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Abstract

This paper discusses building complex classifiers from a
single labeled example and vast number of unlabeled obser-
vation sets, each derived from observation of a single pro-
cess or object. When data can be measured by observation,
it is often plentiful and it is often possible to make more than
one observation of the state of a process or object. This pa-
per discusses how to exploit the variability across such sets
of observations of the same object to estimate class labels
for unlabeled examples given a minimal number of labeled
examples. In contrast to similar semi-supervised classifica-
tion procedures that define the likelihood that two observa-
tions share a label as a function of the embedded distance
between the two observations, this method uses the Naive
Bayes estimate of how often the two observations did result
from the same observed process. Exploiting this additional
source of information in an iterative estimation procedure
can generalize complex classification models from single la-
beled observations. Some examples involving classification
of tracked objects in a low-dimensional feature space given
thousands of unlabeled observation sets are used to illus-
trate the effectiveness of this method.

1. Introduction
Current computational classification systems rely on exces-
sively large numbers of labeled examples to classify effec-
tively. In contrast, humans can classify objects extraordi-
narily well with very little supervision. While by no means
offered as a complete explanation, it is interesting to note
that humans almost never make a single observation of an
object in the world (except arguably in cognitive science
experiments). They are almost always able to see an object
over an interval of time (even if it is a photograph). While
the instantaneous change (e.g., optical flow) may be a major
source of information for classification, it is our contention
that exploiting the independent appearances or feature val-
ues can result in effective appearance-based classification
of sequences as well as individual observations.

Whenever a process or object can be sampled multiple
times, multiple observations of the same underlying pro-

cess or object can be acquired. A Multiple Observation
Set (MOS) is such a set of observations. The variability
in visual observations from an MOS of a particular ob-
ject may result from: noise in the sensors; active explo-
ration (squinting one’s eyes or moving a photograph closer
to you); change in viewing angle; change in object position;
change in object articulation; or any other change in the ob-
ject state or sensor state that alters the observation that is
made of the object.

At the very least, observations in a particular MOS
should exhibit the type of noise incurred in estimating mea-
surements of an object (e.g., camera noise). In some cases,
the observations in an MOS exhibit class-conditional vari-
ability exhibited as a process evolves over time, e.g., a per-
son’s appearance during a walking cycle. In rare cases,
the observations in an MOS can be considered to produce
completely independent and identically distributed samples
from the underlying class’s appearance model.

This paper discusses a minimally-supervised learning
system that can estimate complex, density-based classifi-
cation models, often with just a single example per class.
It accomplishes this by leveraging the information available
in large quantities of MOSs to create effective density-based
classification models. Examples of classification of tracked
objects are explored.

1.1. Previous Work
Many researchers have induced a pair-wise similarity1 mea-
sure from data that was originally embedded in a Euclidean
space. Examples of these are exponential distributions
based on Manhattan distance between observations [5] or
squared distance [3, 6]. In the case of label assignment us-
ing a Markov random walk procedure, the underlying hy-
pothesis is that these similarities are related to the likelihood
that two observations share a label2.

This paper leverages another source of information of
which observations are likely to result from the same un-

1The similarity is often referred to as a distance or dissimilarity, but the
underlying information is the same.

2Though this is an iterative, probabilistic technique, it is related to spec-
tral clustering methods.
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derlying class. Specifically, it leverages which observations
were historically likely to result from the same underlying
class. This paper will illustrate that this new source of in-
formation is vastly superior to simple local similarity es-
timates, particularly for sufficiently complex classification
problems where data are not embedded in separable mani-
folds.

While this additional information is not universally
available, there are many examples of where it is avail-
able or could be made available but is not exploited. Vi-
sual tracking is one example of where this type of data is
plentiful and cheap. By tracking a single object, the vari-
ability in different features produced in observations of that
object can be characterized. Because our research group
has tracked millions of objects over the last seven years in
indoor and outdoor environments, this is the primary area
of application we will use to illustrate this method. This
type of information has been used in unsupervised classifi-
cation [4] to estimate the K hidden classes that generated
the data. This was done using an EM procedure similar
to Hofmann et al.[1] and Lee and Seung[2] to estimate the
latent class-conditional, independent marginal distributions
that best approximate the observed joint co-occurrences.

This paper centers on minimally-supervised and ac-
tive learning, but exploits the same source of information.
Szummer et al.[5] estimated class label likelihoods by es-
timating a K-neighbor connected graph with weights es-
timated based on a Gaussian distribution on distance and
using said graph to propagate class label likelihoods for T
time steps. This enabled effective classifiers to be built for
many classic problems (e.g., the swiss roll) using a single
example, but it has difficulty in less “classic” problems and
requires three parameters to be determined (K neighbors,
T time steps, and the variance of the noise process). Tishby
and Slonim [6] estimated the probability of a Markov walk
from each node ending at each other node. They found the
number of time steps in which the mutual information of the
complete NxN conditional distribution decreased the least
and clustered the conditional distributions for each node at
that time step.

In addition to using the MOS-based estimate that two
observations share a label, our approach estimates the prob-
ability of a Markov walk from each labeled observation in
a class to each unlabeled observation with a ρ-probability
of restart. This procedure requires only a single parameter
(the restart probability) and results in robust class likelihood
estimation. By exploiting all of the MOS data to estimate
transition likelihoods that are class-based rather than depen-
dent on the embedding space, it is also independent of the
choice of the embedding space (e.g., scaling axes, using ra-
dius vs. area, using velocity/direction vs. using dx/dy, etc.).

This paper begins by introducing the concept of MOSs.
Section 3 describes the procedure that estimate class-
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Figure 1: This figure shows positional tracking data over-
laid onto the scene from which it was captured (a) and the
same data plotted on y-position vs. size axes (b). Each track
is displayed as a blue line which begins at the origin state
(green circle) and ends at its destination state (red x).

conditional densities fromas few as a single observation.
Section 4 discusses different supervision paradigms includ-
ing: random labeling, informative labeling, corrective label-
ing, and elicited responses. Section 5 covers future research
directions that relate to this learning paradigm. Section 6
draws conclusions from this work.

2. Multiple Observation Sets (MOSs)
An MOS is a set of observations of the same object or pro-
cess in the world. Some examples of multiple observation
sets are: multiple roles of a biased multi-sided die; the as-
pect ratio of a tracked object over time; the position of a
tracked object over time; multiple independent answers to
”What is your favorite number from 1-100?”; etc. In the
case of tracking data3, each tracking sequence results in
a single MOS where the measured features of the tracked
object at each time step are the samples and the MOS is
the unordered set of those samples. For a set of features
f1

i (t), f2
i (t), ... for the ith tracking sequence:

Oi = {{f1
i (1), f2

i (1), ...}, {f1
i (2), f2

i (2), ...},
..., {f1

i (Ti), f2
i (Ti), ...}} (1)

2.1. Discrete-output MOSs
Both time and the values of the features could be continu-
ous. In practice, as a result of most sampling procedures,
samples are only available at discrete points in time. Fea-
tures can be either discrete (e.g., male or female) or con-
tinuous (e.g., position). Little can be said about continuous
features unless some locality assumption is made. For ex-
ample, given any number of labeled observations in a con-
tinuous space, a new observation has a zero probability of

3In the case of visual tracking, it is useful to tune a tracker to decrease
the likelihood of falsely associating two objects
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being exactly the same as any previous example and could
be of a different class than its immediate neighbors given a
sufficiently complex classification model.

Our assumption is that within a ε-area around a point
in the continuous observation space, all observations have
approximately equal likelihood of being produced by the
same class. Under this assumption, we quantize the con-
tinuous space of observations into a set of discrete obser-
vations corresponding to ε-sized regions of the observation
space. In low-dimensional observation spaces, this can be
done by simply partitioning the space uniformly. In high-
dimensional, sparse observation spaces this can be done by
data-dependent quantization of the space. For simplicity,
this publication will use uniformly placed bins of observa-
tions.

Figure 1(a) shows some positional tracking observations
overlaid onto the scene from which they were captured over
the period of an hour on a Friday afternoon between 3 PM
and 4 PM. Figure 1(b) shows measurements of y-position
and size for the corresponding data. The scene consists of:
a roadway; a circular driveway; and sidewalks. Tracking
sequences of less than two seconds in duration have been
removed. What remains are 586 tracked objects, mostly ve-
hicles and pedestrians.

Many of the characteristics of the data are expected. For
example, objects are larger if they are in the foreground of
the camera (further down in the camera view). Also, the es-
timated size of pedestrians is very noisy relative to the size
of vehicles. Those less familiar with visual tracking data
may be surprised by the decrease in object size at certain
locations. This results from objects undergoing occlusion
as they enter or exit the scene. This is one of the factors that
makes classification of realistic tracking data a non-trivial
problem.

3. Iterative estimation procedure

This section describes the iterative procedure that esti-
mates complex, class-conditional densities from a single
labeled observation. The subsections describe estimation
of the data-dependent transition likelihoods, the Markov
random walk estimation procedure, derivation of the class-
conditional likelihoods using a Markov walk with proba-
bilistic restart, and classification of novel observations and
observation sequences. The next section will describe some
applications of these classifiers.

3.1. Transition likelihoods

Previous machine learning algorithms have been used to
estimate labels for unlabeled observations from the labels
of their “neighbors”. Given no additional information, one
is forced to estimate the “neighborhood” relationships for

pairs of points from their physical relationship in the em-
bedding space. In previous work, these estimates of simi-
larity have been functions of distance between data points
(sometimes set to zero for data points that are not the first
K-neighbors). Thus, the transition likelihoods were simply
a function of the coordinates of the original embedded ob-
servations.

The stated goal of many of these approaches was to
propagate labeling information along high-density separa-
ble data “manifolds.” Unfortunately for many applications,
object classes are not at all separable. In fact, in the ex-
perience of this author, the areas of the input space with the
highest density often correspond to ambiguous observations
that could be produced by multiple classes. These areas
result in significant “bleeding” of class-conditional density
estimates into un-related classes.

As an example, Szummer and Jaakkola [5] used

pik =
Wik∑
jWij

(2)

where Wik is defined as

Wij = exp (−d(xi, xj)/σ). (3)

where d(xi, xk) is any valid distance function.
In contrast, we define the transition likelihoods as the

probability that an xk observation resulted from observing
an object that also produced an xi observation. We define
Φ as the set of all pairs of observations in the entire set
of MOSs (excluding pairing observations in an MOS with
themselves). Φi is the subsets which contain the observa-
tion xi as the first element and Φik is the subset which con-
tain {xi, xk} pairs. The transition likelihood is simply the
likelihood of drawing an {xi, xk} pair from Φi.

pik = p(Φik|Φi) (4)

(5)

This value is low for two observations that are rarely exhib-
ited by the same class and high for two observations that are
often exhibited by the same class.

3.2. Markov Random Walk
For class l, with N labeled observations {o1, o2, ..., oN},
the likelihood of each observation given just the observa-
tion set is the likelihood of each observation given a random
draw from the labeled examples for that class, or

p0(xi|ci = l) ≡
∑N

n=1 δon,xi

N
(6)

where δon,xi
= 1 if the nth observation is equal to xi.

As N → inf , this estimate approaches the true class-
conditional density. But given a single observation per
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Figure 2: This figure shows the likelihood of each obser-
vation given all possible random walks of length 0, 1, 2, 4,
10, and 50 steps for three initial conditions. The initial con-
ditions (top row) correspond to one labeled observation per
class– pedestrians, passenger vehicles, and commercial ve-
hicles respectively. The observation space is y-pos (vertical
axis) and size (horizontal axis). Brighter values are more
likely.

class, this density might look similar to the first row of Fig-
ure 2.

The class-conditional densities are estimated by assum-
ing that an observations likelihood can be inferred based on
its likelihood and the likelihood of other observations that
have been exhibited by the same class. This recursive def-
inition can be formulated as a first-order Markov random
walk where each belief state can be inferred from the belief
state at the prior time step. Thus, the likelihood of a random
walk of t iterations is defined recursively as follows

pt(xi|c = l) =
∑

j

pijpt−1(xj |c = l). (7)

Figure 2 shows the likelihood of this Markov random
walk for three initial conditions over increasing numbers of
iterations. These three initial conditions correspond to sin-
gle, labeled observations (y-position and size) of a pedes-
trian, a passenger vehicle, and a commercial vehicle. The
first row shows that the likelihood is one for the labeled
example for each class and zero elsewhere before any it-
erations. The second row shows p(Φij|Φi) for the three
labeled values of xi. This represents the distribution of xj

observations that occurred in the same MOSs as the three
labeled observations. As the number of iterations increase,
the densities generalize to observations that have no direct
relationship to any labeled observations. As t → inf , the
all three Markov processes converge to a stationary distri-
bution, which is independent of initial conditions.

To use this type of estimation a number of time steps
must be chosen. If this number is too small, some number
of observations may have no likelihood under any label. If
this number is too large, the densities will be largely inde-
pendent of their initial conditions.

3.3. Markov Walk with Restart
Rather than choose a specific number of iterations to esti-
mate the class-conditional likelihood densities, we estimate
the likelihood of each observation given an infinite random
walk with restart probability, ρ.

pt(xi|c = l) = (1 − ρ) ∗
∑

j

p(xi|xj ,Φ)pt−1(xj |c = l)

+ρ ∗ p0(xi|c = l). (8)

Figure 3 shows the converged likelihoods for different
values of ρ. For ρ = 1, only the labeled observation for
each class has a non-zero probability. For extremely low
values of ρ, the likelihood functions become increasing in-
dependent of the labeled data. But for most values between
0.1 and 1.0, the likelihood functions will result in effective
classification using a single example for each class. For fu-
ture sections, we will refer to the converged estimate (where
t → inf) of the likelihood of a observation xi for a particu-
lar value of ρ given a particular class l as pρ(xi|c = l).
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Figure 3: This figure shows the likelihood of each obser-
vation in {y − position, size}-space given three different
labeled observations– a pedestrian; a passenger vehicle; and
a commercial vehicle. Each row shows the density for the
Markov walk with restart for t → inf given different values
of ρ.

3.4. Classification
The likelihood of an MOS, Oi = {x1, x2, ..., xn}, under
class model l is

p(Oi|c = l) =
n∏

j=1

p(c = l)pρ(xj |c = l). (9)

where p(c = l) is the prior likelihood of observing a partic-
ular class l. If the exact value of this probability is known, it
should be used. If it is not known, it can often be effectively
estimated from the N original data points as

p̂(c = l) =
∑N

i=1 p(xi|c = l)
N

. (10)

This is a probabilistic estimate of the amount of data that is
likely under each density.

Classifying MOSs with more than one element optimally
in classification domains that are not separable requires a
density-based classification. It is more effective than dis-
criminant classification because it represents uncertainty in
ambiguous observations. For instance, when any tracked
object enters a scene, its size not discriminant, so it may be
likely under multiple class models.

For ρ = 0.75 in Figure 3 three classes are shown derived
from single examples of a pedestrian, a passenger vehicle,
and a commercial vehicle. At the y-position where vehicles
leave the parking ramp, vehicles are the size of a pedestrian.
Once the car is unoccluded, it will have a high likelihood
under the car model and a low likelihood under the pedes-
trian model. It is interesting that the commercial vehicle
class does not have a high likelihood of occlusion from the
parking garage. Thus, a vehicle leaving the parking garage
is less likely to be a commercial vehicle.

4. Learning Paradigms
Thus far, we’ve discussed estimating class-conditional den-
sity models from a one (or a few) labeled observations. This
section discusses different methods for choosing the exam-
ples and how those choices affect the amount of supervision
necessary for a particular performance.

Classification results are shown for random labeling,
informative labeling, corrective labeling, and elicited re-
sponses. Random and informative labeling involve classi-
fying previously unseen observations using only a small set
of labeled observations from each class, selected either ran-
domly or pseudo-randomly. Corrective labeling and elicited
response are two online learning paradigms. Through this
section, it should become evident why density-based esti-
mators are useful for these learning paradigms. Our results
illustrate impressive generalization given minimal supervi-
sion.
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Figure 4: This figure shows the true class-conditional ob-
servation densities measured from a labeled corpus and the
densities approximated from a single labeled example of
each class (pedestrians, passenger vehicles, and commercial
vehicles) for a given ρ = .75.

4.1. Random Labeling
By labeling randomly selected observations, a classifier
can be quickly estimated. Figure 4 shows the true class-
conditional observation densities (estimated from a labeled
corpus) and the class-conditional observation densities ap-
proximated from a single random example of each of three
classes– pedestrians, passenger vehicles, and commercial
vehicles. The pedestrians (left) were primarily near the top
of this scene and exhibited the smallest sizes overall. The
commercial vehicles (right) were the largest vehicles and
tended to pass through the entire scene. The passenger vehi-
cles (middle) were moderate sized, except at the 4 locations
where they entered or exited the scenes (the top, bottom,
and two parking garage entrances in the lower third of the
scene).

The observation densities resulting from a single labeled
example are reasonably complex. They implicitly normal-
ize object sizes because of the characteristics of objects as
they move through the environment, not because of an ex-
plicit model of normalization. As a result they also effec-
tively represent unusual data artifacts, like persistent scene
occlusions.

Interestingly, a pedestrian-sized object near the parking
garage exit is more likely to be a car than a pedestrian. But,
because the likelihood under both classes is high, a pedes-
trian sequence that passes through this region of ambiguity
is likely to be properly classified shortly after it leaves the
area of ambiguity. This type of region of high density obser-
vations often results from ambiguous observations shared

Random Informative
Single 89.5 ± .34%* 93.5 ± .15%*
Pair 89.9 ± .23% 94.8 ± .07%

Sequence 91.0 ± .79% 95.4 ± .17%

Table 1: This table shows classification results for a classi-
fier trained with a single example per class. The rows corre-
spond to classifying individual observations, pairs of obser-
vations from a single sequence, and entire sequences. The
columns correspond to experiments with randomly selected
examples and informatively selected examples. The mean
and variance of performance is shown for 20 runs. Note(*):
because the classes are not separable, the best performance
attainable on this labeled data set is 96.86%

by multiple classes. This common (realistic) circumstance
is where standard manifold label propagation algorithms
run into difficulty. This location would result in significant
“bleeding” between the pedestrian and vehicle classes with
the manifold propagation techniques.

Some classification results for 423 objects are listed in
Table 1. For all of our experiments, the unlabeled obser-
vations used to learn the propagation densities, the labeled
observations, and the test sets were mutually exclusive. For
a single labeled example per class, the performance is ex-
ceptional. The reason for the maximum performance of
96.86% for classification of single observations is that there
are many pedestrians and vehicles near the top of the scene
which are always occluded (i.e. the Bayes error rate is
3.14%). If those cases were discounted, the average classi-
fication performance for a single, randomly-selected exam-
ple would have 92.4%. By using MOSs of length 2 or entire
MOSs, the classification improves by a percent or two.

4.2. Informative Labeling
The reason for the high variance in the classifiers built from
randomly chosen observations is that in some cases an am-
biguous observation is chosen as an exemplar for a class.
Choosing not to label ambiguous observations can signifi-
cantly reduce the number of labeled observations required
to achieve a defined level of performance. Table 1 illustrates
that if a supervision source is able to pass up its first obser-
vation in favor of a second, less-ambiguous observation, the
performance is significantly enhanced. Unfortunately, this
requires some domain-specific knowledge on the part of the
supervisor.

4.3. Corrective Labeling
If a supervision source is continuously available to monitor
the performance of a system (e.g., a security guard), a clas-
sification system can be initialized with nothing more than

6
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the knowledge of which classes are present in the scene.
As each object passes through the scene the system la-

bels the objects. If the system labels an object incorrectly,
the supervisor corrects the classification. E.g. “Daddy,
[child points] there’s an airplane!” “No son, that’s a heli-
copter.” Based on the presented examples, the class densi-
ties and prior probabilities can be re-estimated. As this pro-
cess continues, the system will require less and less correc-
tion as the system approaches its maximum performance.
Figure 6 shows some results for this type of supervision.

4.4. Elicited Responses
Unfortunately, in many environments this process could be
very tedious because 98% of the objects may be of the same
class showing the same type of variation. To solve this
problem, we introduced an “unknown” class with an equal
likelihood of producing any observation and an initial prior
weight. Thus,

p(c = lu|xi) =
p(c = lu)P (xi|c = lu)∑

li∈labels p(c = li)p(xi|c = li)
. (11)

This can be used in two ways. In the first method, an
online system can ask for supervision only if the likelihood
of the labeled example is higher under the “unknown” hy-
pothesis than any of the existing class models. After the
label is incorporated, that observation (and all similar ob-
servations) will have a higher likelihood under the the given
class than the unknown class. This will significantly reduce
the amount of supervision required.

In a second method, a batch system could evaluate all
unlabeled observations over a period of time and select the
one that is most likely to be informative and query the su-
pervisor on the class of that observation. By informative,
we mean an observation that has a high likelihood under
the “unknown” class. This observation will correspond to
one that has a low likelihood under all the class-conditional
models. By sampling from the unlabeled data in proportion
to p(c = lu|xi), one is likely to chose examples that are less
related to previously labeled examples.

Figure 5(a) shows the scene we have been using as an
example. Figure 5(b) shows the size vs. y−position class-
conditional densities for the three classes of objects (pedes-
trians, passenger vehicles, and commercial vehicles). The
fourth density in the row shows the likelihood that a sam-
ple will be chosen as informative, given the current state of
the class-conditional models. In this case, the next query to
the operator will likely be a pedestrian-sized object lower in
the scene. After that, the next query will likely be another
pedestrian or a large vehicle.

Figure 5(c) shows the same tracking data in {x, y}-
image coordinates. The class-conditional densities in this
example also result from a single labeled observation per
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Figure 5: This figure shows the an image of the scene
from which the data was taken. (b) shows the three class-
conditional densities and the likelihood of drawing each ob-
servation from those that are informative. (c) shows the
same information for a two class problem (pedestrians and
vehicles) in {x,y}-space using the same data. Further dis-
cussion in the text.
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mance (relative the maximum performance) for the active
learning scenarios.
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class. Given a single example of a pedestrian in the upper-
right of the image, the class-conditional model shows that
pedestrians are likely along many different paths from the
building. From a single example of a vehicle leaving the
scene, the class-conditional model generalized to have a
high likelihood along the road in both directions and into
and out of the parking garage. Without additional informa-
tion, the classifier is 92% effective.

Two regions are shown to be particularly likely to be
informative– the path near the building in the top-center
and the sidewalk in the lower-right. The there were few
examples of pedestrians on the path near the building that
were tracked anywhere else in the scene, thus neither class
is likely in this region and additional supervision is required.
Any time there is no visual evidence that two clusters of ob-
servations might be related, additional supervision will be
required to learn an effective classifier.

Figure 6 shows average performance of corrective and
elicited response for the two classification problems de-
scribed earlier over five time steps. It is apparent that choos-
ing informative examples results in faster training, because
the corrective labeling required more steps to achieve the
same performance in both classification problems because
many of the objects that were presented to the system were
redundant with past observations. The elicited response
system converged significantly faster in both cases. Note
that the first problem was a three class problem and thus
required at least three labeled observations to achieve rea-
sonable performance. The second problem required at least
two labeled observations.

5. Future Work

There are many areas for future investigation of methods
that exploit Multiple Observation Sets. Many other descrip-
tions of tracked objects could be added to the existing sys-
tem including: velocity, direction, silhouette shape, com-
ponent colors, mode of locomotion, etc. Other sources of
data may contain similar information of the type of varia-
tion that should be expected within a class. E.g., biological
data, user’s actions, emails with the same subject heading.

The value for ρ was the same for all of our experiments
and didn’t have a substantial effect on classification perfor-
mance, but the optimal value for ρ can depend on many fac-
tors including: the complexity of the observation space; the
completeness of the MOSs; and the amount of supervision.
One area of investigation is to adapt the value for ρ based
on the amount of confusion in the observation space. As
the amount of supervision increases, the value for ρ should
increase. Obviously, in the extreme of infinite labeled data,
ρ should be set to 1.0, as no generalization is required.

Though it is not remotely computationally feasible in the
case of our tracking data. An alternative to the discretiza-

tion step would be to use every continuous observation and
propagate class labels only locally (using a kernel function
similar to that used in previous approaches), but to estimate
the likelihood of each observation using its entire MOS.
Because of the discretization, our representation of pik re-
mains constant size regardless of the number of MOSs.

6. Summary
This paper has presented a method for building robust clas-
sifiers with minimal supervision by exploiting Multiple Ob-
servation Sets (MOSs). It has outlined a method for es-
timating complex class-conditional densities from a single
labeled observation. This method requires only a single pa-
rameter, ρ, and results in effective classification for reason-
ably difficult classification scenarios.

The density-based class-conditional model effectively
represents uncertainty in ambiguous observations. MOSs
with any number of observations can be classified using
this model. This method lends itself to multiple models
of supervision enabling classifiers to be quickly trained in
novel spaces with minimal interaction. Though the results
in classifying observations of tracked objects were espe-
cially promising, we believe this learning method could be
applied to any domain in which equivalent observations sets
are present.
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