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Abstract 

Robust estimators, such as Least Median of Squared 
(LMedS) Residuals, M-estimators, the Least Trimmed 
Squares (LTS) etc., have been employed to estimate 
optical flow from image sequences in recent years. 
However, these robust estimators have a breakdown 
point of no more than 50%. In this paper, we propose a 
novel robust estimator, called variable bandwidth 
Quick Maximum Density Power Estimator (vbQMDPE), 
which can tolerate more than 50% outliers. We apply 
the novel proposed estimator to robust optical flow 
estimation. Our method yields better results than most 
other recently proposed methods, and it has the 
potential to better handle multiple motion effects. 

1. Introduction 

One major task of computer vision is to compute the 
optical flow from image sequences [2, 3, 6, 10, 11, 13, 
15, 17, 19, 20, 22, 26]. Accurate computation of optical 
flow is an important foundation for tasks, such as 
motion segmentation, extracting structure from motion, 
etc. Traditional methods of computing optical flow are 
non-robust. Which means they will fail to correctly 
compute optical flow when the two assumptions: data 
conservation and spatial coherence, are violated. 
Clearly, these assumptions will be violated near motion 
boundaries, and when shadows, occlusions, and/or 
transparent motions are present.  
During the last ten years, robust techniques, such as: M-
estimators, Least Median Squares (LMedS) estimator, 
Least Trimmed Squares (LTS) estimators, and robust 
Total Least Squares (TLS) estimator, etc., have been 
employed to extract optical flow [1, 4, 5, 24, 25, 35]. 
Because these robust estimators can tolerate the 
influence of “bad” data, i.e. outliers, they usually obtain 
better results. Unfortunately, these robust estimators 
have a breakdown point no more than 50%. This means 
that when the data contain more than 50% outliers, these 
estimators will totally breakdown. Such will happen, for 
example, near motion boundaries involving more than 
two different motions. 
In this paper, we will provide, based on our previous 
work [33, 34], a novel robust estimator—variable 
bandwidth QMDPE. Instead of using a fixed bandwidth 
as in QMDPE, vbQMDPE uses data-driven bandwidth 
selection. We apply the novel proposed robust estimator 
to the task of optical flow computation. We also correct 

the results of Bab-Hadiashar and Suter [1] for the Otte 
image sequence.  
vbQMDPE seems to rarely breakdown if the percentage 
of outliers is less than 80%, outperforming most other 
methods in optical flow computation. Of course, any 
method can breakdown under extreme data: even 
LMedS and LTS can breakdown when clustered outliers 
are present - despite those outliers constituting less than 
50% of the whole data [33]. 

2. Optical Flow Computation 

Let I(x, y, t) be the luminance of a pixel at position (x, 
y) and time t, and v = (u, v) be the optical flow. The 
data conservation assumption implies [12]:  
 

 I(x, y, t) = I(x + uδt, y + vδt, t + δt)            (1) 
    
First order expansion yields the optical flow constraint 
(OFC) equation:  
 
                     (2) 
 
where (∂I/∂x, ∂I/∂y, and ∂I/∂t) are partial derivatives of 
luminance I w.r.t. space and time at point (x, y, t).  
The residual at (x, y) can be written as: 
  
                                                                                    (3) 
     
The error measure using the least squares (LS) within 
the small local neighborhood R can be written as: 
 
                 (4) 
 
 
From equation (2), we can see there is only one 
equation but with two variables to estimate - the 
aperture problem. In order to constrain the solution, the 
local region R should be as large as possible. However, 
if R is too large, the spatial coherence assumption will 
be violated - the generalized aperture problem [5]. The 
affine motion model of image flow is sometimes used in 
preference to the constant flow model: 
                                                                                    
                                                                                   (5) 
Traditional (Least Squares) methods estimate the optical 
flow by minimizing the error measure in equation (4), 
assuming a flow model such as (5). 
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3.  Robust Statistics and vbQMDPE  

It is almost unavoidable that data are contaminated (due 
to occlusion, shadow, transparent motion, faulty feature 
extraction, sensor noise, etc) and it is also likely that the 
data will include multiple structures (such as multiple 
motion). Although the least squares (LS) estimator is 
high efficient when the data have a Gaussian 
distribution, it is extremely sensitive to outliers. The 
breakdown point of an estimator may be roughly 
defined as the smallest percentage of outlier 
contamination that can cause the estimator to produce 
arbitrarily large values [29]. The LS estimator has a 
breakdown point of 0%. The maximum-likelihood-type 
estimators (M-estimators) [16] can reduce the influence 
of outliers, yet they have breakdown points less than 
1/(p+1), where p is the number of the parameters to 
estimate. Rousseeuw proposed the LMedS and the LTS 
estimators [28, 29] that can tolerate up to 50% outliers.  
More recently, some new promising robust estimators, 
which can tolerate more than 50% outliers, appeared 
[18, 21, 31, 36]. However, RESC [36] needs the user to 
tune many parameters, MUSE [21] needs a lookup table 
for the scale estimator correction and ALKS[18] is 
limited in its ability to handle extreme outliers and its 
lack of stability under a small percentage of outliers 
[33]. 
In the next subsection, we will, based on our previous 
work [33, 34], provide a novel variable bandwidth 
QMDP estimator.  

3.1 Variable bandwidth QMDPE  

Our starting point is based on two assumptions: 
(1) The inliers have a Gaussian-like distribution; 
(2) The inliers are a relative majority of the data. 

The first assumption is a common one. However, 
traditional robust estimators (LMedS, LTS, etc.), 
assume the inliers should occupy an absolute majority of 
the whole data – violating (2). 
A crucial part of our algorithm is the use of the mean-
shift procedure[8, 14] - we employ it to find the position 
of the local maximum density in signed residual space. 
The convergence of the mean shift iterations can be 
found in [8]. We run the mean shift iterations with 
initial position of zero in residual space and with 
bandwidth h, then we obtained the center of the 
converged window Xc.   
When a model is correctly fitted: (1) The center of the 
converged window (Xc) in residual space should be as 
close to zero as possible; and (2) The probability 

density f̂ (Xc) of the point at Xc should be as high as 

possible. So we define our objective function  ψDP as: 

ψDP  ( )
)exp(

)(ˆ

Xc

Xcf
α

=                      (6) 

where α  is a factor that adjusts the relative influence of 
the probability density to the residual of the point 

corresponding to the center of the converged window 
(experimentally set to 2.0).  
The probability density  can be estimated by: 

                              (7) 
 
where d is the dimension of Euclidean space; n is the 
number of the data points, h the band-width. 
The Epanechnikov kernel [30] K  is employed: 
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where cd is the volume of the unit d-dimensional sphere, 
e.g., c1=2, c2=π, c3=4π/3.        
One crucial issue in the non-parametric density 
estimation, and the mean shift method, is how to choose 
h [8, 9, 32]. We employ a method from [32]: 
 

                  (9)   
 
where    and        ,

 

s is the sample standard derivation. A robust median 
scale estimator is then given by [29]: 
                          s = 1.4826medixi             (10) 

ĥ  will provide an above bound on the AMISE 
(asymptotic mean integrate error) optimal bandwidth 

AMISEĥ , thus we choose the bandwidth as c ĥ , c is a 

constant number (0<c<1) and is used to avoid over-
smoothing.  

3.2 The algorithm: variable bandwidth QMDPE 

The vbQMDPE  procedure is: 
(1) Randomly choose one p-subset, estimate the 

model parameters by the p-subset, and 
calculate the residuals of all data points. 

(2) Adaptively choose bandwidth h using the 
method described in sec. 3.1.  

(3) Apply the mean shift iteration in the residual 
space with initial window center zero. Thus, 
we obtain the center of converged window Xc. 

(4) Calculate the probability density f̂ (Xc) at the 

position Xc by equation (7) and (8). 
(5) Calculate the density power according to 

equation (6).  
(6) Repeat step (1) to step (5) m times. Finally, 

output the parameters with maximum density 
power.  

Enough random subsets m are used for a high 
probability P that at least one “clean” p-subset is 
chosen: 
                                                                                 (11)
   
where ε is the fraction of outliers contained in the whole 
set of points.  
“Variable bandwidth” means that the bandwidth is 
variable for each randomly chosen p-subset - instead of 
using a fixed bandwidth as in our previous work [33].  
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In order to improve the statistical efficiency, a weighted 
least square procedure [29] can be carried out. 
We note that although Chen and Meer [7] also employ a 
kernel density estimation technique in parametric model 
estimation, they considered their mode of the density 
estimate in the projection space along the direction of 
parameter vector. Our method considers the density 
distribution of the mode in the residual space. The 
criteria of the two methods also differ. 
We are aware that the median scale estimator in 
equation (9) may be biased for nonsymmetrical multi-
model data; also, too small bandwidth without 
downward bound will introduce artifacts.  

3.3 Performance of vbQMDPE. 

We demonstrate vbQMDPE is very robust to outliers by 
comparing it to several other traditional methods (the 
LS, LMedS and LTS methods). We do not compare the 
proposed method to its predecessor (QMDPE) because 
the only essential difference is that now the bandwidth h 
is data driven.   

In our first experiments, we take a simple setting — line 
fitting. We generated four kinds of data (one step, two 
steps, two crossed lines, and four lines), each with a 
total of 500 data points. The signals were corrupted by 
Gaussian noise with zero mean and unit standard 
variance. Among the 500 data points, α data points were 
randomly distributed in the range of (0, 100). The i'th 
structure has γi data points.  
The four signals are as follows: 

(a) One step: x:(0-55), y=30, γ1=225; x:(55-100), 
y=40, γ2=225; α=50. 

(b) Two steps: x:(0-30), y=20, γ1=100; x:(30-55), 
y=40, γ2=100; x:(55-80), y=60, γ3=100; 
α=200. 

(c) Two crossed lines: x:(20-70), y=x+10, γ1=150; 
x:(35-85), y=115-x, γ2=150; α=200. 

(d) Four lines: x:(0-25), y=3x+10, γ1=75; x:(25-
55), y=130-2x, γ2=20; x:(40-65), y=3x-110, 
γ3=75; x:(65-90), y=280-3x, γ4=75; α=370. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

         (a)          (b) 
 
 
 
 
 
 
 
 
 
 
 
 

 
         (c)          (d) 

Figure 1. Comparing the performance of vbQMDPE, LS, LMedS, and LTS with (a) 55%; (b) 80%; (c) 70%; (d) 85% 
outliers. 
 
From figure 1, we can see that LS is non-robust, and 
that LMedS and  LTS failed. Only vbQMDPE correctly 
fitted all the four signals - not even breaking down when 
the data includes 85% outliers (figure 1 (d)).  

4. vbQMDPE and optical flow  

The optical flow constraint (OFC) is a linear equation in 
u-v space. Each pixel gives rise to one such linear 
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constraint and, in a noise-free setting, and assuming 
constant u and v, all lines intersect at a common point.   
Two main difficulties in optical flow estimation are 
[24]: (a) the discontinuities in the local velocity; and (b) 
the “aperture” problem. The first difficulty is related to 
occlusions between image illumination discontinuities, 
moving objects, or moving object boundaries.  One 
solution to the second difficulty is to enlarge the local 
window so as to collect more constraint equations to 
over determine the optical; this will bring higher 
statistical efficiency. However, enlarging the window 
means more chance of including multiple motions 
(forming multiple clusters of intersecting lines e.g., 
figure 2). Because traditional estimators (M-estimators, 
LMedS, LTS, etc.) have only up to 50% breakdown 
point, they may fail to compute optical flow when the 
data include multiple motion structures (i.e. the outliers 
occupy more than 50% of the data). In such cases, 
vbQMDPE performs well. 
  
 

 

 

                (a)               (b) 
     

 

 

 

 
          (c) 

Figure 2. One example of multiple motions. 
 
We generated a two-square image sequence using the 
method similar to that in [2]. Figure 2 (a) shows one 
snapshot of the image sequence. The correct optical 
flow is shown in figure 2 (b). The small window 
centered at (110, 136) in figure 2 (a) includes three 
motions: each motion involves less than 50% data 
points. Its OFC plot, using symbolically determined 
derivatives of I, is shown in figure 2 (c). From figure 2 
(c), we can see that there are three motions included in 
the small window in figure 2 (a). The optical flow of 
each motion (2.0, 1.0), (-3.0, 1.5), (3.0, -1.5) is marked 
by red plus sign. The proposed robust estimator gives 
correct optical flow estimation (3.0, -1.5). However, by 
the LMedS method, the estimated optical flow is (2.36, -
0.71); and the estimated optical flow by the least 
trimmed squares and the least squares method is 
respectively (2.71, -1.43) and (0.06, 0.84). 

4.1 Variable-Bandwidth-QMDPE optical flow 
computation  

The first step to compute optical flow is to estimate the 
spatio-temporal derivatives of the image brightness. We 
follow Bab-Hadiashar and Suter [1], and Nagel [23], by 
convolving the image brightness with derivatives of 3D 
spatio-temporal Gaussian function:       

 
                         (13) 

 
where x =(x, y, t)T

; Σ is covariance matrix.  
There are methods to estimate the derivatives near the 
discontinuities of optical flow (e.g., [35]). In our simple 
approach, we first estimate the derivatives of I with 
initial standard variance σ0 then, when the estimated 
derivatives (Ix, Iy, and It) are larger than a threshold, we 
simply re-compute the derivatives with half of the 
standard variance in that corresponding direction. 
For each NxN patch of the image and chosen motion 
model (in our case, constant motion model and affine 
motion model), we solve for the flow using vbQMDPE.  
The measure of reliability in [1] can be employed in our 
method.     

4.2 Quantitative error measures for optical flow 

When the “ground truth” optical flow of image 
sequences is known, the error analysis is performed by 
Barron’s method [2]. The angular error measures is 
reported in degree: 

 
                E = arcos(ve , vc)                         (14) 

 

where ve= 1/)1,,( 22 ++ vuvu T  and vc is the true 

motion vector. The average and standard deviation of 
the errors are both reported.   

5. Experimental results 

The proposed algorithm has been evaluated on both 
synthetic and real images. Three well-known image 
sequences (the Diverging Tree sequence2; the Yosemite 
sequence2; and the Otte3 image sequence) are used (see 
figure 3).Table 1 shows the comparison results the 
Diverging Tree sequence (figure 3 (a))  – showing the 
proposed method gives the most accurate results for 
affine motion model. Even for the constant motion 
model, vbQMDPE still yields better results than most 
other comparative methods. 
Figure 3 (b) shows one snapshot of the Yosemite 
sequence. Because the true motion of the clouds does 
not really reflect the image brightness changes, we 
exclude the clouds in our experiments.  From table 2, 
we can see that the proposed algorithm and Farneback’s 

                                                 
2 The sequences are obtained from ftp://csd.uwo.ca/pub/vision 
3 The sequence is obtained from    
  http://i21www.ira.uka.de/image_sequences/  
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algorithms give the best overall results. The standard 
variance error of our results is less than that of  
Farneback’s results (2000, 2001) for both constant and 
affine motion models. Although the averaged angle 
error of Farneback’s results (2000) is better than our 
results for constant motion model, our results for affine 
motion model with larger local window outperform 
Farneback’s results (2000). However, the average angle 
error of Farneback’s later version (2001), which used an 
affine motion model and a combined a region growing 
segmentation algorithm, is better than ours. To our 
knowledge, it is the best result obtained so far in the 
field of optical flow computation for Yosemite 
sequence. 
 
 
 
 
 
 
 
 
 
                (a)        (b) 
 
 
 
 
 
 
 
             (c) 
Figure 3. The snapshot of the three image sequences: (a) 
the Diverging Tree; (b) the Yosemite; and (c) the Otte 
sequence. 
We also note that our results with affine motion model 
are better than those with constant motion model in both 
the Diverging Tree and the Yosemite. This is because 
the motion in two sequences is mostly diverging. For 
each pixel within a small local window, the optical flow 
changes. Thus, the affine motion model reflects the true 
situation better than the constant one.  
The Otte sequence (figure 3 (c)) is a real image 
sequence [27] and it is difficult because it includes 
many sharp discontinuities in both motion and depth. 
When we recomputed the optical flow for Otte image 
sequence (frame 35) by Bab-Hadiashar and Suter’s 
code, we found that the results in [1] were wrongly 
reported (our results show an improved performance!). 
From table 3, we can see our results outperform all 
other published.    

6. Conclusions 

We have developed a novel robust estimator—variable 
bandwidth QMDPE, and we applied it to optical flow 
computation. By employing nonparametric density 
estimation and density gradient estimation techniques in 
parametric model estimation, the proposed method is 
very robust to outliers and is a substantial improvement 

over traditional methods. We expect we can do even 
better with a multi-resolution version of our approach. 
Our code without optimization takes about 6 min on 
Yosemite image sequence on a 1.2GHz AMD personal 
computer, using 17x17 patches around each pixel and m 
is set to 30. The speed can be improved for less m and 
smaller patches but with worse accuracy. The mean 
number of mean shift iterations is about 3 for each p-
subset.    
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Table 1. Comparative results on diverging tree: the first part 
of the table is the results reported by Barron et. al (1994) and 
Ong et. al (1999); the second part is the results obtained by 
the proposed algorithm (number 2 and 6 represent constant 
and affine motion models)  
 

Technique 
Avg. error  
(degree) 

Std. dev. 
(degree) 

Density  
( % ) 

Horn and Schunck (original unthresholded)  
Horn and Schunck (modified unthresholded)  
Uras et.al. (unthresholded) 
Nagel 
Anandan 
Singh (Step 1 unthresholded) 
Singh (Step 2 unthresholded)  
Least-Squares (block-based) method (in 
Ong  and Spann, 1999) 

12.02 
2.55 
4.64 
2.94 
7.64 
17.66 
8.60 
 
1.98 

11.72 
3.67 
3.48 
3.23 
4.96 
14.25 
4.78 
 
2.81 

100 
100 
100 
100 
100 
100 
100 
 
100 

vbQMDPE2 (σ0=1.5, 11x11, m=30) 
vbQMDPE6 (σ0=1.5, 11x11, m=30) 

2.51 
1.46 

1.62 
1.03 

100 
100 

 
Table 2. Comparative results on Yosemite (cloud region 
excluded): the first part is the results reported in the recently 
referenced literature; the second part is our results. 
 

Technique 
Avg. error  
(degree)  

Std. dev.  
(degree) 

Density 
( % ) 

Black (1994)  
Szeliski and Coughlan (1994) 
Black and Anandan (1996)  
Black and Jepson (1996) 
Ju et. al. (1996)  
Memin and Perez (1998) 
Memin and Perez (2002) 
Lai and Vemuri(1998) 
Bab-Hadiashar and Suter (WTLS2, 1998) 
Bab-Hadiashar and Suter (WTLS6, 1998) 
Farneback2 (2000) 
Farneback6 (2000) 
Farneback6 (2001) 

3.52 
2.45 
4.46 
2.29 
2.16 
2.34 
1.58 
1.99 
2.56 
1.97 
1.94 
1.40 
1.14 

3.25 
3.05 
4.21 
2.25 
2.00 
1.45 
1.21 
1.41 
2.34 
1.96 
2.31 
2.57 
2.14 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

vbQMDPE2 (σ0=2.0, 17x17, m=30) 
vbQMDPE6 (σ0=2.0, 17x17, m=30) 
vbQMDPE2 (σ0=2.0, 25x25, m=30) 
vbQMDPE6 (σ0=2.0, 25x25, m=30) 

2.12 
1.54 
2.27 
1.34 

2.08 
1.99 
2.07 
1.69 

100 
100 
100 
100 

 
Table 3. Comparative results on Otte image sequences: the 
first part was reported by Bab-Hadiashar and Suter (1998); the 
second part is the corrected results; the third part is obtained 
by running the proposed algorithm. 
 

Technique 
Avg. error 
(degree) 

Std. dev.  
(degree) 

Density 
( % ) 

Giachetti and Torre (1996) 
Bab-Hadiashar and Suter (WLS2, 1998) 
Bab-Hadiashar and Suter (WLS6, 1998) 
Bab-Hadiashar and Suter (WTLS2, 1998) 
Bab-Hadiashar and Suter (WTLS6, 1998) 

5.33 
3.39 
3.51 
3.74 
3.67 

----- 
6.55 
6.48 
8.09 
7.37 

100 
100 

  100 
100 
100 

Bab-Hadiashar and Suter (WLS2, corrected) 
Bab-Hadiashar and Suter (WLS6, corrected) 
Bab-Hadiashar and Suter (WTLS2, corrected) 
Bab-Hadiashar and Suter (WTLS6, corrected) 

3.02 
3.14 
3.20 
3.20 

5.98 
5.84 
7.02 
6.59 

100 
100 
100 
100 

vbQMDPE2 (σ0=2.0, 17x17, m=30) 
vbQMDPE6 (σ0=2.0, 17x17, m=30) 
vbQMDPE2 (σ0=2.0, 25x25, m=30) 
vbQMDPE6 (σ0=2.0, 25x25, m=30) 

2.64 
2.82 
2.21 
2.29 

4.98 
5.03 
4.16 
4.06 

100 
100 
100 
100 
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