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Abstract

The optimal distance measure for a given discrimination
task under the nearest neighbor framework has been shown
to be the likelihood that a pair of measurements have dif-
ferent class labels [5]. For implementation and efficiency
considerations, the optimal distance measure was approx-
imated by combining more elementary distance measures
defined on simple feature spaces. In this paper, we address
two important issues that arise in practice for such an ap-
proach: (a) What form should the elementary distance mea-
sure in each feature space take? We motivate the need to
use the optimal distance measure in simple feature spaces
as the elementary distance measures; such distance mea-
sures have the desirable property that they are invariant to
distance-respecting transformations. (b) How do we com-
bine the elementary distance measures? We present the pre-
cise statistical assumptions under which a linear logistic
model holds exactly. We benchmark our model with three
other methods on a challenging face discrimination task
and show that our approach is competitive with the state
of the art.

1. Introduction
The nearest neighbor or exemplar-based framework for
classification is widely used in vision for various classifi-
cation tasks. The main appeal of the framework derives
from the fact that it makes few assumptions about the ob-
jects to be classified. Let Sn = {(x1, y1), . . . , (xn, yn)} be
a training set of measurements xi and corresponding class
labels yi. Let d(·, ·) be a given distance measure. On input
query x, the 1-nearest neighbor (NN) rule assigns the class
label y′ corresponding to the nearest neighbor x′ of x in Sn.
The classification performance of the nearest neighbor rule
obviously depends on the distance measure used.

A wide variety of distance measures have been used for
the nearest neighbor rule in the literature. Here, we re-
view some of the most relevant measures in the context
of object recognition. Distance measures based on PCA or
eigenspaces are perhaps the most popular [13, 7]. The un-
derlying assumption when using PCA is that the measure-

ment data can be explained (modulo noise) by a small di-
mensional linear subspace of X . This is a generative model
that does not take into account how the different classes are
distributed. Discriminative analysis, of which LDA [1, 15]
is the most popular, on the other hand explicitly tries to
find discriminative distance measures that separate the dif-
ferent classes from each other as much as possible. More re-
cently, discriminative distance measures have also been de-
rived from constructing Support Vector Machines [10] that
maximize the margin between different classes. Bayesian
approaches to classification estimates probability density
models for each class and classifies an input query using the
Bayes rule. For the two class case, the log-odds ratio can be
considered to be a discriminative distance measure. For cer-
tain applications, for example face recognition [6], such an
approach has been found to be competitive with the state of
the art. However, in general, such approaches typically suf-
fer from the need to specify an appropriate model for each
class as well as estimating such models reliably from data.
Thus in our work, we will work in the discriminative setting
that makes as few modeling assumptions as possible about
the objects of interest. Such an approach is necessitated es-
pecially for multi-class object recognition tasks where the
objects of interest can be arbitrary.

Recently, a new criterion for directly finding discrimina-
tive distance measures for object recognition under the near-
est neighbor framework was proposed [5]. The criterion is
based on the optimal distance measure that minimizes the
classification risk for the 1-nearest neighbor rule. In con-
trast to previous approaches, the new criterion allows us to
combine discriminative feature spaces of different types (for
example, color, texture, local shape) in a principled manner.

From practical considerations, the optimal distance mea-
sure was modeled by combining a set of simple elementary
distance measures, each of which is defined on a simple
feature space. In this paper, we address two important is-
sues that arise in such a scheme: (a) What form should
the elementary distance measure in each feature space take?
We motivate the need to use optimal distance measures in
simple feature spaces as the elementary distance measures;
such distance measures have the desirable property that they
are invariant to “distance-respecting” transformations. (b)
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How do we combine the elementary distance measures? We
motivate a linear combination model that can be shown to
be exactly valid under certain statistical assumptions.

The rest of the paper is organized as follows: § 2 reviews
the derivation given in [5] for the optimal distance measure
that minimizes the risk for the 1-nearest neighbor rule. Es-
timation of this optimal distance measure directly from data
leads to a general criterion for finding discriminative dis-
tance measures. Section 3 discusses the design and imple-
mentation of a model for the optimal distance measure mo-
tivated from practical considerations. We benchmark our
approach against three other well-known approaches for a
challenging face discrimination task in § 5.

2. Optimal 1-NN Distance Measure
Here we briefly review the results from [5]. As in the
introduction, assume that we have a training set Sn =
{(x1, y1), (x2, y2), . . . , (xn, yn)} where each tuple (xi, yi)
is chosen i.i.d. from some unknown distribution over X×Y
where X is the space of image measurements and Y is some
discrete set of object class labels. We are also given a dis-
tance measure d : X × X → IR between any two image
measurements.

On input measurement x ∈ X , the 1-nearest neighbor
rule reports the class label y′ associated with the training
image x′ ∈ Sn that is closest to x according to the distance
measure d. The n-sample NN mis-classification risk R(n)
is defined as:

R(n) ≡ E(x,y),Sn
[1[y �=y′]] (1)

where 1[y �=y′] is an indicator function for the event y �= y′.
Note that the risk is averaged over all inputs x as well as all
training sets of size n.

Conditioning on input x, the risk can be re-written as
follows:

R(n) ≡ Ex,Xn [r(x, x′)]
r(x, x′) ≡ Ey,y′ [1[y �=y′]|x, x′]

= p(y �= y′|x, x′) (2)

where r(x, x′) is the conditional risk of assigning input x
with the class label corresponding to x′, and Xn is the set of
all training measurements xi from Sn. For any given train-
ing set size of n, the risk R(n) depends only on the distance
measure d used for the nearest neighbor search. Thus, it is
natural to ask for the distance measure that minimizes the
risk.

Since the conditional risk r(xi, xj) = p(yi �= yj|xi, xj)
is itself a measure defined over any two input measurements
xi, xj ∈ X , we can consider using it as a candidate dis-
tance measure. Under this distance measure, two images
are “closer” to each other if they are both likely to come

from the same class. We can easily show that this distance
measure minimizes the NN risk:

Property 1 (Optimality) The distance measure
d(xi, xj) ≡ p(yi �= yj |xi, xj) minimizes the risk R(n) for
any n.

See [4] for a proof.
The optimal distance measure is not a metric distance

measure. Of the metric axioms, it somewhat surprisingly
satisfies triangle inequality and is of course symmetric since
the loss function is symmetric. However, it does not in gen-
eral satisfy self-similarity, i.e., d(x, x′) = 0 iff x = x′ is
not satisfied. In fact, for most real applications one expects
some uncertainty, however small, as to which class a mea-
surement belongs to. It can be shown that due to this uncer-
tainty, self-similarity is always violated. See [4] for further
details.

Our strategy for finding a discriminative distance mea-
sure will be based on modeling and estimating this optimal
distance measure from task-dependent training data. Im-
plicitly, such a strategy finds a distance measure that mini-
mizes the NN risk.

An approach that is similar in spirit has been explored
before in the literature starting with [12]. However, the risk
minimized there is the asymptotic risk RM when using any
metric distance measure. Using the non-metric optimal dis-
tance measure on the other hand always gives a risk that is
better than RM . The risk can even approach the Bayes op-
timal risk depending on the task, even when the risk for any
metric distance is strictly worse than the Bayes optimal.

3. Modeling the Optimal Distance
Under the i.i.d. assumption the optimal distance measure
p(yi �= yj |xi, xj) can be expressed in terms of generative
models p(x|y) for each class as follows:

p(yi �= yj | xi, xj) =
∑

y

p(y|xi)(1 − p(y|xj)) (3)

Thus one approach [2] is to first estimate a generative
model p(x|y) for each class from training data and then
construct the optimal distance measure using the expression
above. The disadvantage of such an approach is the need to
estimate reliably the generative models from data. If we can
indeed estimate generative models reliably from data, then
we should get better classification performance using the
Bayes’ decision rule directly. In practice, it is more likely
that estimating generative models from data may not be reli-
able since a good model may require the estimation of many
parameters, even though most of them may be irrelevant to
the task of discriminating one object from another. More-
over, for a multi-class object discrimination task, formulat-
ing a generative model is likely to be difficult in practice for
an arbitrary collection of objects of interest.
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Our approach instead will be to model the optimal dis-
tance directly in terms of more elementary distance mea-
sures defined on simple to construct feature spaces. Our ra-
tionale for such an approach is based on the fact that it is rel-
atively easy and efficient to construct various simple feature
spaces from an input image. For example, in the face dis-
crimination task that we consider in § 5, the feature spaces
will be various single-dimensional linear projections. More
generally, simple discriminative feature spaces can be based
on color, texture, local shape properties. From a practical
point of view, it would thus be advantageous to approxi-
mate the optimal distance measure by combining the dis-
criminative information from such simple-to-construct fea-
ture spaces.

Having decided on such a scheme, two issues arise: (a)
What are appropriate elementary distance measures? and
(b) How do we combine the elementary distance measures
for approximating the optimal distance measure.

3.1. Choosing Elementary Distance Measures
Formally, let C = {d1, d2, . . . , dN} be a possibly large col-
lection of elementary distance measures, each of which is
defined on some simple feature space. For run-time con-
siderations, we wish to select K � N elementary distance
measures dk ∈ C from this collection that best approximate
the optimal distance measure p(yi �= yj |xi, xj).

What is a good choice for the elementary distance mea-
sures? The question is analogous to the issue of choosing
an appropriate kernel (which is essentially the inverse of a
distance measure) for Support Vector Machines [14].

One desirable property that any sound selection scheme
for elementary distance measures should possess is invari-
ance to distance “respecting” transformations. If s and s′

are two distance scores under some distance measure d, then
f is a distance respecting transformation of d if f does not
change distance relationships:

s < s′ =⇒ f(s) < f(s′)

In other words, f has to be some strictly increasing func-
tion. Clearly, selecting two elementary distance measures
related by some distance respecting transformation should
be considered redundant, since intuitively, such transforma-
tions cannot give us any new information about the elemen-
tary distance measure being transformed.

We now show that one way for ensuring such invariance
to such distance respecting transformations is to choose the
optimal elementary distance measure p(yi �= yj | d) given
an elementary distance d rather than choosing d itself di-
rectly. Intuitively, such a choice induces a partition of the
space of all possible elementary distance measures in a fea-
ture space into equivalence classes. Two distance measures
belong to the same equivalence class if they are related by

some distance respecting transformation. We show below
that the optimal elementary distance measure p(yi �= yj | d)
is the same for every distance measure d from a given equiv-
alence class. Different equivalence classes have different
optimal elementary distance measures associated with them
and the task is to select the best one over all equivalence
classes. Thus, potentially, rather than having to search over
the space of all elementary distance measures, we only need
to search over the space of optimal elementary distance
measures.

Property 2 (Invariance) The optimal distance measure
p(yi �= yj | d) given an elementary distance d is invari-
ant to distance respecting transformations.

Proof. Let f be a distance respecting transformation, i.e.,
f is a strictly increasing function. Let d′ = f(d). We then
have from Bayes rule:

p(yi �= yj | d′) =
p(d′ | yi �= yj)p(yi �= yj)

p(d′)

We now use the following identities that relates probability
densities when transformed by any strictly increasing func-
tion f [8]:

p(d′ | yi �= yj) =
p(d | yi �= yj)

f ′(d)

p(d′) =
p(d)
f ′(d)

where f ′ is the derivative w.r.t. d. Substituting in the above
equation, we get:

p(yi �= yj | d′) =
p(d | yi �= yj)p(yi �= yj)

p(d)
= p(yi �= yj | d)

�
In practice, we can construct the optimal elementary dis-

tance measure d∗ ≡ p(yi �= yj | d) given some elementary
distance measure d and training data as follows. From the
training data, estimate the intra-class distribution of the dis-
tance scores p(d | yi = yj) as well as the extra-class distri-
bution p(d | yi �= yj) and the priors p(yi = yj), p(yi �= yj).
Then the optimal elementary distance measure d∗ is given
by using Bayes rule. In our work, we estimate the intra- and
extra-class distribution of the distance scores using a Parzen
window estimator [3]. This is practical since these distribu-
tion are over one-dimensional quantities. We sample the
values of the Parzen window estimator at regular fine inter-
vals and store it in a table at training time for fast access at
run-time. See Figure 1.
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Interestingly, although our motivation for using optimal
elementary distance measures is purely for the sake of in-
variance, we also find that for the experiments on face dis-
crimination that we report in § 5, the recognition perfor-
mance when using optimal elementary distance measures is
also empirically superior compared with using the elemen-
tary distance measures directly.

3.2. Linear Combination Model
Next, given a set of K one-dimensional optimal elemen-
tary distance measures d = [d∗1, . . . , d∗k], we want to ap-
proximate the optimal distance measure by combining the
elementary distance measures. In other words, we want to
model and estimate p(yi �= yj | d). Here we motivate
the following linear logistic model for the optimal distance
measure that we use in practice:

log
p(yi �= yj | d)
p(yi = yj | d)

= α0 +
K∑
k

αk log
p(yi �= yj | d∗k)
p(yi = yj | d∗k)

(4)

Below, we develop the statistical assumptions and practi-
cal considerations under which such a model holds exactly.

We can model the optimal distance measure by model-
ing the intra-class and extra-class distributions of the set of
one-dimensional optimal elementary distance measures d∗k,
since Bayes rule gives us:

p(yi �= yj | d)
p(yi = yj | d)

=
p(d | yi �= yj)
p(d | yi = yj)

p(yi �= yj)
p(yi = yj)

Modeling the intra- and extra-class distributions p(d | ·)
directly is inconvenient since each d∗k takes values in
[0, 1]. We will instead model the distribution of a distance-
respecting transform of each d∗k, namely the logit transform,
which transforms the range [0, 1] into the whole real line
which is more convenient to model. The logit transform is
given by

logit(x) ≡ log
x

1 − x
, x ∈ (0, 1)

Redefine d = [logit(d∗1), . . . , logit(d∗K)] to be the vector
of logit transforms of the 1-dimensional optimal distance
measures. Then we assume that the intra- and extra-class
distribution over d can be modeled well by two Gaussians:

dintra ∼ N (µintra, Σintra), dextra ∼ N (µextra, Σextra)

The linear logistic model (4) for the optimal distance mea-
sure can now be motivated by assuming Σintra = Σextra =
Σ, resulting in the following parameters for the model:

α0 = µT
intraΣ

−1µintra − µT
extraΣ

−1µextra + log
p(yi �= yj)
p(yi = yj)

[α1, . . . , αK ]T = Σ−1(µextra − µintra)

The above modeling assumption is the same as that used
for deriving linear discriminants and is primarily motivated
by the need to make the estimation of the model parameters
computationally tractable, since we need to estimate only
O(K) parameters in (4) with the assumption as opposed to
estimating O(K2) parameters without the assumption.

4. Estimation
Having specified a model for the optimal distance measure,
in this section we describe a simple maximum likelihood
framework for estimating such a model from data.

Let yij ≡ 21[yi �=yj ] − 1. As before, let S =
{(x1, y1), . . . , (xN , yN )} be the training set of image mea-
surements and corresponding class labels. Let d =
{d∗1, . . . , d∗K} be a particular selection of optimal elemen-
tary distance measures from C (see § 3.1). Maximizing the
log-likelihood of the optimal distance measure model (4),
given the training set, can be shown [4] to be equivalent to
minimizing the following cost function:

Jd(α) ≡
N∑
i,j

log
(
1 + e−

�
k αkyij logit (d∗

k(xi,xj))
)

(5)

where, for compactness of notation, we have assumed the
inclusion of a constant distance measure d0 ≡ 1. This cost
function is convex [4] and can be optimized using standard
iterative techniques like Newton’s method [11].

Finally, the best choice for d is the one that maximizes
the likelihood or equivalently minimizes Jd over all choices
of K optimal elementary distance measures from the col-
lection C. The brute-force search over all choices is clearly
unfeasible when K is large. Instead, we adopt a simple
greedy strategy in which at each iteration k we choose
the best d∗k ∈ C that along with the distance measures
{d∗1, . . . , d∗k−1} chosen in the previous iterations minimizes
the cost function.

5. Experiments
In this section, we benchmark our approach against other
well-known algorithms on a challenging face recognition
task. At the outset, we would like to emphasize that our
method is not limited to face recognition. In fact, in contrast
to other approaches, our approach allows for the combina-
tion of elementary distance measures from disparate fea-
ture spaces like color, texture and local shape in a princi-
pled manner, see [4]. Here, we choose a face recognition
task primarily for benchmarking purposes, since the task
has been well-studied in the literature resulting in a large
number of algorithms developed for the task as well as well-
known standard data-sets.
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Sample Projection
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Optimal Distance 
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Figure 1: Computing the optimal elementary distance measure: (1) Each training image is projected onto some projection vector. (2) The
intra- and extra-class distributions for the elementary distance measure (in our work, the magnitude of the difference between two images
along the projection vector) over the training set are estimated using a Parzen window estimator. (3) The optimal elementary distance
measure is computed from the intra- and extra-class distributions using Bayes rule. The result is sampled and stored in a table for efficient
access at run-time. See text for further details.

Figure 2: Sample images from the FERET database.

5.1. Face Recognition Task

We chose a subset of frontal face images from the
FERET [9] database that had varying expressions and some
illumination changes. Specifically, we chose a subset corre-
sponding to 200 subjects, each of which had 2 images with
varying expression and illumination. This was divided into
a training and test set with 100 subjects in each set. None
of the subjects in the test set were represented in the train-
ing set. The test set was further divided into a gallery set of
100 images and a probe set of 100 images. During testing
of each algorithm, the closest match for each probe image
from the gallery was found. Figure 2 shows a sample of the
selected images.

Figure 3: A face image before and after pre-processing.

Following [10], the images were pre-processed as fol-
lows. Each of the images were aligned using a similar-
ity transform (rotation, translation and scale) such that the
locations of the eyes, whose positions were provided in
the FERET database, fell on pre-specified pixel locations.
Next, the images were cropped with a common mask to ex-
clude background and hair. The non-masked pixels were
then histogram-equalized and the resulting pixels were fur-
ther processed to have zero mean and unit variance. Finally,
all the images were scaled to have a size of 150× 200. Fig-
ure 3 shows an image before and after pre-processing.

5.2. Methods
Our Approach. For our approach, we need to specify the
collection C of elementary distance measures from which a
subset of K distance measures are chosen for approximat-
ing the optimal distance measure (see § 3). In order to make
a fair comparison with the other approaches, the elemen-
tary distance measures we consider are distances between

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



two images along various one-dimensional linear projec-
tions. Formally, if x is a measurement vector of pixels (af-
ter pre-processing as described above) for an image, then
an elementary distance measure that we consider takes the
form dv(xi, xj) = |vT (xi − xj)|, where v is a projection
vector. The collection of elementary distances that we con-
sider then corresponds to a collection of densely sampled
projection vectors v. Assuming the training set is represen-
tative of the testing examples that will be seen, we only con-
sider projection directions within the “face”-space spanned
by the training images (200-dimensional in our case), since
the orthogonal space does not contain any discriminative in-
formation. For this experiment, we uniformly sample 1000
projection vectors in this face-space. Note that sampling in
the orginal image space instead would have required sub-
stantially many more samples.

For each of the sampled directions, optimal elementary
distance measures are constructed as detailed in § 3.1 using
Parzen window estimators. We use a Gaussian window for
the estimators with a variance that is 1/10th of the max-
imum distance between any two images along any of the
sampled projection directions. Given K , the greedy scheme
detailed in § 4 is used to approximate the optimal distance
measure by the best K optimal elementary distance mea-
sures.
PCA. The principal component vectors of the training im-
ages are extracted. We use the Mahalanobis distance in
PCA space to compensate for the natural scales of each
principal component direction. Specifically, the distance
measure used is:

dPCA(xi, xj) =
K∑
k

1
λk

|uT
k (xi − xj)|2

where uk, k = 1, . . . , K correspond to the K principal
component directions corresponding to the top eigenvalues
λk.
LDA. We implemented the well-motivated “soft-LDA”
scheme in [15]. First, the training images are projected onto
the most significant principal components (in our case, the
ones that capture at least 99% of the signal energy). The
intra-class Sintra and extra-class Sextra scatter matrices are
then created in PCA space. LDA components are found
by maximizing the Fisher ratio or equivalently solving the
eigen-problem SextraL = SintraLΛ where L is the matrix
of column vectors of the LDA components. To avoid singu-
larities, it is crucial to regularize Sintra by adding a small
quantity along the diagonal. Without this regularization,
LDA performs very poorly. For robustness, a distance mea-
sure that used “soft”-weights based on the eigenvalues is
suggested by [15]:

dLDA(xi, xj) =
K∑
k

λα
k |lTk (xi − xj)|2

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Number of components K

R
ec

og
ni

tio
n 

R
at

e

Our Model
Bayesian
LDA
PCA

Figure 4: Recognition performance for the various methods as K
increases.

where lk are the LDA components and λk the corresponding
eigenvalues. We use α = 0.2 in our experiments.
Bayesian Classifier. We implemented the scheme pro-
posed in [6] as follows. Intra-class and extra-class image
differences are each modeled by a Gaussian density based
on a decomposition of the image difference space in each
case into the space spanned by the first K principal compo-
nents of the corresponding class of image differences from
the training set, as well as a residue space. The distance
measure in this case is given by the log-odds ratio between
the extra-class and intra-class densities. See [6] for details.

5.3. Results
At run-time, all of the methods above have two steps: (a)
projecting the input image onto K vectors. In our approach,
the vectors are the projection vectors along which elemen-
tary distances are measured. For PCA, they are the prin-
cipal components. For LDA, they are the linear discrimi-
nant directions. For the Bayesian approach, the vectors are
the PCA components required for the intra- and extra-class
density models. In our experiments, we divide K equally
between the two density models for this approach. (b) find-
ing the closest match from the training set using a distance
measure. The second step is roughly comparable for all
the methods, since each distance measure can be efficiently
computed in each case. The first step is proportional to K .
In practice, the choice for K should be based on a trade-
off between the desired running time performance and the
desired recognition performance.

Figure 4 shows the recognition performance on the
FERET test set as K varies for each method. PCA performs
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Figure 5: Performance comparison of our model when using op-
timal elementary distance measures (labeled “invariant”), which is
invariant to distance-respecting transformations, and when using
elementary distance measures directly. See text.

poorly on this task, showing that the task is challenging. As
can be seen, our approach is competitive in performance
with the other state of the art approaches.

Figure 5 compares the performance of our model when
using optimal elementary distance measures (labeled “in-
variant” in the figure, same as the one labeled “Our Model”
in Figure 4), which is invariant to distance-respecting trans-
formations, and when using elementary distance measures
directly. Although our motivation for using optimal elemen-
tary distance measures was purely for the sake of invariance
(see § 3.1), we can see from the figure that using optimal
elementary distance measures is also empirically superior
compared with using the elementary distance measures di-
rectly.

6. Discussion
We have addressed two issues that arise when modeling the
optimal distance measure as a combination of more ele-
mentary distance measures. First, we motivated the need
for using elementary distance measures that are invariant to
distance-respecting transformations. Second, we presented
a simple linear combination model that can be justified ex-
actly under certain assumptions. Finally, we have shown
that our approach is competitive with the best methods for
a face discrimination task.

In contrast to the other approaches compared in this pa-
per, our approach is more widely applicable, since it can
also combine multiple modalities (color, texture, shape) in
a principled manner within the same framework. We sim-

ply need to define appropriate elementary distance measures
in each of these feature spaces. This is currently ongoing
work.
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