheron and elaborated upon
by Lee et al. [15, 13]. Furthermore, our model includes
the class of transparent objects, as recently modelled by
Grenander and Srivastava [11, 20]. Our proposed model
includes scaling behavior, where the power-law and nor-
mal distribution represent the two extreme ends of resolving
power. Between these two extremes, spatial detail statistics
follow the Weibull type distribution.
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2. The Sequential Fragmentation Process

In this section, we follow [8] for introducing the sequen-
tial fragmentation theory. Given the theoretical process, we
draw conclusions on the possible options for image statis-
tics. In a later section, we will validate our conclusions on
large collections of images.

2.1. Sequential Fragmentation Theory

As a direct implication of causality, we consider that
small details are occurring more often in an image than large
structures [12]. Diffusion of numerous small structures will
result in fewer large structures. Inversely, increasing magni-
fication at large structures will resolve many smaller struc-
tures. One may rephrase the statement in that, when resolv-
ing power increases, large structures will break-up into new
structures, of which some of them are relatively large, but
most of them will be small details. An edge or bar filter
will respond strongly to large contrasting details, and yield
smaller values elsewhere. Hence, the histogram of contrasts
for one structure typically shows a power-law distribution,

f(x) =
(

x

β

)γ−1

. (1)

When more objects are added to the scene, the image will
be fragmented into various patches, each giving rise to an
edge of varying contrast. The histogram over the various
edges is the results of integrating over the various power-
laws caused by every edge,

n(x) = c

∫ ∞

x

n(x′)f(x) dx′ (2)

where n(x) indicates the number of pixels with response
magnitude between x and x + dx, contributed by all edges
with contrast x′ > x. The integration over a sufficient num-
ber of power-laws yields a Weibull distribution,

n(x) =
1
β

(
x

β

)γ−1

e−
1
γ ( x

β )γ

. (3)

In integral form, the Weibull distribution given by

N(> x) =
∫ ∞

x

n(x) dx = e−
1
γ | x

β |γ (4)

indicates the relative amount of edges of (positive or nega-
tive) contrast larger than x.

In our view, a picture is composed of many details of
larger and smaller size, which in turn are composed of even
smaller details. We consider small image patches, or tex-
tons, like edge parts, blobs, and corners, spots to be the

details an image consists of. In the projection of the de-
tails onto the receptive field in the retina, some of the detail
is larger than the scale of resolution, whereas other details
are smaller and effectively integrated in the response of one
receptive field. The size distribution of the details may be
inferred from the contours of the details and their cast shad-
ows. The projection of the contours is a linear transform
of the three-dimensional detail shape. Hence, the intensity
differences in a view are indicative for the size distribution
of the projected details in the scene [16].

A similar reasoning is known in the sequential fragmen-
tation of particles by milling [4, 5], which shows much re-
semblance with the present theory. Brown and Wohletz [5]
theoretically derived the power-law process to describe the
particle size distribution for the crushing of particles in a
mill, providing a solid physical basis for the distributions in
Eq. (3) and Eq. (4) with the shape parameter γ related to
fractal dimension.

2.2. Consequences for Natural Image Statistics

As a consequence of the sequential fragmentation theory,
spatial image statistics are limited to conform to one out of
five options:

Power-law: When resolution is extremely fine compared
to detail size, spatial layout follows a power-law distribu-
tion, being the result of a single fragmentation event. This
is the case when we examine a single object against a highly
contrasting background. When contrast is reduced by local
normalization, a power-law is no longer observed.

Normal: When resolution is too coarse to resolve the de-
tails, spatial layout becomes normal distributed. This is the
case when we look at sand, or at at hairs. The normal dis-
tribution is the result of independent details accumulating
to the filters response, which will only be true for a small
class of textures. On closer inspection with higher resolu-
tion, we may resolve the details and spatial statistics convert
to Weibull again.

Weibull: In general, with the fine but limited resolution
used for the vast majority of scenes we encounter, views we
observe are fragmented and their details therefore Weibull
distributed. Spatial detail statistics deform from power-law
to normal through the Weibull type distribution as resolving
power decreases, while the field of view enlarges.

Composition: When the scene is composed of a few
parts, the Weibull distribution will not appear. This is of-
ten the case for a scene composed of two or three objects,
or scenes with sharply distinct distances. In this case, indi-
vidual parts of the scene may conform to the Weibull distri-
bution with varying parameters. However, the composition
of the scene results in the addition of a few power-laws, not
yet resembling a Weibull distribution. As the Weibull dis-
tribution describes sequential fragmentation, a requirement
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for the Weibull distribution is that the composition of the
scene is sufficiently complex.

Regular: For repetitive patterns, the visual responses in-
terfere with the repetition in the sensing field, in which case
any distribution may describe spatial statistics. Hence, the
proposed fragmentation theory breaks for regular textures.

Any image formation process involves the sequential
fragmentation of structures to refine a scene. Measurement
yields the sieving of the scene to sort out the structures
present. Since both processes are dual, one can make no
distinction between fragmentation or sieving from the final
result. Hence, sieving an image with arbitrary mesh size
will result in a Weibull distribution for the local statistics.
Scale-space filtering [12] is considered to be the sieving
process dual to resolving power. The choice of the mesh
size, hence the filter scale, will not affect the statistical re-
sult, except for a reparameterization. The dimensionality of
the measurement will be absorbed in the exponent γ of the
Weibull distribution.

3. Experimental Setup

We experimentally investigated the statistics of spatial
detail on three databases. First, we tested if the sequential
fragmentation process could be found in the van Hateren
outdoor image collection [22]. The collection consist of
4,167 calibrated and uncompressed images of 12-bit grey-
value information, image size 1,536 by 1,024.

As edge information is of crucial importance in the cod-
ing of images, we expect the sequential fragmentation pro-
cess so dominantly present in image statistics that it will be
preserved by any compression method. Hence, as a second
database to show the sequential fragmentation process to be
dominant, we tested the Corel photo collection [1]. The col-
lection consists of 46,695 images covering a broad class of
general pictures. The large and diverse collection is used to
provide evidence for the sequential fragmentation theory to
be present in a broad imaging domain, much broader than
only dead-leaves occlusion processes, as in [13], or only
transparant (additive) image formation, as in [11, 20]. The
collection is originally compressed by a wavelet compres-
sion technique. For processing purposes, we converted the
whole collection to JPEG compressed images, compression
factor 0.7.

A detailed study was performed on views of material
textures in the Curet collection [6]. The image collection
is calibrated and uncompressed, image size 768×576. The
collection consists of 61 materials, each taken under various
illumination and viewing directions. The sample contains a
diverse collection of materials, including plaster, styrofoam,
straw, corduroy, paper, brick, fur, and so on, effectively cov-
ering a range of Lambertian reflection, polarized reflection
with highlights, to the mirror reflection of Aluminum foil.

We will use this database mainly for illustration purposes.
Edge strength is accessed by Gaussian derivative filters

measured in 72 directions by steering the x, y-derivative
filters. The effective resolution of the system is given by
the spatial width of the filter, here set to correspond to a
standard deviation of 3 pixels in all experiments. Note that
changing the width to another constant will not change the
major results of this paper (data not shown). Further note
that applying any alternative zero-average filter will not af-
fect the major results (data not shown). Responses per im-
age were accumulated into histograms, and three distribu-
tions were fitted to each histogram. They are a power-law
distribution, a Weibull distribution, and a normal distribu-
tion. As the histogram contains both positive and negative
edge responses, we used the symmetrical versions of the
Weibull and power-law distribution.

For filter responses, high values indicate strong corre-
lation between image content and filter shape. Hence the
tails of the distribution are much more important in terms
of image content [3] than low values, representing uniform
areas and noise. Where most hypothesis tests, including the
Kullback-Leibler divergence, assign more weight to the of-
ten occurring values, we put our emphasis in the tails of
the distribution. As the Anderson-Darling test is sensitive
to the tails, goodness-of-fit was evaluated by this hypothe-
sis test [7]. Note that this test is commonly used in statis-
tics when accessing goodness-of-fit for both power-law and
Weibull distributions. A second important characteristic of
the Anderson-Darling test is that critical values are tuned
to the distribution at hand, including the free parameters.
Models of different complexity –with different degrees of
freedom– may be compared at similar confidence levels.
Hence, the Anderson-Darling test allows fair comparison
between power-law, Gaussian, and Weibull distributed por-
tion of a database, despite the different number of parame-
ters of these models.

The Weibull distribution symmetric integral form is
given by

f(x) = C exp
(
− 1

γ

∣∣∣∣ (x − µ)
β

∣∣∣∣
γ)

(5)

the parameters µ, β, and γ representing the center, width,
and shape of the distribution, and C being a normaliza-
tion constant. The shape parameter, γ, ranges from 0 to
2 [10]. For γ = 2 the Weibull distribution is equivalent to
the normal distribution, and for γ = 1 it is a double expo-
nential. The distribution is also known as the generalized
Laplacian [14, 19]. Brown [4] showed the close connec-
tion of this integral form to the original distribution pro-
posed by Weibull [23]. For our experiments, the values of
the Weibull parameters were estimated using the maximum
likelihood method. Goodness-of-fit was evaluated at a sig-
nificance level α = 0.05 (A2 < 0.757) [7] for all cases.
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Furthermore, we rejected the Weibull distribution for an es-
timation of γ > 2.2, resulting in a value of γ too far out of
range to yield a stable statistical process [10].

We consider the symmetric form of the power-law,

f(x) =
1
2
δ|x|−δ−1 . (6)

The parameter δ was estimated by the maximum likeli-
hood method, and goodness-of-fit was evaluated by the
Anderson-Darling statistic [17] at a significance level of
α = 0.05 (A2 < 1.341) [21].

The parameters for the normal distribution were ob-
tained by maximum likelihood estimation, and goodness-
of-fit was evaluated by the Anderson-Darling statistic at a
significance level of α = 0.05 (A2 < 0.787) [21].

4. Results

For the Corel general photo stock, the Anderson-Darling
test indicated 48% of the pictures to be Weibull distributed.
This is a remarkable result given the variety of generating
processes for the pictures in the collection, and the com-
pression of the images. The Weibull distribution apparently
describes the spatial statistics for outdoor scenes, indoor
scenes, close-ups, and materials of various kinds. Approxi-
mately 1% of the Corel collection is normally distributed.
Note that these pictures are included in the Weibull dis-
tributed part of the collection, the normal distribution be-
ing an extreme case with γ = 2. An additional 9% of
the Corel collection is distributed according to a power-law,
while being rejected as a Weibull distribution. A portion of
4% is accepted as both power-law distributed and Weibull
distributed, the fraction being included in the reported 48%.

For the uncompressed images in the van Hateren col-
lection, similar results are obtained. For this collection, a
Weibull distribution is present in 54% of the images. A ne-
glectable amount of images is normally distributed, which
can be explained by the high resolution at which these out-
door images are taken. Furthermore, 28% of the images is
power-law distributed, indicating that much of the images
consist of a high contrasting object against a more or less
uniform background. A portion of 5% is accepted as both
power-law distributed and Weibull distributed, the fraction
being included in the 54% Weibull distributed.

To understand this widespread presence of the Weibull
distribution, a detailed study was performed on views of
material textures in the Curet collection [6]. It appeared that
54 materials out of 61 (88%) consistently render a Weibull
distribution. The estimated Weibull parameter values varied
with illumination and viewing direction, consistently ren-
dering a Weibull distribution over all imaging conditions.
Note that in the continuing report of our result, examples
of the Curet database do not provide anecdotal evidence for

our theory, rather yields detailed illustrations of the differ-
ent stages of the fragmentation process.

As an explanation for a normal distribution of filter re-
sponses consider an infinitely precise sensor. We would see
the details around us at infinitely many scales. Increasing
the size of the sensor to a finite extent imposes spatial co-
herence and a limited local scale of detail. When the sensor
resolution is much larger than the common size of the ran-
dom details in the field of view, each sensor response is an
average over many impulses. From the central limit theo-
rem, local intensity differences will be normally distributed
as is observed in the rabbit fur of the Curet collection (Fig-
ure 1a), with individual hairs as the random details, each
much smaller than the resolution of observation.

For the power-law distributed images, visual inspection
showed much of these pictures to contain an exhibited item,
or to display land-sky, thereby fragmenting the scene into a
foreground and a background region, while details of inter-
mediate size are missing. When the shape of the foreground
figure is sufficiently fractal, the distribution of intensity dif-
ferences will follow a power-law. See the orange peel in the
Curet collection (Figure 1b) as an example.

Between these two extremes, the Weibull distribution oc-
curs. It arises when the scene is progressively fragmented
by the addition of objects or detail. Such a process of se-
quential fragmentation results in a Weibull size distribution
[4, 5], where the power-law describes a single fragmenta-
tion event. Material textures, with small details extending
over a limited depth range, as well as everyday scenes and
even mountain views extending over considerable depth, all
follow a Weibull sequential fragmentation process. When
the size of the details underlying the texture is such that a
receptive field typically covers part of a structure, the ob-
served distribution follows Weibull, illustrated by the alu-
minum foil in the Curet collection (Figure 1c). The power-
law process gives the extreme case for a single fragmenta-
tion, segmenting the field of view into foreground and back-
ground. On the other end of the spectra of size distributions,
we have the normal distribution, representing the extreme of
fragmentation beyond the visual resolution.

When the spatial detail is not randomly distributed but
regular, such that there is repetition between the responses
in an image, a Weibull distribution will no longer be found.
For the Curet collection, ribbed paper, straw, corduroy, and
corn husk break the distribution in the direction of orien-
tation (Figure 1d). In these examples, however, a Weibull
distribution reappears when measuring the receptive field
response in the perpendicular direction. For the rug and
the painted spheres in the Curet collection, the specular re-
flectance of the material causes a regular pattern of high-
lights, breaking the standard distribution in any direction.

The distribution of the fragmentation exponent γ as
given in Figure 2 indicates the relative importance of the
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Figure 1: Histograms of intensity differences in the x-
direction for images from [6]. The rabbit fur (a) demon-
strates the resolution limiting case, for which the Weibull
distribution with γx = 1.94 approaches the normal distri-
bution. Orange peel (b) is an example of a single object
fragmentation, for which the histogram follows a power-
law distribution (δx = 2.54). The aluminum foil (c) shows
a Weibull distribution with γx = 1.27. Ribbed paper (d)
with its regular structure has a non-Weibull distribution in
the x-direction, but shows a Weibull distribution for the y-
direction.
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Figure 2: Distribution of the values of γ for the Weibull
distribution as estimated for the Corel collection at spatial
filter sizes σ = {1.5, 3, 6}.

power-law process and the resolution limited case of the
normal distribution. Note that the γ values inherently de-
pend on the observation resolution, hence on the pixel reso-
lution and filter size. For high resolution images observed at
small scale, power-law will be dominant. For a low resolu-
tion collection or a large observation scale, the distribution
of γ-values will shift toward the normal extreme. This scal-
ing behavior is illustrated in Figure 2. For a general vision
system, observing at a variety of scales, spatial statistics will
cover the complete spectrum of γ-values.

For the gradient magnitude, fw =
√

fx
2 + fy

2, which
represents a rotationally invariant filter, 32% of the Corel
collection conforms to the Weibull distribution. In this case,
we tested for the true Weibull distribution, as magnitude is a
strictly positive entity. Furthermore, a photometric invariant
fn = fx/f is tested. In that case, 45% of the collection
is Weibull distributed, whereas the power-law is no longer
present. Hence, non-linear sensory combinations still result
in a Weibull distribution of observed spatial detail.

The Weibull or power-law distribution is not observed
when the image exhibits large uniform regions. Visual in-
spection of some of the Corel images not conforming to the
three distributions revealed these images to show a compo-
sition of a few objects. Typical examples are objects ex-
posed against a uniform background, and landscape images
under a uniform sky. In such cases, the histogram of the
filter responses consists of an addition of two Weibull dis-
tributions, with large differences between the parameters.
Note that such compositions are not observed in the Curet
database, which contains homogeneous textured materials.

In summary, for the Corel general photo stock [1] con-
sisting of 46,695 images, the Anderson-Darling test indi-
cated 57% of the pictures of that collection to conform to
the theory of sequential fragmentation. For the van Hateren
[22] high resolution and calibrated outdoor image collec-
tion, 82% of the images conform to the theory of sequen-
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tial fragmentation. This is a remarkable result given the
variety of generating processes for the pictures in the col-
lections. The extreme cases of power-law and normal dis-
tribution explain just a small part of all scenes. In general,
with the fine but limited resolution used for the vast majority
of scenes we encounter, views we observe are sequentially
fragmented and their details therefore Weibull distributed,
seen in 47% of the Corel stock and in 54% of the van
Hateren collection. A large portion of the remainder of the
collection is a composition of fragmentation processes with
different parameters. Unfortunately, no confidence levels
are available –or easily obtainable– to access the Anderson-
Darling statistic for mixture of power-laws. The fragmenta-
tion process breaks for repetitive patterns, causing interfer-
ence between the receptive field responses.

5. Conclusions

The projection of the fractal world around us on a
discrete sensory system, with finite observation resolu-
tion, causes scale invariant physical laws to deform to the
Weibull statistic. We have found that many images and
many local regions therein are dominated by that standard
distribution. The significance of our results show the frag-
mentation process to describe the statistical structure of in-
dividual natural images, thereby confirming earlier findings
of Mallat [14] and Simoncelli [19]. The model of sequential
fragmentation holds for indoor and outdoor scenes, slices
through materials like found in biological preparations and
at material surfaces, drawings like modern art paintings, as-
tronomy pictures, opaque and transparent compositions of
materials, all included in the reported photo stocks.

The fragmentation process results in five options for spa-
tial statistics: power-law, Weibull, normal, composition, or
the result of a regular spatial arrangement. Spatial statistics
deform from power-law to normal through the Weibull type
distribution as the complexity of the scene increases.
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