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Abstract

This paper presents a multi-scale generative model for
representing animate shapes and extracting meaning-
ful parts of objects. The model assumes that animate
shapes (2D simple closed curves) are formed by a linear
superposition of a number of shape bases. These shape
bases resemble the multi-scale Gabor bases in image
pyramid representation, are well localized in both spa-
tial and frequency domains, and form an over-complete
dictionary. This model is simpler than the popular B-
spline representation since it does not engage a domain
partition. Thus it eliminates the interference between
adjacent B-spline bases, and becomes a true linear ad-
ditive model. We pursue the bases by reconstructing
the shape in a coarse-to-fine procedure through curve
evolution. These shape bases are further organized in
a tree-structure where the bases in each subtree sum up
to an intuitive part of the object. To build probabilistic
model for a class of objects, we propose a Markov ran-
dom field model at each level of the tree representation
to account for the spatial relationship between bases.
Thus the final model integrates a Markov tree (gener-
ative) model over scales and a Markov random field
over space. We adopt EM-type algorithm for learning
the meaningful parts for a shape class, and show some
results on shape synthesis.

1. Introduction

In this paper, animate shapes refer to 2D simple closed
curves which are the boundaries of deformable ob-
jects, such as animals and plants. These shapes have
been studied extensively for image segmentation, ob-
ject recognition, object tracking, and medical image
analysis. in the literature, there are two types of rep-
resentation, one is region-based, epitomized by medial
axis representation, and the other is contour-based, ex-
emplified by polynomial, PCA, and B-splines.

Region-based representation. The medial axis repre-
sentation is very powerful and has achieved impressive
success in recognition and morphing[16, 12, 6]. The
representation proposed in this paper is complemen-
tary to the medial axis, and will be especially suitable

for representing shapes with bulky bodies and unclear
skeletal structures. It is a step toward integrating the
region based and contour based representations.

Contour-based representations. Let Γ(s) = (x(s), y(s))
s ∈ [0, 1] be the 2D shape. A contour-based method
represents Γ(s) by a superposition of bases. For ex-
ample, in the explicit polynomial formulation one uses
monomials of the form 1, s, s2, ..., sn as bases. Thus a
curve is represented in a generative way as

Γ(s) =
K∑

k=0

[
xk

yk

]
(1 − s)n−ksk + n(s). (1)

where n(s) is the noise. Generally, one can also use
Fourier bases a similar expression[14].

The PCA bases are very popular for representing a
category of shapes[3, 5]

Γ(s) = Γo(s) +
K∑

k=0

akbk(s) + n(s). (2)

where Γo is the average shape and each bk(s) is a
curve that captures the direction of deformation in the
object’s biology. The PCA basis is promising but is
meaningful only within a particular category if there
are well established landmarks[1, 5] on the contour and
the deformations do not involve structural changes.

The polynomial, Fourier, and PCA representations
are well criticized in literature for having global bases
and lacking locality. One representation that makes a
step in the direction of improved locality is B-splines.

In a B-spline representation, the domain [0, 1] is bro-
ken up into K intervals by a partition

π = (s0, s1, · · · , sK), s0 < s1 < · · · < sK .

Each B-spline base Bd
k(s;π) spans d-intervals in the

partition with d being the degree of the spline. Thus
the representation is

Γ(s) =
K∑

k=1

[
xk

yk

]
Bd

k(s;π) + n. (3)

Here (xk, yk) are control points. The B-spline rep-
resentation appears to be linear additive, but its bases
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a) σ b) rotation c) scaling d) shearing

Figure 1: Each shape base is a lobe-shaped curve. It displays variety with different parameter and transforms.

depend on the underlying partition π. Adding or delet-
ing a base will change the partition and thus affect the
forms of several adjacent bases, so the model’s linear-
ity is lost. Furthermore, when we add more control
points, the scopes of existing bases are broken to small
intervals, and thus lack the concept of multi-scale rep-
resentation.

Our objective: Motivated by the above observations,
we present a multi-scale linear additive representation.

Firstly, we construct an over-complete dictionary
of bases. Motivated by the success of image pyra-
mid representation[8, 13] and the philosophy of over-
complete basis[10], we construct bases which are sine
and cosine waves modulated by Gaussians at various
variances. Each base is a pair of such 1D Gabor sine
and cosine components, for example, Fig.1 shows some
instances of the bases at different scales subject to
transforms. As the Gaussian variance σ → ∞, we ob-
tain a special base – the ellipse.

Secondly, we use curve evolution equations[9] to de-
rive curves at a coarse-to-fine sequence. At the coarse
level, all simple curves evolve to an ellipse. The curve
reconstruction starts with the ellipse, and proceeds to
the next level by adding new bases. The representation
is linear additive, so the new bases do not disturb the
existing ones. Thus we have bases at multiple scales,
which are visualized as a “shape script” (see Figs.2 and
3), which looks similar to music script.

Thirdly, we organize the bases in the shape script in
a tree structure, so that the bases in each subtree sum
up to an intuitive part of the object (see Fig.3). This
achieves some decomposition of the shape.

Fourthly, to build probabilistic model for a class
of objects, we propose a Markov random field model
at each level of the tree representation to account for
the spatial relationship between bases. Thus the final
model integrates a Markov tree (generative) model over
scales and a Markov random field over space.

We adopt a match-pursuit[7, 8] type algorithm for
selecting bases, and an EM-type algorithm for learning

the meaningful parts for a shape class, and demonstrate
the power of our method using shape synthesis.

2. A linear curve representation
2.1. An over-complete shape basis

We sought a dictionary of localized and intuitive basis
functions that would be general across a wide variety of
shapes. Inspired by the success of Gabor and wavelets
in signal reconstruction[8, 13], we choose the following
formulation,

ψ(s;µ, σ) ∝ exp
(
− (s− µ)2

2σ2

)[
cos( 2π

σ (s− µ))
sin(2π

σ (s− µ))

]

(4)
Here µ ∈ [0, 1] indicates the location of the basis

function relative to the domain of the observed curve,
and σ is the range of values s at which the function
ψ is non-zero. In practice, the function is truncated
to zero outside [µ − 1.5σ, µ + 1.5σ]. Fig.1.a shows the
shape of the basis function ψ at different σ values. The
basis functions are subject to affine transformations by
a 2 × 2 matrix of basis coefficients

Ak =
[
ak bk
ck dk

]

The variables for describing a base are denoted by
bk = (Ak, µk, σk) and are termed basis elements. We
call the shape specified by bk its shapelet and denote
it by

γ(s;bk) = Akψ(s;µk, σk) (5)

Figure 1 (b,c,d) demonstrates shapelets obtained
from the basis functions ψ by the affine transforma-
tions of rotation, scaling, and shearing respectively, as
indicated by the basis coefficient Ak. By collecting all
the shapelets at various µ, σ,A and discretizing them at
multiple levels, we obtain an over-complete dictionary

∆ = {γ(s;b) : ∀b; aγo, a > 0}
A special shapelet γo is defined as an ellipse.
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a. Input b. K = 1 c. K = 2 d. K = 3 e. K = 10 f. K = 20

Figure 2: Pursuit of shape bases for an eagle contour. The second row shows the “shape script” in the (µ, σ)
domain. The horizontal axis is µ ∈ [0, 1] and the vertical axis is the σ. Large dots mean big A2

K .

2.2. Linearly additive contour

Shapelets are the building blocks for shape contours,
and they form closed curves by linear addition:

Γ(s) =
[
x0

y0

]
+

K∑
k=1

[
ak bk
ck dk

]
ψ(s;µk, σk) + n(s)

(6)
Here (x0, y0) is the mass center of the contour and

n is residue. A comparison to the formulation of the
B-spline (eqn. 3) reveals that in the new formula-
tion, shapelets no longer interfere with each other.
Thus we do not have undesirable non-local pertur-
bations when adding a base element. For example,
Fig.2 shows the reconstruction of an eagle shape by
adding the shapelets one by one. This transfers the
continuous curve to a discrete representation B =
(K,b1,b2, ...,bK), shown by the dots in second row of
Fig.2. We call B the “shape script” by analogy to mu-
sic scripts, where each shapelet is represented by a dots
in the (µ, σ) domain. The horizontal axis is µ ∈ [0, 1]
and the vertical axis is the σ. Large dots correspond
to big coefficient matrix A2

k = a2
k + b2k + c2k + d2

k.

2.3. Pursuit of shapelets

Unlike in the case of Fourier or PCA, computing the
shape script B is a non-trivial task, since ∆ is over-
complete and there will be multiple sets of bases that
reconstruct the curve with equal precision. Obviously,
we would prefer a small number of bases. We adopt the
matching pursuit procedure studied by Mallat-Zhang
[7] for wavelet coding.

Recall a shapelet’s basis function has two orthogo-
nal components ψ(s) = (ψx(s), ψy(s))′, s ∈ [0, 1], we

normalize them to unit length,
∫ 1

0

ψ2
x(s)ds =

∫ 1

0

ψ2
y(s)ds = 1,

∫ 1

0

ψx(s)·ψy(s)ds = 0.

Suppose Γobs(s) is an input curve, Γ(s;B) its current
approximation with K shapelets in B, and

Γres(s;B) = (xres(s;B), yres(s;B)) = Γobs(s) − Γ(s;B)

being the residue. Let B+ = B ∪ {bK+1} with an
new shapelet. We want to choose bK+1 for the largest
reduction of the approximation error,

b∗
K+1 = arg min

bK+1∈∆
||Γobs(s) − Γ(s;B+)||2.

The L2-norm is computed as

||Γ1(s)−Γ2(s)||2 =
∫ 1

0

(x1(s)−x2(s))2+(y1(s)−y2(s))2ds.

Since the components of any
basis function ψ(s;µK+1, σK+1) are orthogonal, it is
not hard to show that the optimal transform (coeffi-
cient) matrix AK+1 = (aK+1, bK+1; cK+1, dK+1) can
be computed deterministically as the inner products
between the residual curve and the basis function,

aK+1 =
∫ 1

0

xres(s;B)ψx(s;µK+1, σK+1)ds

bK+1 =
∫ 1

0

xres(s;B)ψy(s;µK+1, σK+1)ds

cK+1 =
∫ 1

0

yres(s;B)ψx(s;µK+1, σK+1)ds

dK+1 =
∫ 1

0

yres(s;B)ψy(s;µK+1, σK+1)ds
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Note that this extends the coefficient in image coding
to 2 bands. The amount of error reduction is shown to
be the size of the coefficient matrix,

E(bK+1) = ||Γres(s;B)||2 − ||Γres(s;B+)||2
= a2

K+1 + b2K+1 + c2K+1 + d2
K+1.

Thus we compute AK+1 and choose b∗
K+1 to be the

one which has largest error reduction, i.e. A2
K+1, until

we reach a certain reconstruction error or a predefined
number of basis elements.

We demonstrate the matching pursuit process on
the example of an eagle in Fig.2. The input shape (far
left) is reconstructed well withK > 10 bases/shapelets.
Each shapelet is represented by a dot in the shape
script below. The size of each dot is proportional to
the ”size” of Ak, which is a2

k + b2k + c2k + d2
k.

Note that this is not a globally optimal solution,
so we can improve the reconstruction without adding
more basis elements. We do so by adjusting the ba-
sis elements (Ak, µk, σk) using the Gibbs sampler to
further reduce reconstruction error.

Figure 3: Subtrees and individual parts (please view in
color on screen)

2.4 Grouping shapelets into parts

It is not surprising that any over-complete dictionary
∆ can reconstruct the shape well. A good dictionary
should achieve reconstruction using a small number of
bases and more importantly, the reconstruction should
be decomposable into parts which are meaningful.

Fig.3 shows two examples of decomposability and
parts. For the shape script of the eagle obtained above,
we group the basis elements of B into four groups
B1,B2,B3,B4.

The bases in each subgroup sum up to a shape part

P i(s) =
[
x0

y0

]
+

∑
bj∈Bi

[
aj bj
cj dj

]
ψ(s;µj , σj), i = 1..4.

The four parts correspond to the two wings, head,
and tail respectively and are displayed in four different
colors. Similarly the fish is decomposed into 3 parts.

This example shows that the linear representation
is suitable for some class of shapes. In the next sec-
tion we improve the shapelet pursuit procedure with a
multi-scale scheme, and then show how to obtain parts
and build probabilistic models on the shape scripts to
account for shape deformations.

3 Multi-scale and parts

3.1. Curve evolution

Parts derived in section 2 are only one of many pos-
sible interpretations. In this section, we introduce a
multi-scale reconstruction for a curve and its parts in a
coarse-to-fine fashion. This is motivated by biological
observations that animate objects, and thus their con-
tours, “grow” from inside out, forming the main body
first then the coarse features and finer features later.

This growth effect can be reproduced by curve evo-
lution. Starting with the observed shape Γobs(s), we
run the following curvature flow equation[9, 6] to form
a sequence of curves C(s, t) over time t,

dC(s, t)
dt

= �α+ βκ(s)�n(s), C(s, 0) = Γobs(s). (7)

n(s) = (ẏ,−ẋ) is the curve normal of C(s, t) point-
ing inwards, and κ(s) its curvature. �x� = x if x > 0
and �x� = 0 if x ≤ 0. Thus the curve always shrinks
inwards. This defines a curve’s scale-space [9].

a) b) c)

Figure 4: Contour of eagle at three scales

3.2. Coarse-to-fine reconstruction

In our experiments, we take three levels of the scale
representation from coarse to fine

C(s, t0), C(s, t1), C(s, t2); t0 > t1 > t2 = 0.
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C(s, t0) is close to the ellipse represented by the special
base γo, and C(s, t2) = Γobs(s). The middle and the in-
nermost snapshots are taken according to the following
intuition: Major parts, such as arms, wings, tails, of-
ten correspond to protrutions in the curve, which can
be mathematically formalized as regions of convexity
between regions of concavity. Thus we take the mid-
dle snapshot at the point where the number of concave
regions is equal to the number of parts we are seek-
ing. 1 The main body should have no protrusions, or
0 concave regions. This intuition works for a variety
of animate image categories, regardless of the propor-
tion of the main body to the parts. Fig.4 shows an
example of the eagle at three time steps. Fig. 5 is a
coarse-to-fine reconstruction of a cross. Fig. 5.a-c are
respectively C(s, t0), C(s, t1), C(s, t2) at three sequen-
tial levels reconstructed by the shape scripts below.
Now we obtain a tree-structured organization of the
shapelets. Fig. 5.d shows a subtree which corresponds
to one of the four parts. Note that the four subtrees
share a central ellipse which serves as a joint.

To summarize, the shape script B is organized in a
tree structure.

(1). We can divide the tree into horizontal levels (or
generations) B = (B0 = γo,B1,B2) from coarse-to-
fine. This is similar to the Laplacian pyramid in image
coding. Each level adds details to the shape, shown by
red, green and blue respectively in Fig. 5.a-c.

(2). We can divide the tree vertically into subtrees,
each corresponds to a part of shape.

Figure 7 shows nine examples of the vertical parti-
tioning. Each subtree is plotted by a different color
and corresponds to a curve which resembles the object
parts, such as fins of fish, wings of butterfly and eagle,
legs and trunk of the elephant.

4. Learning parts dictionary and
deformable models

So far we have presented a multi-scale representation of
animate curves and the decomposition into parts and
bases. In this section, we explore two more ambitious
goals:

(1). Learning generic probabilistic models on B and
thus on Γ for the purpose of recognition, segmentation,
and tracking. The model should account for deforma-
tions and, more importantly, structural variations due
to gesture and view point changes.

(2). Learning a generic dictionary of parts, built
on top of the shapelet dictionary, for a broad range of

1There is an inherent ambiguity in the number of parts, and
at this early stage of research, we prespecify the number of parts
for a particular image category.

MRF model

MRF

Figure 6: A probabilistic model of shape: a Markov
tree model for multi-scale shape generation is inte-
grated with Markov random field models at each hori-
zontal level to account for spatial arrangement.

animate shapes.

4.1 Problem formulation

The problem is formulated as statistical learning.
Suppose we are given a set of observed shapes
{Γobs

1 (s), ...,Γobs
M (s)}, which are from the same object

category for learning a deformable model, or are pooled
from a range of animate objects for learning a generic
dictionary of parts.

Now we have a two-stage generative model, a curve
Γ(s) is generated by a number of shape bases (or
shapelets) B selected from a dictionary ∆, and the
shape bases are further generated by a tree T of parts
selected from a part dictionary Φ,

T Φ−→ B ∆−→ Γ(s).

The dictionary Φ includes a number of production
rules, like grammar in Language model, each rule is
associated with a probability,

Φ = {ri : bi → bi1bi2 · · ·bini
, p(ri; θi); ∀i}.

p(ri; θi) = (bi1,bi2, · · · ,bini
|bi; θi) is a conditional

probability defined on the attributes of each base b =
(µ, σ,A), specified by parameters θi. Thus a tree con-
sist of a number of rules T = (r1, r2, ..., rn). This is
basically a Markov tree process[4], and the probability
of T is

p(T; Θ) =
n∏

j=1

p(rj ; θj).

Θ = (θ1, θ2, ..., θn). The general likelihood for a curve
Γ is then

p(Γ;Θ,Φ) =
∫
p(Γ|B;∆)p(B|T; Φ)p(T; Θ)dBdT.
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a. Level 0 b. Level 1 c. Level 2 d. A subtree for a part

Figure 5: Coarse-to-fine Reconstruction (please view in color on screen)

In this formulation, B,T are hidden variables, like the
parsing tree in language, associated with the specific
shape Γ, while Φ,Θ are the parameters that govern
the ensemble of shapes. The two objectives are then
formulated as MLE-learning,

(Φ,Θ)∗ = arg max
M∑
i=1

p(Γobs
i (s);Θ,Φ).

Remarks: (1). In the above formulation, we fixed
the dictionary ∆, in general we can learn ∆ from
input shapes, this is similar to the learning of Ga-
bor like image bases[10]. (2). The deformable model
for each object is defined on the tree representation
p(T; Θ)p(B|T; Φ) which can account for structural
changes. (3). In a more general form, we should intro-
duce a Markov random field model, or a simple Markov
chain model for each horizontal level of the tree, as
Fig.6 illustrates. The MRF or Markov chain model will
account for local consistence between adjacent bases in
the same level.

This formulation bear resemblance to texton
learning[15] from images. Intuitively, the parts (sub-
trees) correspond to the textons as the building blocks.

4.2 Learning and inference

The inference follows from an stochastic gradient al-
gorithm which is a generalized version of the EM-
algorithm. It proceeds in two iterative steps, as it is in
the texton learning[15].

1. For each shape Γobs
i , infer the hidden tree struc-

ture from the posterior probability by Markov chain
Monte Carlo sampling

(Bi,Ti) ∼ p(Γobs
i |Bi;∆)p(Bi|Ti; Φ)p(Ti; Θ),

for i = 1, 2, ...,M . In practice, there are many com-
binations of (Bi,Ti) that can reconstruct Γobs

i well.
Some supervised parsing will be very helpful for deriv-
ing meaningful parts, especially when the number of
observed samples are not enough to favor some intu-
itive choice. We find that the coarse-to-fine reconstruc-
tion helps to introduce some order and structure in the
reconstruction.

2. Given the samples above, we approximate the in-
tegration by importance sampling techniques, and then
fit the parameters in Φ,Θ. In practice, this learning
procedure can be expedited by a clustering step in the
space of subtrees. For example, for a grammar rule ri
and conditional probability

p(r; θ) = (b1,b2, · · · ,bk−1 |b; θi)

We form a polygon with k+1 vertices corresponding
to bases

k − gon = (b,b1,b2, · · · ,bk−1).

Collecting all the sub-trees like those in Fig.7, and each
grammar rule in the subtrees, contribute a k-gon (i.e.
a point) in the space of subtrees. By data clustering,
such as K-means in the space of polygons, we got a
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Figure 7: Subtrees and parts (in different colors) of animate shapes

number of clusters each corresponds to a part and is
modeled by a probability.

Due to space limitation, we cannot unfold the de-
tails of the algorithm. Instead, we show two results
of learning and sampling shape from the deformable
model.

Figures 8.a and c show three examples of the ob-
served leaves from two different categories of leaf, the
observed leaves are parsed, and the parts are shown in
colored curves. In Figures 8. b and d, we show three ex-
amples sampled from the Markov tree models. Clearly,
such models can be used for segmentation, tracking,
and shape morphing.

5. Future Work

The proposed representation is simple and combines
the advantage of the linear additive representation,
such as Fourier, polynomial and PCA, and the locality
of B-splines. It is also multi-scale and decomposable
to parts. This representation is especially suitable for
blobby objects, and it has shortcomings in represent-
ing elongated objects. In future work, we should study
hybrid models which combine the contour based and
region based representation. That is the dictionary
should include region-based shape elements, such as

the deformed primitive in the FORMS framework[16].
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a. Observed b. synthesized c. observed d. synthesized

Figure 8: Two examples of shape synthesis by sampling from the probability models.
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