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Abstract

This paper describes a new and simple method of recov-
ering the geometry of uncalibrated circular motion or single
axis motion using a minimal data set of 2 points in 4 images.
This problem has been solved using non-minimal data ei-
ther by computing the fundamental matrix and trifocal ten-
sor in 3 images, or by fitting conics to tracked points in 5
images. Our new method first computes a planar homogra-
phy from a minimum of 2 points in 4 images. It is shown that
two eigenvectors of this homography are the images of the
circular points. Then, other fixed image entities and rota-
tion angles can be straightforwardly computed. The crux of
the method lies in relating this planar homography from two
different points to a homology naturally induced by corre-
sponding points on different conic loci from a circular mo-
tion. The experiments on real image sequences demonstrate
the simplicity, accuracy and robustness of the new method.

1. Introduction

Acquiring 3D models from circular motion sequences,
particularly turntable sequences, has been widely used by
computer vision and graphics researchers. Generally, the
whole reconstruction procedure includes the determination
of camera positions at different viewpoints, detection of ob-
ject boundaries and extraction of surface models from a vol-
ume representation. The estimation of the camera positions
or simply the rotation angles relative to a static camera is the
most important and difficult part of the modelling process.
Traditionally, rotation angles are obtained by careful cali-
bration [14, 18, 19]. Fitzgibbon et al. [7] extended the sin-
gle axis approach to recover unknown rotation angles from
uncalibrated image sequences based on a projective geom-
etry approach. In this method, corresponding points are
tracked from each pair of images for the fundamental matri-
ces and from each triplet of images for the trifocal tensors.
Jiang et al. [11] tracked 2 points in at least 5 images from
uncalibrated image sequences to fit 2 conics and then from

the conics to recover images of circular points and rotation
angles. Another interesting paper is proposed by Mendonça
et al. [13] who recovered the rotation angles from profiles
of surfaces under the calibrated image sequence.

However, by counting the invariant quantities under the
circular motion, it is evident that in none of the existing
methods are the parameters minimal. In this paper, we pro-
pose a new minimal method that requires only 2 points in 4
images. Further, our algorithm is remarkably simple. First
we estimate a homography from the 8 points, then calculate
the eigenvectors of this 3 × 3 transformation to obtain the
invariant quantities. The advantage of this new method over
existing methods is straightforward. First, it uses the mini-
mal data set of 2 points in 4 images, while the existing ones
need at least 7 points for the fundamental matrix and trifocal
tensor or need 2 points in 5 images. Second, the calculation
is in a closed-form solution obtained by only solving a real
cubic equation.

The paper is organized as follows. Section 2 reviews
work on invariants under the circular motion. Section 3
presents the method of calculating these invariants using
2 points in 4 views. Analysis and proof of the result are
given in Section 4. A RANSAC method is presented in Sec-
tion 5 to choose the most reliable points and optimize the
results. Section 6 demonstrates two experiments to verify
this method. A short conclusion is presented in Section 7.

2. Review of circular motion and its associated
fixed image entities

Circular motion or single axis motion consists of a set
of Euclidean actions such that the relative motion between
a scene and a camera can be described by rotations about a
single fixed axis. The most common case is a static camera
that views an object rotating on a turntable with fixed inter-
nal parameters [14]. The equivalent case is when an object
is fixed and the camera rotates around. This a particular
case of the more general planar motion [1, 4] as it restricts
all motion to rotation around a single axis. Without loss of
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generality, we assume that the rotation axis is vertical as the
z-axis of the world coordinates and the camera is moving
on the horizontal plane.

The fixed image entities of the circular motion are sim-
ilar to the planar motion, which include two lines. One is
the image of the rotation axis ls. Note that ls is a line of
fixed points. Unlike in planar motion, the line ls is fixed in
all images under circular motion. The other line is called
the horizon line lh. It is the vanishing line of the horizontal
plane. Unlike the image of the rotation axis, the horizon line
is a fixed line, but not a line of fixed points. Since the image
of the absolute conic ω is fixed under rigid motion, there
are two points, which are at the intersection of the image of
the absolute conic ω with the line lh. They remain fixed in
all images. Actually, these two fixed points are the image
of the two circular points on the horizontal planes. These
fixed image entities of the circular motion are illustrated in
Figure 1[11].

lhi j

ls

Figure 1. Fixed image entities under circular
motion.

Since the line lh is determined by the images of circular
points, there are in total 6 d.o.f. which is enough to deter-
mine the fixed entities of the circular motion. There are 2
for each of image of the two circular points and 2 for images
of the rotation axis ls.

3. Minimal method using 2 points in 4 images

Under circular motion, the trajectory of one space point
is a circle and this circle projects to a conic in the image
plane. Each of such conics can be fitted by the correspond-
ing points in five images. It has been shown in [11] that two
such conics are enough to recover these fixed entities of cir-
cular motion. The determination of two conics is equivalent
to a total of 10 points in image, they count for 2×5×2 = 20
degrees of freedom as each point has 2 d.o.f. in image. Af-
ter subtracting the 6 d.o.f. fixed entities of circular motion
and 6 d.o.f. of the two points in space, the 8 d.o.f. remaining
are the rotation angles associated with all images involved.
As the 10 tracked points can spread at most over 2 different
groups of 5 images, the 8 d.o.f. remaining can be counted
for the 4 rotations angles of each group of 5 images. The
case of two conics is therefore minimal for this particular

case of 2 groups of 10 images. But it is redundant in any
other cases. For instance, for a common case that the two
points are tracked over the same 5 images, it is highly re-
dundant as only 4 parameters needs to be determined from
the 8 given ones.

Motivated by the above redundancy of the existing meth-
ods [7, 11], we propose a minimal solution using only 2
points in 4 images in this section. Analysis and proofs of
the results will be given in the next section.

1. Given 2 points tracked over 4 images ai and bi for i =
1 . . . 4, compute a 3 × 3 plane homography H such
that λbi = Hai. This can be easily solved by a SVD
method with normalized image coordinates [9].

2. Compute the eigenvalues and eigenvectors of the ho-
mography H. As H is a 3× 3 matrix, this is equivalent
to solving a cubic equation with real coefficients. By
the circular motion constraint, two of the eigenvalues
are a pair of conjugate complex numbers. The corre-
sponding pair of complex conjugate eigenvectors is the
image of the pair of circular points i and j.

3. The horizon line is determined by lh = i × j.

4. Each point is tracked over 4 image points, and its
conic locus also goes through the images of the circu-
lar points. These two sets of 4 points ai and bi can be
fitted to conics Cp and Cq respectively with 2 images
of the circular points i and j on the conic.

5. Once we obtained the conics, the following steps are
the same as those described in [11]. We briefly sum-
marize as follows:

The pole of each conic with respect to the the horizon
line lh is given by op = C−1

p lh, and oq = C−1
q lh. They

are the images of the center of the two space circles,
and lie on the image of the rotation axis ls. The rotation
axis can be calculated as ls = op × oq.

The rotation angles related to these four images
can be calculated by using Laguerre’s formula [17,
5], θmn = 1

2i log({lopam
, lopan

; lopi, lopj}), where
m,n = 1 . . . 4.

It is interesting to notice that solving a cubic equation
is reminiscent of similar situations in self-calibration using
both a special trifocal tensor [1] and a 1D trifocal tensor
[4]. But the trifocal tensor needs many more points to be
determined, 6 points in 3 images, but here only 2 points in
4 images.

4. Analysis of the homography H

In this section, we will give a detailed analysis of the pla-
nar homography we have introduced from 2 points tracked
in 4 images.
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4.1. Existence of the homography H

Figure 2(a) shows two conics that are fitted by corre-
sponding points of two space points in different images.
The intersections of these two conics include one pair of
complex conjugate points, which are the images of the cir-
cular points and lie on the horizon line lh. Obviously, each
conic is the image of a circle on a space plane on which the
space point moves. With the transforms of translation, scale
and rotation, the two circles can be mapped to a unit circle
with its center as the origin[11] on space plane πs. If we
have four points on these two conics respectively, these two
sets of points can be mapped to the same four points on the
unity circle since they have the same relative angles (Figure
2(b)).
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Figure 2. The existence of a planar homogra-
phy with respect to the 2 points in 4 images.
(a) Two sets of points lie on two horizontal
planes; points ai and bi are corresponding
points under the homography H. (b) These
two sets of points can be mapped to the same
four points on a unit circle with its center as
the origin.

If we set the planar homography of plane πp and plane
πq with respect to plane πs as Hps and Hqs, respectively, it
is clear that there is a planar homography between plane πp

and plane πq that is determined by the 2 points in 4 images.

H = H−1
ps Hqs. (1)

4.2. Homology Hpq

The planar homography H reflects a special relationship
between plane πp and plane πq. Let’s first examine a more
direct homological relationship between these two planes.
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Figure 3. The analysis of the homography. a)
A homology constrained by the two conics,
points ai and a′i are corresponding points un-
der the homology Hpq. (b) These two sets of
points ai and a′i can be mapped to two sets
of four points on a unit circle with its center
at the origin and the same relative rotation
angles.

Two circles on parallel planes can determine two double-
cones. Figure 3(a) shows one of them where the vertex is
located on the same side of the circles. The second double-
cone has the vertex located between the two circles. It is
easy to see that the vertex always lies on the image of the
rotation axis. A point correspondence between the two con-
ics Cp and Cq can be established by drawing lines from the
vertex. For instance, from the line connecting vertex v and
point a1, we get corresponding points a1 and a′1. This is
known to be a homology, a special projective transforma-
tion that transforms a conic into another one. This homol-
ogy also leaves a point and a line fixed [17, 10]. For single
axis motion, the fixed line of the homology is the horizon
line lh and the fixed point is the vertex v. This homology
Hpq can be parameterized [10] as

Hpq = I + (µ − 1)
vlTh
vT lh

(2)
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where I is the identity matrix, and µ the characteristic in-
variant of the planar homology. The geometric interpreta-
tion of the characteristic µ is the cross ratio of the vertex v,
any corresponding homological points , and the intersection
point of the connected line of the corresponding points with
lh.

4.3. The relationship between homography and ho-
mology

First, the homology Hpq relates the points ai on the conic
Cp to the points a′i on the conic Cq for i = 1, . . . , 4. Sec-
ond, a rotation R(θ) relates the points a′i to the points bi on
the space plane for i = 1, . . . , 4. Hence, the composition of
the homography is given by

H = H−1
qs R(θ)HqsHpq, (3)

where Hqs maps the plane πq to the Euclidean plane πs (see
Figure 3(b)).

4.4. Eigenvectors of H

Now, we prove the main result that the image of the cir-
cular points are the eigenvectors of the homography H as-
sociated with the pair of complex conjugate eigenvalues.

• We first consider the special case when the θ is not
equal to 0 or π and when the µ is equal to 1. In this
case, the two circles lie on one same plane and the ho-
mology is the identity matrix:

H = H−1
qs R(θ)Hqs. (4)

The eigenvalues of R(θ) are 1, and a pair of com-
plex conjugates e±iθ. The eigenvectors correspond-
ing to the pair of conjugate complex eigenvalues are
the circular points (1,±i, 0)T . The transformation
H−1

qs RHqs is a similar matrix of R. Therefore it keeps
the eigenvalues, but transforms the eigenvectors into
the images of the circular points H−1

qs (1,±i, 0)T .

• The most general case is when θ is not equal to 0 or π,
and µ is different from 1. As the images of the circular
points lie on the line lh, from equations 2 and 3, the
homology leaves the image of the circular points in-
variant. This proves that the eigenvectors correspond-
ing to the pair of complex conjugate eigenvalues are
generally the images of the circular points.

• The homography H is degenerated to the homology
Hpq when θ = 0. When θ = π, it is equivalent to
the case where the vertex of the double-cone is located
between two circles, and θ = 0. Then, H is also de-
generated to a homology Hpq.

H = Hpq = I + (µ − 1)
vlTh
vT lh

. (5)

Clearly, the real eigenvalue 1 is repeated twice. As the
corresponding eigenvectors are points on lh. We can
not distinguish the value of the images of the circular
points when these 8 points satisfy a homology. This
degenerate case can be easily detected by its geometric
construction: the four lines connecting the correspond-
ing points meet at the vertex point.

4.5. Analysis of the degrees of freedom

The minimal data set of 2 points in 4 images are used to
recover the geometry of circular motion in our new method.
Each point has 2 d.o.f. in the image plane and 3 d.o.f. in 3D
space. These 8 points can determine 2 × 4 × 2 − 2 × 3 =
10 degrees of freedom, which correspond to the images of
the circular points (2 × 2 d.o.f.), the image of rotation axis
(2 d.o.f.), the characteristic invariant µ (1 d.o.f.) and three
rotation angles related to these four images (3 d.o.f.).

The planar homography H is a concatenation of four ma-
trices. The planar homology Hpq has 5 degrees of free-
dom, where the vertex v has 2 d.o.f., the axis lh has 2 d.o.f.
and the characteristic invariant µ has 1 d.o.f.. The matrix
Hqs only maps the point on the image plane to a Euclidean
plane. This matrix can be parameterized using only the two
images of circular points[12, 11]. These two images of cir-
cular points have 4 d.o.f.. However, since the line lh has
been considered in matrix Hpq , the matrix Hqs only has 2
d.o.f.. The matrix R(θ) has 1 d.o.f.. In total, there are 8
degrees of freedom of the planar homography H.

5. Robust optimization using RANSAC

The minimal solution can be easily plugged into an op-
timization procedure in which we can remove the tracking
outliers. In this section, we describe a complete optimiza-
tion procedure using RANSAC[6].

1. Arrange the data set S.

The tracking data are structured into a quadruplet of
the image coordinates {x1, x2, x3, x4} for each point
tracked in 4 images. Note that it is unnecessary to as-
sume that the 4 images are consecutive.

2. Compute the fixed image entities with the new method
using 2 points in 4 images.

Randomly select 2 points in 4 images from the data
set S, compute the homography. First check if the ho-
mography is a homology, then compute the fixed im-
age entities, the images of the circular points i and j,
the image of rotation axis ls, and the horizon line lh.

3. Calculate the evaluation value Cx for each correspon-
dence in 4 images from the data set S.

First, a conic can be fitted to the 4 points plus 2 points
that are the image of the circular points by SVD. Then,
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an approximate point-conic distance is defined to be
[2, 15, 10]

d(x, C)2 =
4∑

i=1

(xT
i Cxi)2

4((Cxi)21 + (Cxi)22)
,

where (Cx)m denotes the m-th component of the 3-
vector Cx.

In addition to the fact that the image of the circular
points goes through the conic, there exists also a con-
straint C−1lhls = 0. To take this into account, we
compute the following point-line distance:

d(ls, o)2 =
(lTs o)2

(ls)21 + (ls)22
,

where o is the normalized pole of the lh w.r.t. the fitted
conic C, and (ls)m is the m-th component of the 3-
vector ls.

The evaluation value Cx for each correspondence in 4
images w.r.t. the current fixed image entities is defined
to be

Cx = d(x, C)2 + λd(ls, o)2, (6)

where λ can be the Lagrange multiplier.

4. Compute the percentage of inliers consistent with the
selected 2 points in 4 images using the threshold eval-
uation criterion Cx by T .

5. Repeat from step 2 to step 4 N times to choose the 2
points in 4 images with the largest number of inliers.
N and T are determined by the proportion of inliers
[10].

6. Compute an optimal solution using all the inliers. The
maximum likelihood estimate is obtained by minimiz-
ing C =

∑ Cx. This nonlinear minimization problem
is solved using the Levenberg-Marquart equation from
the initial estimates obtained from the minimal data set
of 2 points in 4 images.

6. Experiments

The new method of computing circular motion geometry
from a minimum of 2 points in 4 images is implemented
and tested.

We first set up an experiment to verify the accuracy of
the results using the minimal data. Two chessboards are put
on a rotary table. Four images of the chessboards shown
in Figure 4 are captured at different positions. The posi-
tions are chosen to ease the detection of point features as

the intersection points of lines. Since the pattern is regu-
lar, it is easy to find all corresponding points, 70 points in
4 images. More than 2000 sets of minimal data can be ob-
tained for the computation. We may look at the distribution
of the computed coordinates of the image of circular points
(a ± bi, c ± di, 1)T . A histogram from all sets of data is
shown in Figure 5 for each component a,b,c and d. The dis-
tribution is without any surprise close to a Gaussian. Most
of them are very good results, which means that the min-
imal data computation is useful in practice to either boot-
strap a robust method or an optimization method. There are
also some of computed values far away from the peak of the
curve. In fact, many of those configurations are close to the
degenerate cases of homological points as we discussed in
Section 5. This includes two cases: the first is when the in-
tersections of lines connecting corresponding points on the
different conics are close to the image of the rotation axis;
the second is when the space point is close to the rotation
axis.

Figure 4. Four test images of the experiment.

Figure 6 shows the recovered horizon line lh and the im-
age of rotation axis ls, from the data sets giving inlier re-
sults for a,b,c and d. We should also avoid the case where
the rotation planes containing the two points are too close
for a stable computation of ls. The data set automatically
selected by RANSAC is also illustrated in Figure 7. The
points marked as squares are the minimal data set selected
by RANSAC for subsequent optimization. The gray col-
ored points are inliers, and the dark colored points are out-
liers. Inlier gray colored points are used to fit conics. Op-
timized solutions are also shown in Figure 5 and Figure 6
with dashed lines.

We also tested our implementation on the popular di-
nosaur sequence from University of Hannover (obtained
from University of Oxford [8]). The sequence contains 36
views from a turntable with a constant angular motion of
10 degrees. The angular accuracy is about 0.05 degrees
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Figure 5. Histogram of a,b,c, and d that are
coordinates of the image of circular points
(a ± bi, c ± di, 1)T . The dashed lines indicated
optimized solutions automatically computed.
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Figure 6. Results of recovered horizon line lh
and the image of rotation axis ls with different
minimal data set. The dashed lines are the
optimized solutions.

[14]. Figure 8 shows one of the image of the dinosaur
sequence and some tracked points along all images. The
selected corresponding points are those which have been
tracked over at least 4 images separated by long tracking
distances. The data set selected by RANSAC marked as
squares is shown in Figure 9 in which the gray colored
points are inliers and the dark colored points are outliers.
The computed results of the images of circular points are
(266.04± 3156.3i,−1151.9∓ 88.111)T . The images of lh
and lh are shown in Figure 10(a). The rotation angles cal-
culated from inlier points are shown in Figure 10(b). If we
fix the aspect ratio of the camera and assume a point on the
image of rotation axis as a vanishing point [7, 11], the vi-
sual hull of the dinosaur can be computed [3, 14]. One view
of the 3D model is shown in Figure 11.

Figure 7. The results computed by RANSAC
and optimization. The minimal data set se-
lected by RANSAC are marked in squares.
The gray colored points are inliers, and the
dark colored points are outliers. These gray
colored points are fitted to corresponding
conic loci.

Figure 8. One image of the dinosaur sequence
and selected corresponding points.

7. Conclusion

This paper presented a new and simple algorithm of
computing the geometry of circular motion or single axis
motion using a minimal data set of 2 points in 4 images.
This method is minimal compared with existing methods of
either using multi-view constraints and conic fitting. The al-
gorithm is also remarkably simple as we only need to com-
pute a 3 by 3 homography, then extract its eigenvalues and
eigenvectors. The experiments on real sequences demon-
strate the usability of this minimal solution. We also devel-
oped a RANSAC driven optimization using initial values
provided by this minimal data solution.
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