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Abstract
A system capable of performing robust live ego-motion es-
timation for perspective cameras is presented. The system
is powered by random sample consensus with preemptive
scoring of the motion hypotheses. A general statement of
the problem of efficient preemptive scoring is given. Then a
theoretical investigation of preemptive scoring under a sim-
ple inlier-outlier model is performed. A practical preemp-
tion scheme is proposed and it is shown that the preemption
is powerful enough to enable robust live structure and mo-
tion estimation.

1. Introduction
This paper is about robust real-time estimation of the mo-
tion of a single camera in a mostly rigid scene. The esti-
mation is performed with low delay as the motion occurs.
Some structure of the scene is also estimated. Some exam-
ples are shown in Figure 1. Structure from motion has been
a highly active research area of computer vision for a long
time and this paper owes a lot to a large number of contribu-
tions, more than we can hope to account for here. It is well
known that estimates of structure and motion are highly sen-
sitive to noise and outliers. It is therefore extremely impor-
tant to minimise a cost function that corresponds as closely
as possible to the true noise and outlier conditions. It is
widely accepted that once a good starting point is known,
bundle adjustment, see e.g. [23], is the method of choice
for achieving this. However, bundle adjustment and other
polishing schemes will only converge to the right solution
when given a good starting point. Thus, finding a good start-
ing point under practical noise and outlier conditions is im-
portant.

Random sample consensus (RANSAC) [6] and similar
hypothesise-and-test frameworks [22, 20, 24] have become
the standard way of dealing with outliers arising from in-
correct matches. Our system is based on this type of robust
estimation and is in that respect a development in the di-
rection taken e.g. by authors [3, 12, 13, 16, 17, 21] and
the commercial software [2]. However, there are important
differences. Our system operates in a calibrated framework
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Figure 1: Reconstructions made at real-time rates with low delay
while loading the video source from disk. The top sequence was
acquired by moving a hand-held camera around a flowerpot, first in
a wide circle and then in a tighter circle, with some forward motion
in between. The middle sequence is a turn-table sequence. No a
priori knowledge of the motion was used. The bottom sequence
was created by walking around a car with a hand-held camera.

where the intrinsic parameters are assumed known. This
brings increased stability [15, 14, 8]. More importantly, it
has the distinct advantage that the estimated camera motion
and scene structure can be put in a metric coordinate frame
directly, without delay due to self-calibration. Our system
operates live and in real-time with low delay, which was not
attempted by any of the above cited authors. Robust real-
time estimation of a small number of degrees of freedom
was reported in [1]. Our system does real-time estimation
of general motion of a calibrated perspective camera. An-
other line of prominent work on real-time structure from
motion is [4, 9, 10]. It is based on nonlinear filtering that
fuses estimates over time. See [4] for a large number of
additional references. We are going to focus on robust esti-
mation, which we see as a way of feeding a nonlinear filter,
or more generally a bundle adjuster.
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In the RANSAC framework, motion hypotheses are gen-
erated from random minimal sets of observations. The hy-
potheses are scored based on their fit to the full set of ob-
servations and the best hypothesis is kept as the winner. We
take the view of [22] that the scoring function should pre-
ferrably be a robust likelihood or Bayesian cost function
rather than a simple inlier count.

Inspired by [5] we use preemptive scoring of the motion
hypotheses generated by random sampling. The preemp-
tion is used to avoid excessive scoring of useless motion hy-
potheses contaminated by outliers or distorted by noise. The
problem is thus to find a scoring procedure that achieves
high efficiency in a limited time. The preemptive scoring
we propose uses a small fixed amount of time to choose be-
tween a predetermined number of hypotheses. It could be
argued that this does not achieve a fixed confidence in the
solution. However, in real-time applications the computa-
tion time budget has to be met and the goal is to achieve the
highest possible confidence within the time limit.

All RANSAC schemes must by necessity be preemp-
tive in some fashion since it is inconceivable to consider
all possible minimal sets. The standard scheme employs a
simple stop-criterion and all the motion hypotheses gener-
ated are exhaustively scored against all observations until
the stop-criterion is satisfied. It has often been observed,
see e.g. [13], that the standard stop-criterion is optimistic.
This was clearly shown in [19], where guided sampling was
used in the hypothesis generation to improve the situation.
We concentrate on preemptive scoring, which does not put
any constraints on the hypothesis generation. The rest of the
paper is organised as follows. Section 2 discusses the rela-
tion to previous work on preemptive scoring. Section 3 out-
lines robust estimation of camera motion in our calibrated
framework. Section 4 introduces notation, definitions and
assumptions regarding preemptive scoring. The proposed
preemption scheme is given in Section 5. Section 6 is a
theoretical analysis of preemption in a simple inlier-outlier
model. Section 7 gives results and Section 8 concludes.

2. Relation to Previous Work
The first preemption scheme of a non-trivial nature was pro-
posed by Chum in [5]. A class of pre-test called Td,d test
is used to decide if a hypothesis should be dropped or ex-
haustively scored. For some small number d, the test is that
all d-out-of-d randomly chosen observations should fit the
hypothesis for the scoring to proceed. An approximate rela-
tion is derived for the optimal setting of d. Both standard
RANSAC and the scheme of Chum can be implemented
in what we refer to as depth-first manner, meaning that all
scoring for a particular generated hypothesis is performed
before moving on to the next hypothesis. We find another
style of preemption more appealing. We call this style
breadth-first preemption. We fix the number of hypotheses
a priori, which lets us generate all our motion hypotheses

Figure 2: The choice of d that leads to the highest efficiency for
the Tc,d test in the i.a.-model as the relative hypothesis generation
time τ increases up to the value encountered in the 5-point situa-
tion. We used s = 4. c turns out always to be one. When τ = 250,
the 1-out-of-8 test is the most efficient. The best choice of d for
the Td,d test is always one.

first and then compare them on an equal footing. The ap-
peal is that hypotheses can be measured against each other
rather than against some absolute quality metric. A practi-
cal breadth-first preemption scheme with low overhead will
be proposed. We will show that this preemption scheme
is powerful enough to enable structure and motion estima-
tion in real-time. We will use a simple inlier-outlier model
and determine the most efficient preemption schemes from
a certain subclass of preemption schemes in this model. We
will also use the inlier-outlier model to indicate that the Td,d

test is often too pessimistic about fully scoring hypotheses.
Wasting perfectly good motion hypotheses is particularly
harmful to efficiency when hypothesis generation is costly.
Therefore, it is valuable to consider a more general Tc,d test,
where c ≤ d. We will also indicate that in the simple inlier-
outlier model, the most efficient preemption scheme always
tries, in loose terms, to score the least previously scored ob-
servations and hypotheses.

3. The Robust Calibrated Framework
In the RANSAC paradigm, a number of random samples
consisting of minimal sets are taken from the observations.
A minimal set contains the smallest number of observations
needed to solve for the motion model. We refer to the alge-
braic solution that goes from the minimal set to the motion
model as a hypothesis generator. In our calibrated frame-
work, the 5-point method [14] is used for two and three
views. Pose with respect to known structure is solved for
with the 3-point method [7]. The 5 and 3-point methods
yield multiple solutions and we typically use an additional
point to select between the hypotheses, effectively creating
5-with-6 and 3-with-4 point methods, which is also a simple
form of preemption. The hypotheses are scored according
to their posterior likelihood and a unique hypothesis is sin-
gled out as the winner. For simplicity we will consider max-
imum likelihood, i.e. the case of a uniform prior. For the
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3pt 5pt
Nr Observations N 500 500

Nr Inliers n 250 250
Sample Size s 4 6

Relative Hyp-Gen Time τ 12 250
Time Budget t 102500 225000
Nr Samples M 500 500
Block Size B 100 100

Total Hyp-Gen Time 0.1ms 60ms

Total Scoring Time 25ms 60ms

Preemption overhead 100µs 100µs

Table 1: The upper part of the table shows the parameters used to
mimic the 3-point and 5-point estimation situations of the real sys-
tem. The most important difference is that the relative hypothesis
generation time τ , i.e. the time spent generating a hypothesis rela-
tive to the time spent evaluating a likelihood term, is much higher
in the 5-point case. The lower part shows the actual preemption
parameters used in the real-time system. The last three rows gives
the actual hypothesis generation, scoring and preemption overhead
times of the real system on a modest 550MHz machine. Note that
the scoring time totally dominates the 3-point case. The hypothe-
sis generation takes half of the time in the 5-point case, but without
preemptive scoring, the scoring time can be 5 times as high. Thus
faster scoring directly improves the run-times in both cases. Ob-
serve also that the preemption overhead is absolutely negligible.

most part, the extension to an arbitrary prior is straightfor-
ward. Each robust fit is finished off by iterative refinement
to achieve the highest accuracy possible. In two views, we
eliminate the structure parameters, but in three views full
bundle adjustment is performed. The reason is that when
fully optimised, bundle adjustment turns out to be just as
fast as any attempts to eliminate the structure parameters.

Feature Detection
30ms

Matching with Disparity Range
3% 5% 10%

34ms 45ms 160ms

SaM
50ms

Table 2: Approximate average timings per 720 × 240 frame of
video for the system components on a modest 550MHz machine.
MMX code was used for the crucial parts of the feature detection
and feature matching. Disparity range for the matching is given
in percent of the image dimensions. In the structure and motion
component (SaM), one-view and three-view estimations are com-
bined to incrementally build the reconstruction with low latency.
The whole system including all overhead currently operates at 26
frames per second on average on a 2.4GHz machine when using
a 3% disparity range. The latency is also low, since there is no
self-calibration and only very local iterative refinements.

4. Preemption Preliminaries
A general theoretical analysis of preemption becomes quite
complex. However, we will state the problem in its full gen-
erality in this section, before we make simplifying assump-
tions. Assume that we have a finite number of observations
indexed by o = 1, . . . , N and a sequence of hypotheses in-
dexed by h = 1, . . . ,M , which may also have an infinite
range. Throughout the paper, we will assume that the ob-
servations have been randomly permuted to avoid any de-

terministic ordering 1 that could otherwise ruin the quality
of a preemptive scheme. Assume that we have a scoring
function ρ(o, h) that takes an observation index and a hy-
pothesis index and gives a scalar value representing the log-
likelihood of the observation given that the hypothesis is the
correct motion model. The scalar value will be referred to
simply as term since the log-likelihood L(h) of the hypoth-
esis indexed by h is

L(h) =
N∑

o=1

ρ(o, h). (1)

We will occasionally use Li(h) to denote
∑i

o=1 ρ(o, h).
A scoring sequence is a sequence of index pairs xi =
(oi, hi) indexed by i. An order rule ψ is a rule xi =
ψi(x1, . . . , xi−1, ρ(x1), . . . , ρ(xi−1)) that assigns the next
pair in the scoring sequence given all the previous scores. A
preference rule φ is a rule that selects the preferred hypoth-
esis φi((x1, . . . , xi, ρ(x1), . . . , ρ(xi)) given all the scores
so far. A preemption scheme Ω = (ψ, φ) is defined by an
order rule and a preference rule. The order rule defines in
which order the scoring will occur and the preference rule
determines which hypothesis is the best when the time bud-
get is exhausted. We allow the preference rule to take on
the value zero, φi = 0 meaning simply that preemption is
not allowed at i and that scoring has to proceed to the next
valid preemption point. We will use Ωi to denote the fi-
nite preemption scheme that scores up to i and then selects
the preferred hypothesis φi. A preemption scheme is called
depth-first if the scoring sequence obeys

hi ≤ hj ∀(i, j) : i ≤ j . (2)

A preemption scheme is called breadth-first if the scoring
sequence obeys

oi ≤ oj ∀(i, j) : i ≤ j . (3)

A scheme that is neither depth-first nor breadth-first is
called hybrid. Assume that the time spent evaluating one
term ρ(o, h) is a constant independent of o and h. Let this
constant be the unit of time. Assume that the time spent
generating a hypothesis is a constant τ . We will consider
finite scoring sequences Xi = (x1, . . . , xi). Let |X | be the
number of elements in X . Let the hypothesis set H(X) be
the set of hypotheses visited by X and |H(X)| be the num-
ber of elements in H(X). If we neglect overhead costs and
assume that only the hypotheses in the hypothesis set are
computed, the time t(X) spent evaluatingX is

t(X) = |H(X)|τ + |X |. (4)

A preemption scheme is called lossless if

L(φi) ≥ L(h) ∀(i, h) : (φi �= 0), (h ∈ H(Xi)) . (5)

Thus, a preemption scheme is lossless if at a valid preemp-
tion point, no hypothesis from the hypothesis set can have a
higher likelihood than the preferred hypothesis. A lossless
scheme might make sense when the hypothesis generation

1Such as e.g. observations ordered from top to bottom of the image.
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cost is extremely high. On the other hand, under such cir-
cumstances the scoring is cheap compared to the hypothesis
generation, so preemptive scoring is not very meaningful.
Even the standard RANSAC scheme is a fundamentally sto-
castic algorithm without deterministic guarantees of finding
the global maximum of the likelihood. We are not obligated
to find the best hypothesis from some particular set of hy-
potheses, which have been generated randomly in the first
place. The computational resources are always limited in
practice and a lossy scheme can potentially consider more
hypotheses than a lossless one. Therefore, a lossy scheme
can in fact be strictly better than a lossless scheme at max-
imising the likelihood, which is our overall goal.

An ideal lossless sequence for a particular hypothesis
set is the scoring sequence of a lossless preemption scheme
with the smallest possible time among all lossless preemp-
tion schemes with that hypothesis set. An ideal lossless
sequence for a particular set of observations and hypothe-
ses is straightforward to compute and gives a performance
bound for lossless schemes. As a simple rule of thumb, an
ideal lossless sequence will be on the order of the number
of outliers times |H(X)| terms long, although this of course
depends on the scoring function among other things.

We will regard the log-likelihood L(φ) of the preferred
hypothesis as a random variable, where the randomness is
caused by the random sampling and the random permuta-
tion of observations. We define the efficiency E(Ωi) of a
preemption scheme Ωi to be the expected log-likelihood of
the preferred hypothesis, i.e.

E(L(φi)). (6)

For fair comparison, the efficiencies of preemption schemes
with the same computation time should be considered.

5. The Proposed Preemption Scheme
The proposed preemption scheme is essentially breadth-
first although in practice we implement it as a hybrid to
reduce overhead. The scoring sequence is of a restricted
type that is defined by a decreasing preemption function
f(i) i = 1, . . . , N that indicates how many hypotheses

are to be kept at each stage. The idea is to first generate all
the hypotheses h = 1, . . . , f(1) that will be used. All these
hypotheses are then scored against the first observation. 2

Based on the scores, we keep the best f(2) hypotheses and
score them against the second observation. The process is
repeated, scoring each observation o against the best f(o)
hypotheses so far. To summarize in algorithmic form:

Algorithm 1 1. Randomly permute the observations.

2. Generate the hypotheses indexed by h = 1, . . . , f(1).
3. Compute the scores L1(h) = ρ(1, h) for h =

1, . . . , f(1). Set i = 2.
2Remember that we assume that the observations have been randomly

permuted.

4. Reorder the hypotheses so that the range h =
1, . . . , f(i) contains the best f(i) remaining hypothe-
ses according to Li−1(h).

5. If i > N or f(i) = 1, quit with the best remaining hy-
pothesis as the preferred one. Otherwise, compute the
scores Li(h) = ρ(i, h)+Li−1(h) for h = 1, . . . , f(i),
increase i and go to Step 4.

The main reason why we find this approach appealing is
because hypotheses can be compared against each other
throughout the whole process, rather than against some ab-
solute quality measure. One can approximate this in a
depth-first scheme by comparing to previously scored hy-
potheses, but a significant amount of time can be wasted
before the first good hypothesis is found. It could be ar-
gued that the breadth-first scheme is at the risk of wasting
time on bad observations in the same way as a depth-first
scheme is in danger of wasting time on bad hypotheses.
However, note that in the typical RANSAC setting the hy-
potheses are composed from multiple observations and are
typically useless if any one of those observations are out-
liers. Therefore, the fraction of good observations is much
larger than the fraction of good hypotheses, which means
that a naive breadth-first scheme will waste less of its time
than a naive depth-first scheme. It is conceivable that it is
possible to improve on the breadth-first scheme by starting
with a diagonal scheme similar to the one discussed in Sec-
tion 6 to pre-sort observations based on their relative merit.
This may decrease the amount of time wasted on bad obser-
vations. However, it is not obvious what the effects of such
a scheme will be. We find it comforting never to change the
entirely random order of the observations. Ignoring over-
head, the time spent in a preemption scheme of the type
described by Algorithm 1 is

t(f) = f(1)τ +
N∑

o=1

f(o). (7)

In our real-time implementation, we use the preemption
function

f(i) = �M2−� i
B ��, (8)

where �.� denotes downward truncation, and B is a block
size. This gives an execution-time of approximatelyM(τ+
2B). The preemption function changes only after everyBth

observation, which means that the partial reordering step 4
only has to take place every Bth iteration. The quantile
needed to perform the partial ordering of Step 4 is found in
average linear time with the quickselect algorithm [18].

6. Analysis of Preemption in the Inlier-
Outlier Model

We will now turn to a theoretical study of preemption in a
simple inlier-outlier model, which we will refer to as the
inlier-and-model (i.a.-model). In a practical situation, the
intial goal of the preemptive scoring is to quickly and effi-
ciently weed out hypotheses that have been contaminated by
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Figure 3: The most efficient preemption functions f in the i.a.-model for three different parameter settings and three different time
budgets. Left: The 3-point case with budgets up to the one used in the real system. Middle: The 5-point case with budgets up to the
one used in the real system. Right: The 3-point case with smaller budgets and a smaller number of observations (N = 50, n = 25).
The decrease on the right in the number of scored hypotheses is not likely to be efficient in practice. Rather, a narrow tail of hypotheses
that are scored against all observations should be favorable, since that gives more discrimination between a small set of good hypotheses.
Thus, it is underlined that the i.a.-model is useful only for modeling the inital stage of scoring, where the goal is to weed out contaminated
hypotheses. However, this stage is the main responsibility of the preemptive scoring, since iterative refinement will then take over.

outlier observations. The i.a.-model is useful for modeling
this stage. Once only the noisy but otherwise good hypothe-
ses are left, the goal of the scoring is to accurately discrim-
inate between similar hypotheses using many observations.
This stage is not modeled by the i.a.-model. Note how-
ever that our proposed preemption scheme can handle both
stages. The iterative refinement used after the RANSAC
process is also very efficient for achieving the goal of the
second stage. Thus, the main responsibility of the preemp-
tive scoring is to weed out contaminated hypotheses. See
[11] for a variation on RANSAC geared at improving on
the second stage.

In the i.a.-model, we make the following assumptions in
addition to the ones made in Section 4:

1. An observation is either an inlier or an outlier.
2. A hypothesis is either an inlier or an outlier.
3. The scoring function ρ(o, h) returns 1 if both o and h

are inliers. Otherwise it returns 0.
4. Each hypothesis has a prior probability λ of beeing an

inlier. Moreover, this prior probability is independent
of the other hypotheses and the observations, ignoring
e.g. the technicality that in practice the hypotheses are
generated from the observations.

Remember that N denotes the number of observations.
Let n be the number of inlier observations. Then ε = n

N is
the inlier fraction. We will use

λ = εs, (9)

where s is the sample size, i.e. the size of the minimal sets.
In the i.a.-model, all uncontaminated hypotheses will have
the same global likelihood. The efficiency is simply

E(Ω) = nP, (10)

where P is the probability of finding an inlier pair, i.e. the
probability that the scoring sequence will contain some pair
xi with an inlier observation and an inlier hypothesis. In the
sequel, we will call this a good pairing. We can now restrict
our attention to studying P .

We first analyze the efficiency of preemption with the c-
out-of-d test, i.e. Tc,d test, in this model. Outlier hypotheses
never pass the test. Inlier hypotheses fail the test with a
probability found from the cumulative distribution function
of the hypergeometric density as

µ =
c−1∑
i=0

(
n

i

)(
N − n

d− i

)(
N

d

)−1

. (11)

If no good pairing is found up to time t, the number of com-
pleted tests will be

η = �t/(τ + d)�. (12)
If we assume that the algorithm blindly throws away all hy-
potheses that have not passed a complete test by the time t,
P is simply the probability that some hypothesis passes the
test before the time is up. Then

P = 1 − [1 + λ(µ− 1)]η , (13)
from which we can compute the efficiency of the preemp-
tion scheme with Tc,d test.

We will now turn to investigate preemption schemes of
the type defined by Algorithm 1 in the i.a.-model. For a
given time budget t we will determine a preemption func-
tion f that gives the maximum efficiency over all preemp-
tion functions. In order to accomplish this, we will observe
two things. First, a fixed scoring sequence Xi is equiva-
lent to any other scoring sequence that includes the same
terms, regardless of order, provided that the scoring will not
be stopped before the term indexed by i. Second, with Al-
gorithm 1 in the i.a.-model, there is no reason to reorder
the hypotheses before a good pairing has been found. More
precisely, the probability of finding a good pairing is not
changed by the reordering. Once a good pairing has been
found, the scheme will catch the inlier hypothesis associ-
ated with that pairing and keep it or some other inlier hy-
pothesis to the end. But since P is simply the probabil-
ity that a good pairing will be found, we can think of the
scheme as if it stopped directly with the first inlier hypoth-
esis found. This means that we can ignore the reordering
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in Step 4 as if it was a null operation and the ordering was
fixed from the outset. Taken together, these two facts mean
that in the i.a.-model, the efficiency for a fixed time t of a
scheme of type Algorithm 1 is equivalent to the efficiency
of some preemption scheme with the following constraint
on the scoring sequence Xi (and vice versa):

[(o, h)∈Xi]⇒
[
(j, k)∈Xi j=1, . . . , o k=1, . . . , h

]
. (14)

Thus, we can equivalently maximise the efficiency of the
latter type of scheme, which we call block-dominant. The
first good pairing found by the block-dominant scheme
must be the pairing of the first inlier observation with the
first inlier hypothesis. Maximising efficiency is thus equiva-
lent to maximising the probability that this pairing is present
in the evaluated terms. Let the the probability distribution
of the first inlier observation be pO(o). Let the probability
distribution of the first inlier hypothesis be pH(h). Accord-
ing to Assumption 4, these distributions are independent.
Moreover,

pO(o)=

{
n

N−o+1

(
N−n
o−1

)(
N

o−1

)−1
o ≤N− n+1

0 o >N− n+1
(15)

pH(h) = (1 − λ)h−1λ. (16)

and the efficiency of the preemption scheme is

E(f) = n
N∑

o=1

f(o)∑
h=1

pO,H(o, h), (17)

where pO,H(o, h) = pO(o)pH(h). We wish to find the most
efficient preemption schemes for different times t. If we
first assume that we know that f(1) = M for some M ,
this is tractable. We start with the preemption scheme for
which f(1) = M and f(o) = 0 for o > 1. Then we in-
ductively keep adding the unused term for which pO,H is
the largest, with the restriction that h ≤ f(1). The func-
tions pO and pH are decreasing, which means that we must
end up with a valid block-dominant scheme. Moreover, all
the schemes that we pass through must necessarily max-
imise the efficiency for the time that they spend over all
preemption schemes for which f(1) = M . The optimal
block-dominant schemes in the i.a.-model can therefore be
computed for all t up to some value tmax of choice by com-
puting the optimal schemes under the restriction f(1) = M
for all M ≤ (tmax/τ). The execution time follows Equa-
tion 7 and schemes for the same t are easily compared using
Equation 17.

Finally, we will just briefly indicate that in the i.a.-
model, the most efficient scoring sequence starts out down
the diagonal, i.e. xi = (i, i). Let us assume for a mo-
ment that the hypothesis generation cost is zero, i.e. τ = 0.
Let us also assume another probability distribution for the
observations, where an observation is an inlier with a prob-
ability α independent of the other observations. Then, the
maximum efficiency is achieved by the scoring sequence

defined by xi = ((i − 1)%N) + 1, i), where % denotes
the modulo operation. To see this, first observe that there
can never be a reason for scoring a hypothesis twice, since
we can generate a new hypothesis for free which has never
participated in a bad pairing and therefore is an inlier with
as high or higher probability. Let now γ(o) denote the num-
ber of times observation o is paired with a new hypothesis
in the scoring sequence. Then the probability of not finding
a good pairing is

N∏
o=1

(1 − α+ α(1 − λ)γ(o)). (18)

Under the constraint
∑N

o=1 γ(o) = t, this has to be min-
imised by a function γ(o) that is as constant as possi-
ble. To see this, observe that adding 1 to γ(o) subtracts
αλ(1 − λ)γ(o) from the factor of index o, which in turn re-
duces the whole probability by the fraction

αλ

α+ (1 − α)(1 − λ)−γ(o)
(19)

of its value. Since this fraction decreases with γ(o), the
statement follows.

7. Results
We set the parameters of the i.a.-model to mimic the real
system when relative pose is estimated with the 5-point
method as hypothesis generator and when absolute pose is
estimated with the 3-point method. The default parame-
ters are shown in Table 1. The most important difference
is that the relative hypothesis generation time τ is much
higher in the 5-point case. This is a less commonly en-
countered RANSAC-situation, since hypothesis generation
is seldomly as complicated as the 5-point method. Thus
improved scoring times achieved by preemptive scoring di-
rectly improves the run-times. Observe that this is true even
for the 5-point situation. Average overall system timings
are shown in Table 2.

When hypothesis generation becomes costly, the Td,d is
not patient enough, since it becomes important not to throw
away good motion hypotheses. Figure 2 shows the choice
of d that leads to the highest efficiency for the Tc,d test in
the i.a.-model as the relative hypothesis generation time τ
increases up to the value encountered in the 5-point situa-
tion. c turns out always to be one. When τ = 250, the
1-out-of-8 test is the most efficient.

Figure 3 shows the most efficient preemption functions f
in the i.a.-model for three different parameter settings and
three different time budgets. Note that all generated hy-
potheses are scored a number of times before the preemp-
tion starts abandoning hypotheses.

We have tested preemption using Algorithm 1 and the
preemption function 8 on synthetic data. An example result
is shown in Figure 4. See the figure caption for more details.

The preemptive scoring enables us to perform structure
and motion estimation in real-time. Some reconstructions
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Figure 4: The effect of preemption on the translational error in the relative orientation problem investigated with synthetic data. For this
particular example, the baseline was 0.1 of the distance to the scene, which was 0.5 deep. Noise standard deviation was 1 pixel of a CIF
image and field of view was 45 degrees. One fifth of the observations were replaced by gross outliers moving coherently in an incorrect
direction by a magnitude of 60 pixels. The translational error is given in degrees as the average over 1000 trials. ’Preemptive’ stands
for Algorithm 1 with the preemption function 8. The number of samples were M = 500 and the block size B was varied. ’Standard’
is the standard RANSAC scheme. Left: Here the block size was decreased in the preemptive algorithm until the error starts increasing.
The standard scheme always performs full scoring. Note that we can introduce significant preemption without affecting the translational
error very much. Our default block size of 100 used in the real-time system gives as good estimates as the standard scheme, only faster.
Middle: The same situation with even heavier preemption (lower block size). Right: As mentioned previously, the only fair way to compare
preemption schemes is to compare them for the same time budget. Here we show the standard scheme restricted to the same time budget
as the preemptive version. The preemptive version is always better.

made while loading the video source from disk are shown
in Figure 1. Results from live estimation, dealing with all
issues like dropping frames when not keeping up etc. is
shown in Figures 5 and 6. No knowledge of the motion was
used in either case and the system parameters were identi-
cal. This shows that the system can handle forward as well
as sideways motion.

8. Summary and Conclusions
A scheme for preemptive scoring in RANSAC was pro-
posed. The problem of preemption was stated in a gen-
eral fashion and was analyzed theoretically under a sim-
ple inlier-outlier model. The proposed preemption scheme
was tested with synthetic data. Successful live and in real-
time structure and motion estimation with the preemptive
scheme was demonstrated on real data.
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of the structure or motion was used and the system is identical to
the one used in Figure 5.
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