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Abstract

We propose modeling images and r elated visual objects as
bags of pixels or sets of vectors. F or instance gray scale im-
ages are modeled as a collection or bag of (X,Y, I) pixel
vector s. This epresentation implies a permutational invari-
ance over the bag of pixels which is naturally handled by
endowing each imag e with a permutation matrix. Each ma-
trix permits the image to span a manifold of multiple con-
figur ations, capturing the vector set$ invariance to order-
ings or permutation transformations. P ermutation config-
urations are optimized while jointly modeling many imag es
via maximum likelihood. The solution is a uniquely solvable
con v program which computes correspondence simulta-
neously for all images (as opposed to tmaditional pairwise
correspondence solutions). Maximum likelihood performs a
nonlinear dimensionality reduction, choosing permutations
that compact the permuted image vector s into a volumet-
rically minimal subspace. This is highly suitable for prin-
cipal components analysis which, when applied to the per-
mutationally invariant bag of pixels representation, outper:
forms PCA on appearance-based vectorization by orders of
magnitude. Furthermore, the bag of pixels subspace bene-
fits from automatic correspondence estimation, giving rise
to meaningful linear variations such as morphings, trans-
lations, and jointly spatio-textural image transformations.
Results are shown for several datasets.

1. Introduction

A vital component of any computer vision system is its
choice of representation for images and visual data. The
w ay visual information is parameterized,features are ex-
tracted, or images are mathematically described remains an
active area of research. The success of subsequent vision
modules for recognition, segmentation, tracking, and mod-
eling often hinges on the initial representation we chose.
For instance, if important variations in our image data gen-
erate linear or smooth changes under a given representa-
tion, a subsequent recognition module should perform sig-
nificantly better. In this article we propose a bag of pixels
or vector set representation for images. For example, a gray

scale image can be considered as a collection of N pix els
each with spatial coordinates (X,Y") and an intensity coor-
dinate (I). Thus, each image in our database is a bag of
(X,Y,I) 3-tuples. Similarly, an edge or point-image can
be seen as a bag of (X, Y") tuples with no intensity informa-
tion. Even color video can be described as a vector set of
(X,Y,R,G, B, time) 6-tuples. Figure 1(a) depicts this bag
of pixels or collection of tuples representation. For compar-
ison purposes, Figure 1(b) shows a traditional appearance-
based vectorized representation where the tuples are rigidly
concatenated along a fixed ordering.
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Figure 1: A bag of pixels or v ector set v ersus a directac-
torization representation for a gray scale image.

In a bag of pixels, it is important to maintain that there
is no ordering on the pixels and these can be permuted ar-
bitrarily . Concatenating the pixels into a single long vec-
tor would obscure this important source of invariance in
our representation. Instead of assuming a single ordering
or correspondence on the pixels in a bag, we will maintain
that each bag of pixels can span a manifold of configura-
tions in a vectorized Euclidean space and treat the order-
ing as an unknown yet estimable parameter in our modeling
process. Figure 2 depicts a manifold representing a sin-
gle image as a bag or set of vectors of IV pix els each of
which is a D-dimensional tuple. This manifold is embed-
ded in a RY*P_dimensional Euclidean vector space where
each point on the manifold is given by concatenating the
pixel tuples according to an arbitrary ordering. Admittedly,
hard permutations of a vector do not form a continuous
manifold. Instead, we approximate permutation with soft
doubly-stochastic matrices which do in fact create a smooth
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Figure 2: An image as a manifold of vector set configura-
tions in an embedding Euclidean vector space.

and continuous manifold of configurations. In this toy ex-
ample, we show four configurations of the same image un-
der four different v ector orderings. Each ector on the man-
ifold is an arbitrarily ordered concatenation of the 4 pixel
tuples. These configurations are invariant since all points
on the manifold correspond to the same bag of pixels and
render the same identical image. T o parametrically con-
sider arbitrary re-orderings, we endow each image or bag of
pixels with its own unknown soft block-wise permutation
matrix. Movement along each vector set or image’s mani-
fold can be represented by varying the unspecified permuta-
tion matrix to explore the arbitrary possible re-orderings of
the vector set. Instead of proposing a fixed scheme (flow-
based, appearance-based, physical deformation , etc.) for
establishing the best correspondence or optimal setting of
the permutation matrix, we fold this permutation estima-
tion into our overall learning algorithm which jointly com-
putes the permutations while fitting a statistical model to a
dataset of many images (e.g. faces, hand-drawn digits, and
so forth). Thus, while learning a model of multiple images
(for instance a Gaussian or subspace model), we simultane-
ously estimate the optimal setting for the permutation matri-
ces for each image such that we maximize the likelihood of
the model fitting to the dataset. Essentially, the correspon-
dence problem is simultaneously solved for each image in
the whole dataset via a global criterion. Potential criteria
we will consider include a Gaussian model fit or subspace
model fit to a given database of images.

We show that the above estimation problem is solvable
as a con vex program which yields a unique solution for the
joint estimation of the model and representation. In other
w ords, we jointly estimate a subspace model and the co
respondence or permutation matrices for all images. The
permutation matrices are described via a convex hull of con-
straints and we propose two convex cost functions for esti-
mating them. The first is the maximum likelihood Gaussian
mean estimator which gives rise to an estimate of permuta-
tion matrices that clusters images tow ards a common mean.
The second is the maximum likelihood Gaussian covariance
estimator which givesrise to an estimate of permutation ma-
trices (or correspondences) that aligns images into a mini-
mally low-dimensional subspace, which is an almost ideal

pre-processing step for principal components analysis. We
show update equations for solving the convex problem for
the permutation matrices as an iterative quadratic program.
T reating images in this manner provides a general method
for solving correspondence and gives rise to more mean-
ingful subspaces of variation for a given dataset. We sho w
interesting experimental results on image datasets includ-
ing faces and hand-drawn digit images. We note improved
modeling, reconstruction, correspondence and representa-
tion of images as bags of pixels. For instance, subspace
methods such as principal components show improved re-
construction accuracy (by orders of magnitude) when the
optimal permutations are estimated instead of being as-
sumed (or heuristically computed). Furthermore, we show
various spatio-textural morphing bases emerging automat-
ically after learning from image data. We then conclude
with extensions and a summary. Optimized implementation
code, additional results and further details are provided on-
line at: www.cs.columbia.edu/~ jebara.

2 Background

Other efforts in visual representations have explored similar
treatments of images as a collection of (X,Y, I) points or
(X,Y) points [15, 5]. Howe ver, one central issue plaguing
this type of representation is the so-called correspondence
problem [18, 1, 5]. For instance, it is not clear which tu-
ple in bag A (representing image A) should match with an
given tuple in bag B (representing image B). A variety of
methods exist for establishing such correspondence, for ex-
ample physics-based models [15, 18]. Another way to im-
prove appearance models that directly vectorize images is
to estimate and apply spatial alignment [14, 13, 4, 12]. Op-
tical flo w and wariants similarly compute small local corre-
spondences to recover jointly spatial and illumination sub-
space models [1, 8, 16, 2]. An interesting alternative that
is similar to our approach is to consider direct optimization
criteria for establishing correspondence such as minimiz-
ing the covariance of the data [11] or its description length
[3]. Howe ver, in most framworks, correspondence is es-
tablished a priori through some intermediate criterion, pre-
specified physical constraints, pairwise matching or align-
ment optimization instead of emerging automatically from
invariances in the overall model learning process. We pro-
pose the latter scheme, estimating correspondences to agree
with our modeling paradigm without resorting to prior or
side constraints.

3. Bags of Pixels vs. Vectors

In this section we further motivate and compare the bag of
pix els or ‘ector setrepresentation v ersus v ectorization or
appearance-based models. Correspondence issues and the
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topology of an image are discarded under direct lexigraphic

vectorization of the image. V ectorization merely scans the
image in a fixed spatial pattern, concatenating each scalar

intensity entry into a long vector and ignoring the spatial

relationship between adjacent pixels. In this representation,

natural variations in the image such as translation appear

highly nonlinear. For e xample, translating a rasterized im-
age v ectorzg by ¢ pix els w ould ivolve multiplying it by a

shifting matrix M taken to a power of ¢, i.e. x; = M?txy.

This is a highly nonlinear operation. In Figure 1(b), di-

rect appearance-based vectorization naively or ganizes pix-
els into a fixed vector by assuming a fixed ordering and sac-

rifices our ability to see variation in spatial coordinates, if

for example, we were to form an eigenspace over a database
of such images. If, we instead represent the image as a bag

of pixels without specifying the ordering, we can maintain

properties of the data such as spatial proximity between ad-

jacent pixels and see variations in X and Y as well as 1.

Figure 3: Morph properties of bag of pixels or vector sets.

One crucial property of the vector set or collection of tu-
ples (i.e. pixels) is that the correspondence between images
in the dataset is no longer specified and becomes implicit
in the learning process. For example, the aforementioned
nai ve ordering used in ‘ectorization would make the X and
Y components of the large v ector redundant since these are
constant from image to image. The only sources of variation
are the I-intensity components. Meanwhile, the collection
of pixels representation does not assume an ordering and, if
we were to properly estimate correspondence, variations in
the X and Y spatial coordinates could emerge. Consider ap-
plying a principal component analysis method to vectorized
images as in the eigenfaces method [13]. Therein, a basis
over the rasterized or wectorized representation would only
involv e additions and deletions of intensity components in
the image. Therefore, a simple change like translation in
the image appears highly non-linear. Alternatively, a basis
over a collection of tuples where correspondence is opti-
mally estimated allows variations in X and Y coordinates
just as easily as variations in intensity. Thus, an image can
morph or translate via a linear transformation in this repre-
sentation. This process is depicted in Figure 3. In (a) we see
a regular gray-scale image, which we can consider as a 3D
surface with X -coordinates, Y -coordinates and I-intensity

values. If vectorized in lexicographic order, the only basis
of v ariation will be a wertical change in intensities as shown,
for instance, in (b). In (c), however, we see that a basis of
morphings in X and Y coordinates could also emerge if the
vectorization is handled more elegantly. In this final figure,
the vectors of flow indicate that we can translate the image
equally well in X, Y or I merely via linear variations. Thus
we note that it is suboptimal to assume an arbitrary order-
ing. We will instead compute the optimal correspondence
or permutation matrix for each image while we perform
our model estimation (i.e. estimating a PCA subspace or
Gaussian model). One confounding aspect remains in our
modeling problem however: each permutation matrix is an
unknown transformation parameter which moves the image
along a path of invariance.

4. Modeling while Permuting

We can view the unusual vector set representation as a prob-
lem of learning a model under permutational invariances
of each image (here, each image is a data point in a given
database we are attempting to model). A representation of-
ten implies invariance properties in an object. In the bag of
pixel vectors, ordering of the objects in the bag should be
invariant. So, transformations that permute the order of the
tuples should not change the representation.

Figure 4: Invariant manifold learning.

Consider estimating of the optimal permutation or corre-
spondence by using a simple example of a subspace learn-
ing problem, such as principal components analysis (PCA).
In Figure 4(a) we see a data set in 2 which needs to be
modeled by a lower dimensional manifold. Clearly, no ap-
propriate manifold is apparent and PCA will not provide a
useful result. This is because we have assumed a fixed or -
dering for each image (each data point) instead of maintain-
ing the images as a manifold of possible vectorized config-
urations. However, if we generalize PCA and add invariants
to the data, this is no longer the case (see Figure 4(b)). For
instance, the permutational invariance property of each im-
age provides us with not only a single point for each image
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but a path or manifold' along which each image may move
invariantly prior to applying PCA (i.e. acorresponded prin-
cipal components analysis). If points can be moved along
their permutation paths invariantly, they can more clearly
form a compact two-dimensional subspace. Therefore, we
will approach invariant model learning as estimation of per
mutation transformations on the data (i.e. paths for each
datum) while simultaneously forming a model.

5. A Conv ex Poogram

For the above estimation problem to have a unique globally
optimal solution, we cast it as a jointly convex optimization
over permutation matrices and model parameters. In fact,
we will implicitly compute the optimal model parameters
and fold them into a single cost function exclusi ely over
permutation matrices. This process will be e xplicated in
the next section, but for now, assume we have the following
general scenario. We are given an input dataset of 7' vectors,
X1,..., X7. Each of these T vectors is of size N x D and
results from the concatenation of the tuples in the bag of
pixels according to some initial random ordering. We then
endow each vector with an affine transformation matrix A;
that interacts linearly with it as follows: 3, A} X/. These
matrices then act to permute the entries in the given v ector
[71.

For our invariance, these A; matrices are not just affine
matrices but rather block-wise permutation matrices. How-
ever, optimizing over hard permutation settings is in-
tractable (max-cut or integer programming methods might
help resolve this). Instead, we relax the matrices such that
they are soft permutation matrices. Also, the matrices can
only permute the D-dimensional tuples and not individual
scalar entries in the X; vectors. Therefore, each A; ma-
trix is a grid of many D x D identity matrices scaled by an
unknown non-negative scalar A;’. For example, a matrix
permuting two different tuples has the following structure:

AT AT
A= | o1 oarr

T o relax the hard permutation matrices which only have bi-
nary entries, we only constrain each A; matrix to be doubly-
stochastic, in other words:

doAi=1 Y Al=1

i J

A7 >0

Thus, we can re-sort the tuples in each X; vector as well as
take convex combinations of them. In fact, the A; matrices
need not be square, but can be of size ND x N;D where
Ny is the number of tuples in each X; image vector. This is
useful if we want the correspondence estimation to combine
or mix two or more pixels in differently sized images so that

1A path is simply a 1-dimensional manifold

all images map into a common RV embedding space for
PCA or our Gaussian model. We denote these many con-
strained transformation matrices as A = Aq,..., A7 and
note that they satisfy a set of linear equality and inequality
constraints. Thus, our solution space over the set of matri-
ces is a convex hull. The convex hull is a requirement of any
con vex programming frame ork, as shavn below:

mjn C(A) subject to ZA?Q;Z +b,g > 0V, d (1)

1)

Here, C'(A) is a convex cost function to be minimized
and the Q¢4 and b;4 constants specify a hull of constraints
(such as our doubly-stochastic constraints). Once we spec-
ify C(A), the above formulation is solvable via convex
programming techniques, including dual and axis-parallel
methods which all yield a global solution. The general op-
timization picture that emerges is sho wn in Figure 5.

C(A)

Figure 5: Convex program over doubly-stochastic matrices.

We now propospossible  choices for the convex cost
function over the C'(A) matrices. These emerge automat-
ically from traditional maximum likelihood modeling crite-
ria (such as Gaussian modeling or subspace modeling).

6. Maximum Likelihood Criteria

We now consider two model estimation criteria (although
others are possible) and see how they give rise to a con-
vex cost function over the permutation matrices. For
jointly performing model estimation while learning invari-
ances, consider the simplest case of estimating a Gaussian
mean by maximizing likelihood of the data while we ex-
plore different permutation settings. The log-likelihood is
(A, p) = Y, logN(A¢ X¢; p, I). The optimal mean is
= 1/T%, Ay X, which we can plug back into the log-
likelihood expression to get:

) D 1 A
(A p) = 5 log(2m) — 3 > A — al)?
t

The above likelihood can now be further maximized over
permutations. By ne gating, we con ‘ert likelihood into a
cost function to minimize over A. With further manipula-
tions, the cost function that emerges essentially minimizes
the trace of the covariance of the permuted image data:
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C(A) = tr(Cov(AX))

The trace of the covariance is a convex quadratic function
over the A; matrices. Combined with linear constraints that
make each A; doubly-stochastic, this cost is minimizable
via quadratic programming or iterative methods. This Gaus-
sian mean criterion thus tends to select permutation matri-
ces that cluster data spherically, by moving images along
their paths to center data towards a common mean.

We generalize to Gaussians of variable covariance as in
N(AX; u, X)) and also plug in the maximum likelihood co-
variance estimate 3 = 1/7T S (A Xy — ) (A Xy — )T
into the likelihood function to obtain:

e TD T -
(A, 0,%) = —TIOg(QW)—§IOg|E|

1 AT N
3 D (AeXe = )T THAX - )
t

After simplifications, the maximum likelihood solution of
A is equi valent to minimizing the cost function Cov(A X )|
2. We will instead minimize the logarithm of the above
cost, i.e. C(A) = log|Cov(A X)| since it shares the same
optima. We also regularize the cost function by adding a
small identity matrix to the covariance and adding a small
tr(Cov(A X)) term (as in the Gaussian mean case), we can
avoid rank degeneracies and guarantee the cost stays con-
vex. More specifically we have:

C(A) = log|Cov(A X)+ e I|+ extr(Cov(A X))

Both €; and e, are kept small (= 1.0). We prove convexity
in the Appendix. Therefore our new C'(A) is again convex
and Equation 1 results in a convex program. However, it is
not a quadratic program. We can instead minimize C'(A) by
iteratively upper bounding using a quadratic function in A.
This permits us to sequentially solve multiple quadratic pro-
grams interleaved with variational bounding steps until we
con ‘erge to the global solution. First consider log |.S| where
we have definedS = Cov(AX)+e; I. The logarithm of the
determinant is concave over co variance matrices [§. Since
log|S| is concave, we can upper bound it with a tangential
linear function in S that is equal and has the same gradient
R = S at the current setting of S = Sy which is com-
puted from our current setting of our permutation matrices,
A = Ay. The upper bound is then:

log|S| < trace(RS) +log|So| — tr(RSy)
Adding our additional regularizer term with €5 to the above,
we obtain the following upper bound on C(A):
C(A) < trace(R(Cov(A X)+ €11)) + log |So|
—tr(RSo) + extr(Cov(A X))

2Both the trace and determinant were discussed by [11] yet were not
derived via maximum likelihood or convexified into a uniquely solvable
program o ver doubly-stochastic matrices.

Simplifying the bound by removing terms that are constant
overA, we have the following surrogate cost to minimize:

C(A) = tr(MCou(A X))
where M = (Cow(AX)+el) ' +el

We thus update M for the current setting of the A; matrices

(by computing the covariance of the data after each A is ap-

plied to each X}), then lock it for a few iterations while we

minimize the trace to update the A permutation parameters.

Updates of M are interlea ed with updates of the A matri-

ces until convergence. The above criterion attempts to clus-
ter data ellipsoidally such that it forms a low-dimensional

sub-manifold. It is well known that the determinant of a

co variance matrix behaes like a volumetric estimator and

approximates the volume of the data. Minimizing volume

by v arying thepermutation matrices (i.e. computing the

correspondence) is a valuable preprocessing step for PCA

since it concentrates signal energy into a smaller number of
eigen values, imprwing the effectiveness and reconstruction
accurac y in the PCA subspace. Therefore, this criterion at-
tempts to flatten the data via permutation such that it forms

as flat and low-dimensional a subspace as possible.

7. Implementation

The cost functions so far both involve minimizing the trace
of a matrix in the following general form (M = I for the
Gaussian mean case, while in the Gaussian covariance case,
M 1is periodically recomputed from the covariance of the
data as it is being transformed):

tr(MCov(A X)) = % Z Amn AP X prPm YR

mpnqi
_ LS ammamx iy
T2 i J i g
mpngqij

De generacies may arise since we approximate permutations
using doubly-stochastic matrices. For instance, A;’s entries

might all become a constant ¢ = 1/ N, average out all tu-

ples. To discourage this, we add a quadratic penalty to the
costas —A Y. (AM" —c)?. This penalizes matrix entries

close to the mean and favors entries near O or 1. The A is

chosen adaptively to maintain convexity’.

T o minimize the cost with constraints, we use an SMO
approach [17], although an SVD-like updated rule for each
Ay is also possible. As in SMO, we vary a single A; matrix
for the ¢’th image at a time and only update 4 of its entries
(Amn AT AP™ ) APT) while all others are locked. Iterat-
ing randomly, we ultimately update all scalar entries in each

30ther simplifications are possible. For instance, when minimizing in
the determinant, we can force the Gaussian mean to be equal to a single
random image in our dataset, i.e. 4 = X for the ¢’th image and also lock
its corresponding permutation matrix to identity, i.e. A; = I.
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Figure 6: Update rule for iteratively adjusting entries of the permutation matrices.

A; matrix. However only 4 scalars are updated at a time in a
given iteration. Double-stochasticity gives the equality con-
straints: A"+ A7 = a, AI" + AP = b, A+ A" = ¢
and A;"? + AP? = d. So only one degree of freedom is left
to compute per iter ationand is updated as in Figure 6. The
operations involv ecomputing all possible inner products
between the X-tuples X,, and X, weighted by all relevant
Myms Moy, My, and M, sub-matrices*. We compute
the H1,H2, H3, H4 and NUM,DEN terms. The ratio
of NUM over2DEN gives the optimal update value for
the matrix entry A7*". We then limit A}*" to satisfy the in-
equalities A" € [max(0,a—d, c—1),min(a, ¢, 1+a—d)].
After updating A7™", we can update the other 3 entries via
their linear dependence on A7*". Iterating the update rule
randomly over dif ferent entries and matrices while intermit-
tently recomputing bounds (via the inverse of M) con veges
monotonically to the global minimum of C'(A).

If a new test image X741 is observ edafter training
and we wish to compute its Apy; matrix, we could re-
optimize the full cost C(A; ... Ar41) again. A more ef-
ficient approach is to fix previous estimates of matrices A;
for t = 1..T and just optimize C'(A) for the new Ap,.
A further simplification is to apply PCA to the covariance
matrix since the training data is now flattened into a sub-
space. We maintain a reasonable number of k eigen wectors
and align a new image to this eigenspace by choosing its
permutation matrix Ap4 to minimize its squared error of
the reconstruction in the subspace. If the eigenvectors are
Vi,..., Vg, we thus minimize the following quadratic cost
subject to double-stochasticity constraints on Ap;:

Aryr = argmgHH2:(Vg/1XT+1)Vk—AXT+1||2
k

4For clarity, here the matrices and v ectors are indexed with subscripts
instead of superscripts and all entries where the datum index does not ap-
pear refer to the datum at the £’th index.

8. Experimental Results

We evaluated the framew ork on three datasets:(X,Y") point
images of digits, (X, Y, I) intensity images of a single faces
and (X, Y, I) intensity images of multiple individuals. In
the first dataset, we obtained 28 x 28 gray scale images of
the digits 3 and 9 which were then represented as a col-
lection of 70 (X,Y") pix els by sampling the rezion of high
intensity . This generates clouds of 2D points in the shape
of 3’s or 9’s. A total of 20 such point images was collected
with 70 (X, Y") pix els each. We then estimated the A; per-
mutation matrices by minimizing the covariance’ s determi-
nant. Figure 7(a) depicts 6 exemplars of the original image
data as point clouds. In Figure 7(b), standard PCA with 10

(a) Original Data

(b) Direct PCA

(c) Permuted PCA

Figure 7: Reconstruction of digit images via PCA with and
without permutation estimation.

eigen vectors reconstructed thedigits point clouds poorly.
In Figure 7(c), PCA with 10 eigenvectors was instead ap-
plied to the bag of pixels after estimation of the permuta-
tion matrices. Note that the images are reconstructed more
faithfully in the latter case due to the estimation of the per-
mutation or correspondence. Unlike the direct PCA eigen-
vectors which do not resolve correspondence, the eigenvec-
tors after permutation seem to translate and morph the digits
smoothly as in Figure 8(a). Also, the first eigenvectors ha ve
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more interpretable modes of variation. When applied to the
number 9, the first eigenvectors seem to morph the point
cloud in interesting ways as in Figure 8(b) and (c).

(a) Interpolation

(b) Eigenvector

(c) Eigenvector

Figure 8: Linear interpolation (morphing) and effect of the
first eigenvectors under a bag of pixels representation.

In a larger experiment, we obtained 7' = 300 gray scale
images of faces and sampled the pixels in skin-colored re-
gions to obtain a collection of N = 2000 (X,Y,I) pixels
for each f ace. The f ace images were of a single indvid-
ual’s face as it spans many lighting, 3D pose and expres-
sion configurations. Due to the larger size of this dataset,
we avoided explicitly storing the A; matrices which are of
size O(N?). A more efficient storage method for doubly-
stochastic matrices can be use where each is saved as 2V
scalars and estimated with the Invisible Hand algorithm
[10]. On this dataset, we estimated the permutation trans-
formation matrices and we found an eigenspace of 20 com-
ponents. We then reconstructed the images from 20 coef-
ficients alone. Figure 9 depicts the accuracy of the recon-

(a) Original Data  (b) Direct PCA  (c) Permuted PCA

Figure 9: Reconstruction of (X,Y,I) facial images with
vectorized PCA or PCA on permutable bags of pixels.

structed f aces when standard PCA (with 20 eigewectors)
w as used as well as when PCA for bags of pixls was used
which performs permutation estimation. The images show
much higher fidelity when permutation or correspondence
is optimized. The permuted (X, Y, I) vector -set eigen ec-
tors act smoothly, rotating and morphing the face in 3D as
well as changing its illumination. T raditional appearance-
based PCA causes ghosting effects where translated im-
ages do not move smoothly but, instead, appear to fade

in and out. More interestingly, in terms of squared error,
PCA had a reconstruction error of 9e5 while permuted PCA
had reconstruction error of 5e3. The novel method reduces
squared error by approximately 2.5 orders of magnitude.

Finally, a large dataset of 3D synthesized faces of many
individuals w asused. Permutations were estimated in a
semi-supervised way for efficiency and then PCA was per-
formed on the permuted pixels. We show the first few eigen-
vectors as £ displacements from the mean face in Figure 10.
Each row is one eigenvector (the top row is the top eigen-
vector) while columns show varying degrees of additions
and deletions of the eigenvector. Note how the eigenv ectors
correspond to natural out-of-plane and in-plane rotations, as
well as joint morphings and intensity variations. In current
work, we are building a bag of pixels face track er based on
these eigenvectors.

Figure 10: Top 5 Bag of Pixels Eigenvectors applied to the
Mean from Multi-Person (X, Y, I') Face Images.

9. Summary and Conclusions

We explored permutation invariance for dealing with im-
ages that are organized into collections of tuples, vector sets
or bags of pixels. Statistical modeling (Gaussian mean, co-
variance, appearance subspaces) was sho wn to clearly ben-
efit from the simultaneous estimation of per-image permu-
tation transformations as well as model parameters. Image
data points are effectively permuted and aligned simultane-
ously during the modeling process. The y are also aligned
as a whole dataset instead of via pair-wise or ad hoc crite-
ria. We note drastically improved reconstruction accuracy
as well as more meaningful linear bases of variation (mor-
phings, spatio-textural change, etc.). Currently, we are ex-
ploring a kernel or distance K (, x) — 2K (x,v) + K (v,v)
between bags of pix els which corresponds to finding the
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closest distance between two permutation manifolds. Sur - References
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Appendix (4]

Theorem The function C(X) = log|Cov(X) + e I| +
eatr(Cov(X)) of the vector dataset X = {Zy,...,Zn} is
con vex in the data (and also in variables sub as A,, that
linearly interact with the data) when e; > 1 and es > 1.

Proof W ithout loss of gner ality, assume the vectos in X
are zero-mean which yields Cov(X) = Y. %, L when we
ignor e scaling byl | N. The function then simplifies to:

> 3.3 + e |+ eatr (Z @3;5)
n n

Compute the Hessian of C(X) over single large vec-
tor argument X formed by the concatenation of all the ]
1,...,&N. The desired 1C" (X) is then:

1Cov(X) + e1I| ' T+ .7 —2|Cov(X) + 61| 2 XXT

(6]

(7]
C(X) =log

(8]

[10]

Here T is a large identity matrix the size of XXT. For

con vexity,we show the Hessian or a lower bound on it [11]
remains positive definite. Note —XXT is lower bounded

by —XTXT in the Loewner ordering sense. Also, note

XXT = tr(Cov(X)). Thus, the Hessian is lower bounded [12]
by the following scalar times T:

|Cov(X) + e I|™" + €3 — 2|Cov(X) + e 1|2 tr(Cov(X))

Rearranging and writing traces and determinants in terms
of the (arbitrary yet non-negative) eigenvalues Ay, ..., \p
of Cou(X) we get following non-negativity requirement:

1 9 1
562];[()\d+61) +§];[(>\d+61)—2d:/\d > 0

In the unidimensional case, there is one eigenvalue A\, and
the above is a quadratic which remains positive whenever
€163 > 1/8. In the multidimensional case, observe the gra-
dient 8%1_ of the left hand side of the above inequality: [16]

%62 H(Ad +ea)?Ni+e)+ % H(Ad +e)-1
d#i d#i
If ey > 1 and es > 1 the gr adient stays positive Thus, to
minimize the left hand side of the bound, eigenvalues can
move a gainst the giadient and shrink to 0. However, the in-
equality is still satisfied at their lowest setting A = 0 where
the left hand side attains its non-negative minimum ensur-
ing the function C'(X) is con ve for €, > 1 and €3 > 1.

(13]
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