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Abstract

Recent developments in computer vision have shown that
local features can provide efficient representations suitable
for robust object recognition. Support Vector Machines
have been established as powerful learning algorithms with
good generalization capabilities. In this paper, we com-
bine these two approaches and propose a general kernel
method for recognition with local features. We show that
the proposed kernel satisfies the Mercer condition and that
it is suitable for many established local feature frameworks.
Large-scale recognition results are presented on three dif-
ferent databases, which demonstrate that SVMs with the
proposed kernel perform better than standard matching
techniques on local features. In addition, experiments on
noisy and occluded images show that local feature repre-
sentations significantly outperform global approaches.

1. Introduction

Developing computer vision systems capable of uncon-
strained recognition of objects has been at the heart of com-
puter vision research for the last decades. Changes in il-
lumination, size and pose, occlusion by other objects and
nonrigid deformations are among some of the problems that
such a system has to face in real-world conditions; often
several of these changes occur at the same time.

Recent years have seen impressive improvements in ob-
ject recognition performance under such conditions [3, 19],
and it seems that appearance-based methods [21, 22, 6, 3]
are gaining popularity over structural methods [15]. In
this paper we will focus on appearance-based approaches,
where objects are modeled by a set of images and recogni-
tion is performed by directly matching the input image to

the model set. This model set could consist of the original
images, considered as feature vectors [18, 19, 1], or of fea-
tures extracted from the original views, such as color [24] or
texture [21]. In all cases, the features are considered to be
representative of the appearance of the objects to be recog-
nized. Within this research area one can identify two main
research lines: the first concerns the object representation,
that is, how to extract efficient and effective representations
from visual input whereas the second focuses on algorithms
to process these representations.

The simplest representation - raw pixel data of input
images - can achieve surprisingly high recognition rates
[18, 19], but is highly sensitive to all signal changes. Fur-
thermore, storage requirements are extraordinarily high if
the system is supposed to recognize more than a few dozen
objects. Other global representations like color or deriva-
tive histograms [24, 21] are in its original form rather sen-
sitive to occlusions. Local representations [22, 16, 12] ad-
dress both problems as they consist of a number of local-
ized features in the image. Several successful vision sys-
tems that use such local feature representations have been
developed, and seem to be able to support high recognition
performance under real-world conditions [16, 20, 12].

The second line of research focuses on the algorithms
used to process the representations both during learning
and recognition. ’Learning-free’ algorithms such as nearest
neighbor techniques can provide a good baseline for recog-
nition experiments, but often suffer from inferior general-
ization capabilities in real-world conditions [8, 18]. Support
Vector Machines (SVMs, [9, 25]), on the other hand, repre-
sent a class of learning algorithms, which are based on a
thorough mathematical founding, and - while more compu-
tationally expensive than other matching techniques - have
shown impressive learning and recognition performance
[19, 1, 8, 18]. This performance can even be achieved on
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relatively simple raw pixel data, thus demonstrating the gen-
eralization capability of SVMs.

However, until now it has not been possible to incorpo-
rate ‘the best of both worlds’ in a recognition system, that
is, to use local representations as input to SVMs. This is
due to the intrinsic structure of both techniques: local rep-
resentations generally consist of feature vectors of different
length, and matching has traditionally required the defini-
tion of ad-hoc similarity measures [16, 20, 26]. In other
words, similarity measures commonly employed for global
representations cannot even be computed for local repre-
sentations. SVMs on the other hand are large margin clas-
sifiers, where the optimal separating surface is defined by a
linear combination of scalar products between the view to
be classified and some “support vectors”. Thus in its stan-
dard formulation local features exclude SVMs as classifiers,
and vice-versa.

The contribution of this paper is to solve this dichotomy:
we define a new class of kernels which satisfies Mercer con-
dition as well as allowing the computation of scalar prod-
ucts on local features. We show how this class of ker-
nels is related to similarity measures proposed in the lit-
erature for some well-known local features. Furthermore,
we show through extensive experiments, how local features
combined with SVM, via this type of kernel, outperform lo-
cal features combined with state-of-the-art matching tech-
niques, as well as SVMs with global representations.

The paper is organized as follows: after reviewing previ-
ous literature (section 2) and SVMs (section 3), we discuss
local features and their difficulties in using them as input to
a SVM (section 4). Section 5 introduces the new class of lo-
cal kernels, demonstrates that they satisfy Mercer condition
and shows how they are related to state-of-the-art similarity
measures for local features. Section 6 reports and discusses
experiments on three different databases, with occluded and
cluttered views.

2 Previous Work

Object recognition is one of the most active areas of
computer vision with applications in many fields. Many
researchers have approached the problem with appearance-
based methods. Swain and Ballard [24] proposed to repre-
sent an object by its color histogram, which was was shown
to be robust to changes in orientation, scale, partial occlu-
sion and changes of the viewing position. The major draw-
backs of this method are sensitivity to lighting conditions
and that for many object classes color is not a discriminative
feature. Schiele and Crowley [21] generalized this method
by introducing multidimensional receptive field histograms
to approximate the probability density function of local ap-
pearance. Their recognition algorithm calculates probabili-
ties for the presence of objects based on a small number of

vectors of local neighborhood operators such as Gaussian
derivatives at different scales.

Based on local characteristics, Schmid and Mohr [22]
developed a system that can recognize objects in the case
of partial visibility, image transformations and within com-
plex scenes. Their approach is based on the combination of
differential invariants computed at key points with a robust
voting algorithm and semi-local constraints. Recognition is
based on the computation of the similarity (represented by
the Mahalanobis distance) between two invariant vectors.
Matching is performed on discriminant points of an image,
and a standard voting algorithm is used to find the closest
model to an image. The idea was further developed by many
authors in order to include invariances (such as viewpoint
invariance [20], affine invariance [16], scale-space selection
[12]).

Recently, SVMs and kernel methods have begun to be
used for appearance-based object recognition. Pontil [18]
demonstrated the robustness of SVMs to noise, bias in
the registration and moderate amount of partial occlusions.
Roobaert et al. [19] examined the generalization capabil-
ity of SVMs, when just a few number of views per objects
are available. Barla et al. [1] proposed to use a new class
of kernels, especially designed for vision and inspired by
similarity measures successfully employed in other vision
applications (including histogram intersection and Haus-
dorff kernels). The growing number of papers addressing
object recognition using kernel methods (see for instance
[14, 6, 26] and many others) is an indicator for the interest
of the computer vision community in this area. However, a
common limitation of all these approaches (with the notice-
able exception of [26]) is that they can handle only global
features.

3 Support Vector Machines

In this section we give a brief overview of binary clas-
sification with SVMs. For further details and the ex-
tension to multiclass settings we refer the reader to [9,
25]. Consider the problem of separating the set of train-
ing data (x1, y1), (x2, y2), . . . (xm, ym) into two classes,
where xi ∈ �N is a feature vector and yi ∈ {−1, +1}
its class label. If we assume that the two classes can be sep-
arated by a hyperplane w · x + b = 0, and that we have no
prior knowledge about the data distribution, then the opti-
mal hyperplane (that is, the one with the lowest bound on
the expected generalization error) is the one which maxi-
mizes the margin [9, 25]. The optimal values for w and
b can be found by solving the following constrained mini-
mization problem:

minimize
w,b

1
2
‖w‖2

subject to yi(w · xi + b) ≥ 1,∀i = 1, . . . m
(1)
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Solving it using Lagrange multipliers αi(i = 1, . . . m) re-
sults in a classification function

f(x) = sgn

(
m∑

i=1

αiyiw · x + b

)
. (2)

where αi and b are found by using an SVC learning algo-
rithm [9, 25]. Most of the αi’s take the value of zero; those
xi with nonzero αi are the so-called “support vectors”. In
cases where the two classes are non-separable, the solution
is identical to the separable case with a modification of the
Lagrange multipliers to 0 ≤ αi ≤ C, i = 1, . . . m, where
C is the penalty for the misclassification. To obtain a non-
linear classifier, one maps the data from the input space �N

to a high dimensional feature space H by x → Φ(x) ∈ H,
such that the mapped data points of the two classes are lin-
early separable in the feature space. Assuming there exists
a kernel function K such that K(x,y) = Φ(x) ·Φ(y), then
a nonlinear SVM can be constructed by replacing the in-
ner product x · y in the linear SVM by the kernel function
K(x,y)

f(x) = sgn

(
m∑

i=1

αiyiK(xi,x) + b

)
(3)

This corresponds to constructing an optimal separating hy-
perplane in the feature space.

4 Support Vector Machines and Local Fea-
tures

Now we turn to the problem of using SVMs with local
features. Given a set of images I = {Ii}m

i=1, the most gen-
eral local feature vector for the image Ii can be described
as Li = {lj(Ii),pj(Ii)}ni

j=1, computed as follows:

• an interest point detector (a popular choice is the Har-
ris corner detector, [22, 20, 12]) detects ni points. In
general, the number of interest points detected for each
image Ii will differ;

• pj(Ii) are the coordinates (in the image plane) of the
j-th point;

• lj(Ii) is a feature vector computed locally around the
j-th point (see for instance [22, 26, 20]).

When one does not consider interest point coordinates,
the local feature vector reduces to Li = {lj(Ii)}ni

j=1.
We see immediately that local features cannot be used

in a straightforward way as input for SVMs, as they have
different lengths for different images, which makes it im-
possible to perform scalar products. One way around this
might be to simply add an appropriate number of zeros to

each feature vector in order to normalize vector lengths. Let
us examine this proposition by considering two local fea-
ture vectors L1 = {lj(I1)}n1

j=1 and L2 = {lj(I2)}n2
j=1,

with n2 > n1 (the argument can be extended easily to the
case of local features including point coordinates). We can
define a new feature vector L̃1 by zero-padding L1:

L̃1 = {l1(I1), . . . ln1(I2)︸ ︷︷ ︸
n1

, 0 . . . 0︸ ︷︷ ︸
n2−n1

}

This would allow us to compute the scalar product between
L2 and L̃1:

L̃1 · L2 = l1(I1) · l1(I2) + l2(I1) · l2(I2) + . . .+

ln1(I1) · ln1(I2) + 0 · ln1+1(I2) + . . . 0 · ln2(I2)

Whereas it is technically possible to compute scalar prod-
ucts for local features using this trick, this computed quan-
tity is of small interest (if any) from the point of view of
recognition. This is because the underlying philosophy in
describing an image by local features is that, once “inter-
esting points” in the image are detected, local descriptors
are computed around these points. Such a local descriptor
should be discriminative in the sense that, if the point is de-
tected again in a new image, the comparison of the descrip-
tors computed around the points will allow them to match
correctly. Thus one can see that local features are effective
for recognition if and only if the algorithm we use measures
similarities between all local features within the compared
images. This is exactly what state-of-the-art algorithms for
matching and recognition do (see, e.g., [22, 20, 12]). Com-
ing back to SVMs, this means that the issue is not just to
be able to perform scalar products. If we want to benefit
from the power of large margin classifiers when using local
features, we must turn to different strategies for measuring
local similarities with scalar products. In other words, we
need to define a new class of kernels.

5. Local Kernels

In this section we define a new class of kernels for local
features and prove that they satisfy Mercer’s theorem. In
addition, we also show how these kernels can be applied
to some existing approaches for matching and recognition
using local features.

We begin by recalling that a kernel function K(x,y)
must satisfy Mercer’s theorem [9, 25], and that it holds that:

Proposition 1 ([9], Proposition 3.5, Chap. 3, pg 33)
Let X be a finite input space with K(x,y) a symmetric
function on X . Then K(x,y) is a kernel function if and
only if the matrix

K = (K(xi,xj))m
(i,j)=1

is positive semi-definite (has non-negative eigenvalues).
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Then it holds

Theorem 2 Denote by I = {Ii}m
i=1 a set of images and

L = {Li}m
i=1 the corresponding set of local features, with

Li = {lj(Ii)}ni
j=1, i = 1, . . . m. For all (Lh,Lk) ∈ L,

consider the function

KL(Lh,Lk) =
1
2

[
K̂(Lh,Lk) + K̂(Lk,Lh)

]
(4)

with

K̂(Lh,Lk) =
1
nh

nh∑
jh=1

max
jk=1,...nk

{Kl(ljh
(Lh), ljk

(Lk))} .

If Kl(ljh
, ljk

) is a Mercer kernel, then KL(Lh,Lk) is a
Mercer kernel.

Proof Note first that KL(Lh,Lk) is symmetric by con-
struction. Then, if Kl is a Mercer kernel, it follows by
proposition 1 that it is positive semi-definite. Thus, the op-
eration of max will result in a Mercer kernel as well (it does
nothing but choose one of the nk Mercer kernels). This
means that equation (4) is a linear combination with positive
coefficients of Mercer kernels; it follows that KL(Lh,Lk)
is a Mercer kernel.

When local features include point coordinates, we can use
this additional information in the form of a simple position
constraint by extending the local kernel as follows:

Theorem 3 Denote by I = {Ii}m
i=1 a set of images and

L = {Li}m
i=1 the corresponding set of local features,

with Li = {lj(Ii),pj(Ii)}ni
j=1, i = 1, . . . m. For all

(Lh,Lk) ∈ L, consider the function

KLP (Lh,Lk) =
1
2

[
K̂(Lh,Lk) + K̂(Lk,Lh)

]
(5)

with

K̂(Lh,Lk) =
1
nh

nh∑
jh=1

max
jk=1,...nk

{Kl(ljh
(Lh), ljk

(Lk))

· exp{−(pjh
(Lh) − pjk

(Lk)2/2σ2}}.
If Kl(lJh

, ljk
) is a Mercer kernel, then KLP (Lh,Lk) is a

Mercer kernel.

Proof exp{−(pjh
(Lh) − pjk

(Lk))2/2σ2} is a Mercer
kernel (Gaussian kernel, [9, 25]), thus its product with Kl

is still a Mercer kernel. Then the argument proceeds as for
theorem 2

The key point for the proof of theorem 2 (and consequently
of theorem 3) is the condition that Kl is a Mercer kernel.
Below we show three examples of state-of-the-art local

features and corresponding algorithms, which fulfill this
requirement. This demonstrates the general applicability of
the proposed kernels in computer vision.

Example 1 Jet features [22] are a particularly successful
example of local features in the literature. Similarity
between jet features, which are differential intensity
invariants computed around interest points, is measured via
the Mahalanobis distance [22]:

dM (x,y) =
√

〈x − y|Λ−1|x − y〉

where Λ is the covariance matrix of the components. dM

can be easily mapped into an Euclidean distance dE [22]:
the covariance matrix is a real symmetric positive semi-
definite matrix, which can be decomposed via SVD:

Λ−1 = PT DP,

with P orthogonal and D diagonal. It follows that

dM (x,y) = dE(
√

DPx,
√

DPy).

Thus we can use any of the following kernels as Kl in equa-
tion (4):

Kp(x,y) =
(
(
√

DPx ·
√

DPy) + c
)p

, p =∈ N , c ∈ �+

KGauss(x,y) = exp {−ρdE(
√

DPx,
√

DPy)}.

Example 2 Schaffalitzky and Zissermann [20] pro-
posed to compute local histograms at different scales
around detected points of interest; they compare the local
features via χ2 similarity measures. For these local features
one can use as Kl the intersection measure introduced by
Swain and Ballard [24], which was proven to be a Mercer
kernel [1], or

Kχ2(x,y) = exp {−ρχ2(x,y)}, (6)

Ka,b(x,y) = exp {−ρ||xa − ya||b}, (7)

with a ∈ �+, b ∈]0, 2]. Both are Mercer kernels [2, 25],
and both have been successfully used with histogram
features [6, 8].

Example 3 In [26] a first application of local SVM
kernels was given, which were used on tracked local
features. The kernel used was similar to K̂ in equation (4),
with Kl given by

Kl = exp

{
−ρ

(
1 − 〈x − µx|y − µy〉

||x − µx||||y − µy ||

)}
(8)

which satisfies Mercer condition.
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Figure 1. Exemplars from the COIL (top row), COGVIS-ETH (middle row) and FACE (bottom row)
databases. Note the different degrees of homogeneity of the object classes.

6. Experiments

This section presents recognition experiments showing
that SVM and local features, combined together via our lo-
cal kernel, outperform recognition techniques widely used
in computer vision literature. We ran experiments on three
different databases, and with three different feature types
(two global and one local). Our databases vary in homo-
geneity and types of object classes used, but all contain ro-
tations of 3D objects, which enabled us to study the degree
of view generalization of the chosen recognition methods.
This task is especially well-suited to examine the perfor-
mance of the classifiers in real-world conditions, as view-
point rotations introduce non-trivial changes in the image.
For each experiment, SVMs were benchmarked against a
nearest neighbor classifier (NNC). For each feature type,
we chose an appropriate similarity measure for both classi-
fiers with the aim of enabling a fair comparison between all
conditions.

In the following we describe in detail the experimental
settings (section 6.1). Section 6.2 describes and discusses
recognition results on the three databases, using all feature
types, for both classifiers. Section 6.3 describes and dis-
cusses recognition results in presence of noise and occlu-
sion, for one database, all feature types and both classifiers.

6.1 Experimental Setup

6.1.1 Databases

The COIL database ([17], Figure 1, top row) is one of the
best known benchmarks for object recognition algorithms.
It consists of 7200 color images of 100 objects (72 views for
object); each image is 128 × 128 pixels. The images were
obtained by placing the objects on a turntable and taking a
view every 5◦. Our training set consisted of a subset of 17
views per object, resulting in a view every 20◦.

The COGVIS-ETH database ([13], Figure 1, middle row)
is a recently released database, consisting of 80 objects from
8 different categories (apple, tomato, pear, toy-cows, toy-
horses, toy-dogs, toy-cars and cups). Each object is repre-
sented by 41 images from viewpoints spaced equally over
the upper viewing hemisphere, at distances of 22.5 − 26◦.
Objects are shown on a blue background without rescaling.
For training we used a subset of the available views, that is,
16 views per object, spaced 22.5◦.
The FACE database ([4], Figure 1, bottom row) consists
of 100 faces (50 male, 50 female). Each image is a high-
quality computer graphic rendering of a laser-scanned face.
Face images are re-sized and color-equalized in order to
avoid scanning artifacts. The dataset consists, for each face,
of 13 views spaced 15 degrees from left to right profile
view; faces are rendered on a black background.

The test set for each database was chosen so that its
views were in between training views. With this experi-
mental procedure, classifiers have to recognize objects un-
der a rotation of 15 degrees for the FACE, 20 degrees for the
Columbia and 22.5 degrees for the COGVIS database, re-
spectively. Given the size and complexity of the databases,
this represents a hard recognition problem for any classifi-
cation scheme.
6.1.2 Image representations

For the experiments we used two global representations
(raw pixels and color histograms) and one local represen-
tation (differential invariants) (Figure 2). Raw pixel repre-
sentations were extracted from the databases by conversion
of all images to 32x32 pixel grey-level images, thus result-
ing in a vector with 1024 dimensions. Color histograms
were evaluated on the full-size color images with 10 bins
in each of the three color channels (R,G and B) and nor-
malized to the bin with the highest pixel counts. As local
representation, we chose the jet features proposed in [22],
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Figure 2. The three representations used in
the experiments.

which consist of a 9-dimensional vector computed around a
number of interest points over several scales. Detection of
interest points was done using a standard Harris-type corner
detector, which was shown to have high repeatability and
robust performance [23]. On average, such a representation
contained around 100 features per image.

6.1.3 Classifiers

For each database and feature type, we ran experiments with
NNC and SVM. One might wonder whether this compari-
son is fair: it is certainly possible to use more sophisticated
methods for classification than just simple NNC, such as
voting schemes and decision trees [10, 22, 21]. However,
our main reason to use NNC is that all of these more ad-
vanced methods are used on the basis of a basic classifier,
and that most of the time this classifier consists of a NNC.
In addition, it should be possible to incorporate such classi-
fication methods also into the SVM classification protocol.

All SVM experiments were ran using the SVMlight soft-
ware [11], where we added our local kernels to the ker-
nel library. In all experiments, ρ was selected via cross-
validation on the test set. Since our experiments require a
multi-class protocol for classification, we implemented a 1–
versus–the–rest scheme for training and a winner–takes–all
strategy for testing (see, e.g., [25]).

Distance metrics for NNC, and accordingly kernel func-
tions for SVMs, varied with representations. For the raw
pixel representation, we used a standard Euclidean distance,
that is, dE(x,y) =

√〈x − y|x − y〉. The corresponding
kernel (in the sense that it is the kernel which maps the data
in an Euclidean space [5]) is the Gaussian kernel (7), with

a = 1, b = 2 1.
For color histograms we used the standard χ2 distance,

that is, dχ2(x,y) =
∑

i
(xi−yi)

2

xi+yi
, where the correspond-

ing kernel is the Gaussian kernel (6). Finally, we used the
following distance metric for comparing local features:

dL(x,y) =
∑

i

max
j=1,...nk

〈x − µx|y − µy〉
||x − µx||||y − µy ||

.

Note that this metric does not make use of information con-
tained in the feature positions, such as local feature constel-
lations [22], or global feature layout [26]. We have chosen
this simpler approach in order to examine the usefulness of
the local features themselves. The corresponding kernel is

given by (8), with Kl =
〈x−µx|y−µy〉

||x−µx||||y−µy || .

6.2 Experimental Results: Uncorrupted Views

Table 1 reports error rates (e.r.) for all databases, all fea-
ture types and both classifiers. From the analysis of these
results, we draw three main conclusions: (1) regardless of
the data representation, SVMs show large performance im-
provements compared to NNCs ranging from a minimum
of -1.2 % e.r. for the FACE database (local features) to a
maximum of -54.2 % e.r. also on the FACE database (raw
pixels). As the experimental setup is identical for both clas-
sifiers, this large improvement provides further evidence for
the superior generalization properties of SVMs. (2) Using
SVMs with our local kernel, we achieve the best perfor-
mance on all databases. (3) On average, the local repre-
sentation outperforms both global representations. In the
following, we discuss results in more detail:
Raw pixels: NNC performance on the COIL and COGVIS-
ETH database seems reasonably good (16.7% and 18.9%
e.r.) considering the simplicity of both representation and
classifier. However, the homogeneous face database shows
far higher classification errors (65% e.r.) due to many false
matches across views.
Color histograms: Given the low dimensionality of the his-
tograms, recognition results are surprisingly good (around
6% e.r.) for both the FACE and COIL database. We be-
lieve that the two main reasons for the inferior performance
on the COGVIS-ETH database (23.5% e.r.) are that the
blue background dominates the histogram, and that objects
within categories look very similar thus resulting in more
false matches (see Figure 1 middle row showing two simi-
lar looking apples).
Local features: With this representation, NNC gives bet-
ter results than on global features (with the exception of
color histograms for the COIL database). Performance on

1We have chosen Gaussian kernels over polynomial kernels as there
is experimental evidence that Gaussian kernels perform better for object
recognition tasks [7].
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Algorithm COIL COGVIS-ETH FACE

Raw pixel representation
NNC 16.7% 18.9% 65.0%
SVM 7.2% 10.2% 10.8%

Color histogram representation
NNC 5.9% 23.5% 6.8%
SVM 3.5% 5.9% 2.7%

Jet Feature representation
NNC 11.7% 18.5% 1.2%
SVM 1.5% 1.6% 0.0%

Table 1. Classification errors on three
databases for global and local representa-
tions, using SVM and NNC.

Figure 3. Two types of image degradation: a)
Gaussian Noise and b) Occlusion

the FACE database is especially good (1.2% e.r.), which is
due to the large amount of discriminative features in the im-
age. This is in contrast to the result on the COGVIS-ETH
database (18.5% e.r.), where variation in object size leads to
varying numbers of discriminative features.

6.3 Experimental Results: Corrupted Views

We tested robustness to noise and occlusion of our ker-
nel, by adding these two types of image degradation to the
test set of the FACE database. We limited ourselves to this
database because here SVM and NNC yield very similar
performance on local features (see Table 1, last column,
bottom). Gaussian noise of 10% strength was added to each
image2 (Figure 3a), which is a manipulation of the global
statistics of the image. Occlusion consisted of masking out
a random part of the image by inserting data from a different
image (Figure 3b), which represents a more local disruption
of image statistics. The portion of the face that was masked
was set to 15% of the image size. The task for the classifier
is thus to recognize objects both under depth rotations and
additional noise or occlusion.

Results are shown in Table 2. One can see that recog-
nition performance has decreased for all representations

2Note, that this applies to all three color channels.

Algorithm Noise Occlusion

Raw pixel representation
NNC 76.7% 89.1%
SVM 35.0% 58.2%

Color histogram representation
NNC 98.7% 68.6%
SVM 98.5% 53.2%

Jet Feature representation
NNC 22.4% 38.2%
SVM 5.4% 26.7%

Jet Feature representation & position constr.
NNC 9.5% 34.2%
SVM 1.4% 13.2%

Table 2. Classification errors on the FACE
database in presence of noise or occlusion.

and classifiers; but once again SVM performed better than
NNC, for both kinds of degradation and all feature types.
With respect to local features, our results thus confirm their
improved robustness to noise and occlusion (Table 2, lower
two parts).
Raw pixels: results of both classifiers reasserts that this rep-
resentation is not robust in presence of noise or occlusion.
Color Histograms: adding Gaussian Noise severely dis-
rupts color information in all three channels, which leads to
an extremely poor performance for both classifiers (Table
2, left column, middle). As already observed in [24], color
histograms seem to be relatively more robust to occlusion
(Table 2, right column, middle). However, performance still
drops about 50-60% compared to the uncluttered condition
(see Table 1, right column, middle).
Local Features: Local features performs quite well under
noise, but suffer from occlusion (although much less than
global features). Again, SVM with our local kernel signifi-
cantly outperforms NNC in both conditions.

Preliminary results on a different kernel (and corre-
sponding metric), which includes a global position con-
straint in the form of eq. 5 (see also [26]), show that it is
possible to significantly improve recognition performance
on degraded images by incorporating this extra information.
Results for the local representation on the face database (Ta-
ble 2, last row) show that, by using a position constraint, im-
provements of up to 13% for both NNC and SVM are pos-
sible. Recognition performance is still much better under
noise than under occlusion; we believe that here we should
be able to perform better by introducing local position con-
straints (as done in [22] for instance).

7. Conclusion and Outlook

In this paper, we proposed a recipe for constructing ker-
nels which are suitable for object recognition with local fea-
tures. We showed that these kernels satisfy Mercer condi-
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tion, which for the first time opens the possibility to use
local features as input for a SVM. We also gave exam-
ples of local kernels suitable for several types of local fea-
tures discussed in the literature. We believe that these types
of kernels can be useful for a wide range of applications
in the computer vision community. In addition, we pre-
sented experiments on three different databases, compar-
ing global versus local features, using NNC and SVM. In
all cases, SVM gave significant increases in performance,
which again confirms the advantage of large-margin classi-
fiers regardless of the underlying data representation. More-
over, recognition results obtained using local features com-
bined with SVM, via our kernel, outperform recognition re-
sults obtained using NNC with local features, as well as
SVMs with global representations.

Future work will concentrate on three main directions:
Local position constraint: We will extend our current ap-
proach for handling local position information to also yield
invariance to affine transformations. Moreover, we will in-
clude further local or semi-local position constraints (such
as in [22]).
Cue integration: Kernel methods can be a powerful
method for cue integration [6]. Our local kernels open the
possibility to use this approach also for local features with
multiple cues. We expect that this will further increase the
recognition performance of our algorithm.
Real world scenarios: We plan to use the proposed kernels
for object recognition tasks in real world scenarios, such as
recognizing objects in cluttered scenes and under varying
scales and illumination conditions. In addition to integrat-
ing the results from the previous points into our recognition
framework we will also conduct a more detailed evaluation
of other local feature representations (see, e.g., [12]).
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