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Abstract

Vision tasks, such as segmentation, grouping, recogni-
tion, can be formulated as graph partition problems. The
recent literature witnessed two popular graph cut algo-
rithms: the Ncut using spectral graph analysis and the
minimum-cut using the maximum flow algorithm. This pa-
per presents a third major approach by generalizing the
Swendsen-Wang method– a well celebrated algorithm in
statistical mechanics. Our algorithm simulates ergodic, re-
versible Markov chain jumps in the space of graph parti-
tions to sample a posterior probability. At each step, the
algorithm splits, merges, or re-groups a sizable subgraph,
and achieves fast mixing at low temperature enabling a fast
annealing procedure. Experiments show it converges in 2-
30 seconds in a PC for image segmentation. This is 400
times faster than the single-site update Gibbs sampler, and
20-40 times faster than the DDMCMC algorithm. The al-
gorithm can optimize over the number of models and works
for general forms of posterior probabilities, so it is more
general than the existing graph cut approaches.

1. Introduction

Computer vision problems, such as image segmenta-
tion, perceptual organization, and object recognition, re-
quire grouping image elements (pixels, edgelets, primitives)
into “coherent” visual patterns (regions, curves, objects) in
a process of optimizing some grouping criteria. The prob-
lem can be represented in an adjacency graph with the ver-
tices being the image elements, the edges being spatial re-
lationships and subgraphs being coherent visual patterns.
Thus it becomes a graph partition problem.

There are two approaches for graph partition in the re-
cent literature. One is the normalized cut[12, 9] using graph
spectral analysis to optimize a discriminative criterion. The
other is the minimum-cut[8, 6] which maps an energy mini-
mization problem to a maximum flow algorithm. The latter
is solved in polynomial time. Despite their reasonable suc-
cess, the two approaches are far from being general solu-

tions. Firstly it was shown[6] that only very limited classes
of energy functions can be mapped to the maximum flow
problem. Secondly the graph spectral analysis, like many
other discriminative clustering algorithms[3, 2], has diffi-
culties in expressing global visual patterns, such as shading
effects, perspective projection effects, contour closure etc.
Furthermore natural images contain very diverse visual pat-
terns which are “coherent” in many different ways. This
requires a generative and Bayesian formulation incorporat-
ing a number of diverse and competing image models[10].
There is no single discriminative criterion that is generally
applicable to all the visual patterns.

In this paper, we present a third major graph partition
approach by generalizing the Swendsen-Wang method– a
well celebrated algorithm in statistical mechanics. Formu-
lated in a Bayesian framework with generative image mod-
els, our algorithm simulates ergodic and reversible Markov
chain jumps in the space of all possible graph partitions to
search for global optima. The basic ideas and contributions
of our method are:

1. Given an adjacency graph, we compute a local prob-
ability at each edge for how likely the two vertices (image
elements) belong to the same pattern. Then by turning on
the edges at random according to their associated probabil-
ities, we form connected components, each being a good
candidate for a coherent pattern.

2. At each step, the algorithm splits, merges, or re-
groups a connected component which often includes a big
number of vertices. The moves are ergodic and observe de-
tailed balance equations. The candidate states are selected
proportional to their posterior probabilities weighted by the
probabilities of “graph cuts”. The acceptance probability
can be made to be always one, and thus our algorithm be-
comes a generalized Gibbs sampler.

3. The algorithm “mixes” rapidly at low temperature.
Unlike most MCMC methods it no longer needs a long
simulated annealing procedure[5]. Instead a fast annealing,
starting from a lower temperature is used. Thus it can start
from good initial conditions using heuristics to achieve a
short “burn-in” period. As a result, the algorithm is about
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400 times faster than the classical Gibbs sampler[4] which
flips a single vertex each time, and it is 20-40 times faster
than the previous DDMCMC algorithm[10]. It converges in
2-30 seconds in a 1.5GHz PC for image segmentation.

The central contribution of the paper is the two mathe-
matical theorems for calculating the acceptance probabili-
ties for the big moves, which observe miraculous cancella-
tions in the calculation. The theorems ensure that our al-
gorithm samples from general posterior probabilities, and
provide a foundation for fast simulation and optimization
for a broad range of vision problems.

2. Swendsen-Wang: basic ideas

The difficulty of sampling the graph partition space is
well reflected in the Ising and Potts models in statistical me-
chanics,

p(I) ∝ exp{β
∑

<s,t>

1(Is = It)} β > 0. (1)

where 1(Is = It) = 1 if Is = It for adjacent spins s, t
otherwise it is zero.

1/2 1/2

For the string of spins with label I ∈ {±1}n shown
above, the highest probability is achieved when all vertices
have the same label. In a best visiting scheme, the Gibbs
sampler flips the −1 spins at the two “cracks” to +1 with
probability po = 1/2. Thus to flip a string of n spins
(n = 9 here) from −1 to +1, the expected number of steps
is 1

(1/po)n = 2n. This is exponential waiting!

V
0

state A state B

V
0

V
1

V
2

V
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Figure 1. The Swendsen-Wang algorithm flips
a patch of spins in one step.

A major speedup for the Ising model in equation (1)
is achieved by the Swendsen-Wang (1987) algorithm [11].
E.g. Fig. 1 shows an adjacency graph as a 2D lattice with
each edge e connecting two adjacent spins s, t. SW turns
“on” each edge e with a constant probability qo = 1 − e−β

if s, t have the same label. Fig. 1 shows a component V0

connected by bold edges which are turned “on” at two states
A and B. The edges between V0 and its neighbors – V1 in
state A and V2 in state B are cut – turned “off”, see the
crosses in the figure. We denote the two sets of edges by the
respective “cuts”

C(V0, V1), C(V0, V2).

Then SW flips all spins in V0 in a single step and makes
a reversible jump between states A and B. The acceptance
probability for the move is shown to be 1. So SW can flip
all −1 spins in the 1D string example in one or a few steps.

The SW algorithm achieves fast mixing even at critical
temperature for typical graphs. Unfortunately, it is lim-
ited to simple Ising/Potts models and does not use the im-
age (data) information in forming the component V0. It
is found to be ineffective in the presence of external field
(data). In the following, we extend SW to simulating
general Bayesian posterior probabilities and make use of
bottom-up information to form the candidate components
V0 to further speed up the computation.

3. Bayesian formulation of graph partition

3.1. Graph Partition

Let Go =< V, Eo > be an adjacency graph where
V = {v1, v2, ..., vN} is the set of vertices for image ele-
ments such as pixels, edgelets, primitives and Eo is a set of
edges e =< s, t > for adjacent elements s, t. The objective
is to partition graph Go into unknown number of n full sub-
graphs Gk =< Vk, Ek >, k = 1, 2, ..., n, each keeping all
the edges in Go that connect its vertices:

V = ∪n
k=1Vk, Vk �= ∅, Vi ∩ Vj = ∅ for i �= j.

Ek = {e = (u, v) ∈ Eo | u, v ∈ Vk}, k = 1, 2, ..., n.

We denote by πn a partition with n subgraphs.

πn = {V1, V2, ..., Vn} or {G1, G2, ..., Gn}

Vertices in each subset Vk, k = 1, 2..., n forms a coherent
visual pattern specified by a generative probability.

The space of all possible partition is denoted by

Ωπ = ∪|V |
n=1Ωπn

with Ωπn being the space of all n-partitions. The edges
between any two sets Vi and Vj are denoted by a cut

C(Vi, Vj) = {e =< s, t >: e ∈ Eo, s ∈ Vi, t ∈ Vj}, i �= j.

Fig.2 shows a typical example of image segmentation. We
obtain an over-segmentation (middle) by applying a Canny
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Figure 2. Input image, an over-segmentation
with “atomic” regions being vertices, and a
segmentation result.

edge detection followed by edge tracing to form “atomic”
regions with nearly constant intensities. These atomic re-
gions are the vertices Vo and any two adjacent atomic re-
gions are connected by an edge to form the graph Go. The
right image is a result of our partition algorithm.

3.2. Solution space and Markov chain design

Take image segmentation as an example, we denote by
Iv the observed image attributes (pixel intensity, edge posi-
tion and orientation, etc) for element v, and by IV the im-
age representation for the set V . Suppose we use L classes
of image models for various patterns, such as color, tex-
ture, shading, curve etc. Each type of model is indexed by
c ∈ {C1, C2, ..., CL} = ΩC , and specified with parameters
θi ∈ Ωci . The model space is the union

Ωθ = ∪c∈ΩC Ω�.

The inner representation for a segmentation is

W = (n, πn, (c1, θ1), (c2, θ2), ..., (cn, θn)) (2)

Each subgraph Vi, i = 1, 2, ..., n in partition πn is speci-
fied by a model p(IVi ; ci, θci) of type ci and parameters θi.

The solution space for W is

Ω = ∪N
n=1 {Ωπn × Ωn

C × Ωc1 × · · · × Ωcn}.
This factorization of the solution space corresponds to

the necessary solution steps:
1. Partition graph Go by finding πn ∈ Ωπ.
2. Select an image model c ∈ ΩC for each subgraph

Vi ∈ πn.
3. Fit the models θci ∈ Ωci , i = 1, 2, ..., n.
If we assume the patterns are mutually independent, then

the objective is to simulate a Bayesian posterior

W ∼ p(W |I) ∝
n∏

i=1

p(IVi ; ci, θci)p(W ). (3)

The prior and image models can be Markov random field
models or global spline models, and are beyond what can be
minimized by the graph cut algorithms[6, 9].

The Markov chain must be ergodic in space Ω and have
p(W |I) as its stationary probability. In short, we need two
types of reversible jumps[1] bridging the subspaces of dif-
ferent dimensions in Ω.

1. Jumps in the model space Ωn
C ×Ωc1 ×· · ·×Ωcn , such

as model switching, diffusion (fitting) of parameters θc.
2. Jumps in the partition space Ωπ: split, merge, death,

birth.
The jumps are realized by Metropolis-Hastings

methods[7]. For a pair of states W = A and W = B,
we need to design proposal probabilities q(A → B) and
q(B → A). The recent idea of data-driven Markov chain
Monte Carlo (DDMCMC) in [10] is to calculate them
based on bottom-up discriminative models, summarized by
D(I), so that the proposal probabilities approximate the
posterior

q(B → A) = q(A|B, D(I)) ≈ p(A|I)
q(A → B) = q(B|A, D(I)) ≈ p(B|I)

Then the proposed move from A to B is accepted with
high probability α(A → B)

α(A → B) = min(1,
q(A|B, D(I))
q(B|A, D(I))

· p(B|I)
p(A|I) ). (4)

In this paper we use bottom-up data-driven information
D(I) and go one step further by making big moves. So the
algorithm can reach from a state A to very different B in one
step which may need an exponential number of small moves
otherwise, as we discussed in the Ising model example.

We follow the DDMCMC method[10] for the jumps in
model space, and the rest of the paper is focused on design-
ing smart moves in the partition space Ωπ for fast conver-
gence and mixing.

4. Sampling Ωπ with discriminative models

For an adjacency graph Go =< V, Eo >, we augment
each edge e =< s, t >∈ Eo with a binary random variable
µe ∈ {on, off} representing whether the edge is turned “on”
or “off”. In contrast to a constant probability qo for all edges
in the SW algorithm, we compute a discriminative model
for qe = q(µe = on|F (s), F (t)) based on local vector val-
ued features (texture, color, geometry etc.) F (s), F (v) at
the two sites. qe indicates how coherent (or similar) the two
vertices s and t are, and can be trained off-line.

By turning “on” each edge e in Go with probability qe

independently, we obtain a sparse graph G =< V, E >
with E ⊂ Eo being the set of edges which are turned on by
chance. The probability for E or G is

q(E) =
∏
e∈E

qe

∏
e∈Eo−E

(1 − qe). (5)
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G =< V, E > consisting of a number n of connected
components gk =< Vk, Ek >.

G = ∪n
k=1gk, ∪n

k=1Vk = V, ∪n
k=1Ek = E.

We denote them by

CP = {V1, V2, ..., Vn}. (6)

As the local probabilities qe are well trained, the sub-
graphs in CP are often meaningful parts of patterns. This
way, q(E) defines a bottom-up probability q(π) on the par-
tition space Ωπ.

T = 1 T = 2 T = 4                                    

Figure 3. Random samples of CP at T = 1, 2, 4
according to q(E).

Figure 3 shows random graph partitions CP for the
cheetah image whose adjacency graph Go is built on the
atomic regions in Fig. 2 (middle). On each column, we
show a CP sampled according to q(E) in equation (5). The
size of the components of CP can be controlled by a tem-
perature T on the edge probabilities qT

e . The smaller the T ,
the larger the size of the components. Clearly various parts
of the cheetah are obtained, which will be used as candi-
dates for big and meaningful moves in our MCMC algo-
rithm.

5. Stochastic graph partition by MCMC

V0

a. Go b. G c. CP

Figure 4. Three stages of graphs: a. adja-
cency graph Go, b. current partition state G,
c. a sample from the discriminative models
of G and its connected components CP .

Our graph partition algorithm operates three graphs
shown in Figure 4. It starts with an adjacency graph Go =<
V, Eo >. The current Markov chain state is a partition
π : V = ∪n

l=1Vl, represented by a graph G = ∪n
l=1Gl ,

where Gl =< Vl, El >, l = 1, 2, ..., n are full subgraphs of
Go (Fig.4.b), i.e. G was obtained from Go by removing the
edges between the subsets Vl.

Then during a move between two partition states, it
generates connected components CP (Fig.4.c) by turning
on/off the edges in G. A component in CP is picked up at
random as a candidate for reassignment.

Swendsen-Wang Cuts: SWC-1
Input: Go =< V, Eo >, discriminative probabilities qe,∀e ∈ Eo,

and generative posterior probability p(W |I).
Output: Samples W ∼ p(W |I).
1. Initialize a graph partition π: G = ∪n

l=1
Gl.

2. Repeat, for current state A
3. Repeat for each subgraph Gl =< Vl, El >, l = 1, 2, ..., n
4. For e ∈ El, turn µe = on with probability qe.
5. Vl is divided into nl connected components:

{gli =< Vli, Eli >, i = 1, ..., nl}.
6. Collect connected components from all subgraphs (see Fig.4.c)

CP = {Vli : l = 1, ..., n, i = 1, ..., nl}.
7. Select a component V0 ∈ CP at random with probability

q(V0|CP ), (usually 1/|CP |) (see Fig.5.a).
8. Propose to assign V0 to a subgraph Gl′ . l′ follows a probability

q(l′|V0, A, Go) (state B in Fig.5.b if V0 is merged to an
existing subgraph, state C in Fig.5.c if V0 is a new subgraph).

9. Accept the move with probability
α(A → B) or α(A → C) in theorem 1.

We omit the parallel steps of model switching and fitting
for clarity. The probability q(l′|V0, A, Go), l′ = 1, ..., n +1
can be designed simply as follows:

q(l′|V0, A, Go) =

{
a if Gl′ is adjacent to V0,
b if l′ = n + 1, new subgraph
c else

such that
∑n+1

l′=1 q(l′|V0, A, Go) = 1. Usually a = b =
10c.

The move between states A and B is a split-merge oper-
ation in canonical cases. Two special cases are the birth and
death moves.

1. If l′ = n + 1, V0 becomes a new subgraph, so the
move is a birth operation.

2. If V0 is equal to a subgraph Vl, the whole subgraph Gl

is merged to Gl′ . The number of subgraphs is reduced by
one, so it is a death operation.

In what follows, we give a simple, explicit expression
for the acceptance probability, which can be made to be 1
through a smarter choice of q(l′|V0, A, Go).
Theorem 1 In the above notation, consider a candidate
component V0 selected by SWC-1. If the proposed move
to reassign V0 from Gl to Gl′ is accepted with probability

α(A → B) = min(1,

∏
e∈C(V0,Vl′−V0)

(1 − qe)

∏
e∈C(V0,Vl−V0)

(1 − qe)

q(l|V0, B, Go)

q(l′|V0, A, Go)

p(B|I)
p(A|I) )

(7)

4

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



then the Markov chain is ergodic and observes the de-
tailed balance equations.

In the special case when l′ = n + 1, V0 is proposed to
be a new subgraph and Vl′ − V0 = ∅. So the cut is empty
C(V0, Vl′ − V0) = ∅,

∏
e∈C(V0,Vl′−V0)

(1 − qe) = 1 and
α(A → B) becomes α(A → C).

V0

V1

V2

x

x

x

x

x

x

x

V0

V1

V2

x

x

x

xx

x
x

x

x

x

V0

V1

V2

a. state A b. state B c. state C

Figure 5. A move between partition states
π = A, B, C, different by a set of vertices V0.
The vertices in the same color belong to a
subgraph. The vertices connected by thick
edges form a connected component.

Proof. The idea of the proof is that even though the proposal
probabilities q(A → B) and q(B → A) are very compli-
cated, their ratio q(B → A)/q(A → B) is extremely sim-
ple through miraculous cancellation. Then the conclusion
follows from the Metropolis-Hastings equation (4).

First, we calculate the proposal probability q(A → B) in
SWC-1, assuming state A has n subgraphs Gl =< Vl, El >
, l = 1, 2, ..., n. In the canonical case when V0 �= Vl and
Vl′ �= ∅, it is a conditional probability which consists of
two steps: (1) choosing V0 and (2) choosing l′. For clarity,
we discuss the exception cases later.

In state A, each subgraph Gl is broken into connected
components CPl by turning on and off the edges in El at
random. We denote the set of all connected components

CP (A) = ∪lCPl = {Vli : l = 1, ..., n; i = 1, ..., nl}.

For example, Figure 5.a shows 6 connected components.
For a CP of state A, we denote by Eon(A, CP ) the edges
that are turned on (the thick edges in Figure 5.a)

Eon(A, CP ) = ∪n
l=1{∪nl

i=1Eki}.

The rest of the edges, which are turned off, are the “cuts”
between a connected component Vli and other vertices in
the subgraph, i.e. Vl − Vli,

Eoff(A, CP ) = ∪n
l=1{∪nl

i=1Cli}, Cli = C(Vli, Vl − Vli).

Note that the edges between subgraphs had been turned off
before entering state A. The probability for choosing a CP

depends on state A and the discriminative models D(I),

q(CP |A, D(I)) =
∏

e∈Eon(A,CP )

qe

∏
e∈Eoff (A,CP )

(1 − qe).

We denote by ΩCP (A) the set of all possible CP ’s at state
A. We are interested in those CP ’s which contain V0,

Ω0
CP (A) = {CP (A) : V0 ∈ CP}.

Without loss of generality, we assume that V0 is a compo-
nent from subgraph G1 =< V1, E1 >. We denote the cut
between V0 and V1 − V0 by C01 = C(V0, V1 − V0).

All CP s in Ω0
CP (A) have the following two properties:

they all contain V0, and all edges between V0 and V1 − V0

are turned off (otherwise V0 is connected to other vertices).
In other words, ∀CP ∈ Ω0

CP (A)

V0 ∈ CP and C01 ⊂ Eoff(A, CP )..

For each CP ∈ Ω0
CP (A), the set V0 is picked with a proba-

bility q(V0|CP ). Now we are ready to compute the proba-
bility for selecting V0 at state A,

q(V0|A, D(I)) =
∑

CP∈Ω0
CP

(A)

q(V0|CP )q(CP |A, D(I)) (8)

=
∏

e∈C01

(1 − qe)[
∑

CP∈Ω0
CP

(A)

q(V0|CP )
∏

e∈Eoff (A,CP )−C01

(1 − qe)
∏

e∈Eon(A,CP )

qe].

We were able to factor the product
∏

e∈C01
(1 − qe) out

because C01 ⊂ Eoff(A, CP ) for all CP ∈ Ω0
CP (A).

Once V0 is selected, it is assigned to Gl′ with probability
q(l′|V0, A, Go), the same for all CP ∈ Ω0

CP (A). There-
fore, the proposal probability from A to B is,

q(A → B) = q(V0|A, D(I))q(l′|V0, A, Go). (9)

Now we calculate the proposal probability q(B → A)
in algorithm SWC-1. In the canonical case, the only way
one can get from state B to state A is by selecting V0 as a
connected component and re-assigning it to Gl.

In state B, we have the same partition as in state A ex-
cept that V0 belongs to Gl′ (see Fig. 5.b). Without loss
of generality, we assume that V0 is a component from the
subgraph G2 =< V2, E2 >. Ω0

CP (B) is the set of CP ’s
that contain V0 as a component and must share the common
cut C02 = C(V0, V2 − V0), illustrated in Figure 5.b by the
crosses. Similarly, the probability for selecting V0 at state
B is,

q(V0|B, D(I)) =
∑

CP∈Ω0
CP

(B)

q(V0|CP )q(CP |B, D(I)) (10)

=
∏

e∈C02

(1 − qe)[
∑

CP∈Ω0
CP

(B)

q(V0|CP )
∏

e∈Eoff (B,CP )−C02

(1 − qe)
∏

e∈Eon(B,CP )

qe],

and the proposal probability from B to A is,

q(B → A) = q(V0|B, D(I))q(l|V0, B, Go). (11)
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Observation. For each CP ∈ Ω0
CP (A), then CP ∈

Ω0
CP (B) and vice versa. Therefore we have

Ω0
CP (A) = Ω0

CP (B) (12)

For any CP above, the set of edges turned on are the same,

Eon(A, CP ) = Eon(B, CP ) (13)

and the set of edges turned off are also the same except cut
C01 occurs in state A and cut C02 occurs in state B. So

Eoff(A, CP ) − C01 = Eoff(B, CP ) − C02. (14)

Plug in equations (13) and (14) into equations (9) and
(11), we have the probability ratio by cancellation,

q(V0|B, D(I))
q(V0|A, D(I))

=

∏
e∈C02

(1 − qe)∏
e∈C01

(1 − qe)
. (15)

Therefore,

q(B → A)
q(A → B)

=

∏
e∈C02

(1 − qe)∏
e∈C01

(1 − qe)
· q(l|V0, B, Go)
q(l′|V0, A, Go)

.

By equation (4), we obtain α(A → B) as the theorem
states. Thus the move between A and B observes the de-
tailed balance equations.

The above proof is for the canonical case when there is
only one way to go from state A to state B, or from state B
to state A, namely by reassigning V0.

x

x
x

2V

10 VV =

State A State A State B

1V
20 VV =

1V
2V

Figure 6. There are two ways to merge sub-
graphs V1, V2 from state A to get to state B.
One is to choose V1 and merge it to V2, the
other is to choose V2 and merge it to V1.

There is an exception to the canonical case when there
are two paths between states A and B. It occurs when a
whole subgraph Gl or Gl′ is chosen as V0 in state A, and
thus two subgraphs are merged in state B. Without loss of
generality, we only consider two subgraphs V1, V2 in state
A and one subgraph V1 ∪ V2 in state B, as Fig. 6 displays.

• Path 1. Choose V0 = V1. In state A, choose l′ = 2, i.e.
merge it to V2, and reversely in state B, choose l′ = 1,
i.e. split it from V2.

• Path 2. Choose V0 = V2. In state A, choose l′ = 1, i.e.
merge it to V1, and reversely in state B, choose l′ = 2,
i.e. split it from V1.

Thus the proposal probability q(A → B) is the sum of
the probabilities for the two paths.

q(A → B) = q(l′ = 2|V1, A, Go)q(V1|A, D(I))

+q(l′ = 1|V2, A, Go)q(V2|A, D(I)) (16)

and similarly

q(B → A) = q(l′ = 1|V1, B, Go)q(V0 = V1|B, D(I))

+q(l′ = 2|V2, B, Go)q(V0 = V2|B, D(I)). (17)

In state A, the cut is C(V0, Vl−V0) = C(V0, ∅) = ∅ for both
paths, and in state B the cut is C(V0, Vl−V0) = C(V1, V2) =
C12 for both paths.

Following previous calculation, we have the proposal
probability ratio for choosing V0 = V1 in path 1,

q(V0 = V1|B, D(I))

q(V0 = V1|A, D(I))
=

∏
e∈C(V1,V2)

(1 − qe)∏
e∈C(V1,∅)(1 − qe)

=
∏

e∈C12

(1− qe).

(18)
Similarly, we have the probability ratio for choosing V0 =
V2 in path 2,

q(V0 = V2|B, D(I))

q(V0 = V2|A, D(I))
=

∏
e∈C(V2,V1)

(1 − qe)∏
e∈C(V2,∅)(1 − qe)

=
∏

e∈C12

(1− qe).

(19)
Plug in the above equations, we obtain the ratio,

q(B→A)
q(A→B) =

∏
e∈C12

(1 − qe) (20)

· q(l′=1|V1,B,Go)q(V1|A,D(I))+q(l′=2|V2,B,Go)q(V2|A,D(I))
q(l′=2|V1,A,Go)q(V1|A,D(I))+q(l′=1|V2,A,Go)q(V2|A,D(I))

The proposal probabilities for l′ must be designed in
such a way that:

q(l′ = 1|V1, B, Go)
q(l′ = 2|V1, A, Go)

=
q(l′ = 2|V2, B, Go)
q(l′ = 1|V2, A, Go)

(21)

This is easily satisfied in general. So we have,

q(B → A)
q(A → B)

=
∏

e∈C(V0,Vl′−V0)

(1−qe) · q(l
′ = 1|V1, B, Go)

q(l′ = 2|V1, A, Go)
(22)

In general notation, it is

q(B → A)
q(A → B)

=

∏
e∈C(V0,Vl′−V0)

(1 − qe)∏
e∈C(V0,Vl−V0)

(1 − qe)
· q(l|V0, B, Go)
q(l′|V0, A, Go)

Thus we have proved the exception case.
To prove ergodicity, observe that there is a non-zero

probability that any given node is chosen as a connected
component V0. Since the node can then be assigned to any
other subgraph with nonzero probability, and this holds for
all nodes independently, we can get from any partition to
any other partition with non-zero probability. End of Proof.
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Now we shall construct q(l′|V0, A, Go) in such a way
to obtain acceptance probability 1. Then our algorithm be-
comes a generalized Gibbs sampler.

Suppose the Markov chain is at a partition state A =
(V1, V2, ..., Vn), and a connected component V0 ⊂ Vl is se-
lected by SWC-1 as a candidate set. We have n + 1 choices
for state B by assigning V0 to one of the following vertex
sets:
{S1 = V1, S2 = V2, ..., Sl = Vl −V0, ..., Sn = Vn, Sn+1 = ∅}

We denote the states as B1, B2, ..., Bn+1 respectively.
Clearly Bl = A and in state Bn+1, V0 is a new subgraph.
In the exception case V0 = Vl, then the state Bn+1 = A is
redundant, so one of them should be eliminated.

Denote the cuts between V0 and Sj by Cj = C(V0, Sj)
j = 1, 2, ..., n + 1 with C(V0, ∅) = ∅.

Theorem 2 In the above notation, suppose V0 is a candi-
date vertex set selected by SWC-1, in partition state A. If
the probabilities for merging V0 to Vl′ are chosen to be

q(l′|V0, A, Go) ∝
∏

e∈Cl′

(1 − qe) · p(Bl′ | I). (23)

then the proposed move is accepted with probability
α(A → Bl′) = 1.

The proof is straightforward and we omit it. We also
omit the proof that q(l′|V0, A, Go) satisfies condition (21).
In practice, the posteriors p(A | I) and p(Bl′ | I) only involve
local computation and the cuts Cl′ are small or empty.

Intuitively, our algorithm samples a random set of ver-
tices according to posterior for goodness-of-fit modulated
by the cut probability to achieve detailed balance. This is
much more general than the original SW-method [11] and
the Gibbs sampler [4].

6. Experiments and performance analysis

The image segmentation experiment was performed on
”atomic regions” obtained by edge detection and edge trac-
ing. They form the nodes of our graph. The discriminative
probability qe for an edge e =< vi, vj > is

qe = 0.1 + 0.9e−(KL(pi||pj)+KL(pj ||pi))/2. (24)

where pi, pj are 15 bin intensity histograms in the atomic
regions, and KL() is the Kullback-Leibler divergence. In
general, this qe can be learned through supervised learn-
ing. We use three simple image models {C1, C2, C3} (con-
stant, linear and quadratic polynomial intensity) with addi-
tive noise modeled by a 15 bin histogram H.

In Fig. 8 we plotted the energy vs time (in seconds) of
5 runs of the Swendsen-Wang Cuts (SWC-1) algorithm and

                                    

            

                                    

Figure 7. Image segmentation: input image,
atomic regions as image elements and the
segmentation result.
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Figure 8. Convergence comparison with
Gibbs sampler (upper curves) for the cheetah
image. The Gibbs sampler must start with a
high temperature and anneal slowly to get to
the minimum energy level of our algorithm.
Right plot shows a zoom-in view of the first
20 seconds.

one run of the Gibbs sampler on the cheetah image in Fig.2,
starting from random partition and 5 runs starting from π =
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{Go} (partition with one subgraph). The Gibbs samplers
converges in about 1200 seconds and our algorithm in 15s
if starting from random partition, and 3 seconds if starting
from a one subgraph partition. The convergence is faster in
latter case since the algorithm started from a lower initial
energy. Observe that our algorithm converges 400 times
faster than the Gibbs sampler.
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Figure 9. Convergence comparison with
SWC without discriminative models (qe =
0.2, 0.4, 0.6) (dotted curves). Cheetah image
(left), airplane image (right). The original
Swendsen-Wang does not apply in this case.

In Fig.9 we made a comparison of our algorithm with
and without the discriminative models, on the cheetah im-
age (left) and airplane image (right), starting from π =
{Go}. For that, we plotted the energy vs time of 5
runs of our SWC-1 algorithm with discriminative models
(smooth curves) and without discriminative models (dot-
ted curves), where we fixed the edge weights to constants
qe = 0.2, 0.4, 0.6. The convergence slows down signifi-
cantly, the annealing schedule must be much slower and the
initial temperature higher without the discriminative mod-
els.

                                    

Figure 10. The curve grouping experiment:
input image, edge map and grouping result.

In the perceptual grouping experiment we group a map
of edgelets obtained from a Canny edge map into long and
smooth curves by adding and removing edgelets. The curve
prior is based on 3 point histograms learned from hand seg-
mented examples. The likelihood measures the difference
in pixels between the input edge map and the grouping re-
sult. The graph nodes are the edgelets, and the discrimi-
native probability qe is based on the 3-point histogram and
on the gap that has to be filled between the edgelets. The
results are shown in Fig.10.
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