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Abstract

This paper presents a novel method for detecting vehi-
cles as obstacles in various road scenes using a single on-
board camera. Vehicles are detected by testing whether the
motion of a set of three horizontal line segments, which are
always on the vehicles, satisfies the motion constraint of
the ground plane or that of the surface plane of the vehi-
cles. The motion constraint of each plane is derived from
the projective invariant combined with the vanishing line
of the plane that is a prior knowledge of road scenes. The
proposed method is implemented into a newly developed on-
board LSI. Experimental results for real road scenes under
various conditions show the effectiveness of the proposed
method.

1. Introduction

Obstacle avoidance is a fundamental requirement for
autonomous mobile robots and vehicles, and numerous
vision-based obstacle detection methods have been pro-
posed. Some of them segment out obstacles from the
ground plane based on differences of geometric properties,
such as the motion parallax [2, 3, 5, 10, 14], the projective
invariant [16, 18], and the depth information [1, 7, 9]. Oth-
ers detect known obstacles based on their 2-D image pattern
learned beforehand [12, 19]. For mobile robots and vehicles
that are capable of working in the real world, the visual cues
such as the depth and the 2-D image pattern need to be suit-
ably chosen according to an individual target application.

In this paper, our goal is to detect other vehicles as ob-
stacles in road scenes using an onboard visual sensor sys-
tem, which is useful for Intelligent Transport Systems (ITS)
such as Adaptive Cruise Control System (ACC). Such sys-
tems require the following properties: (1) adaptability to a
large variety of vehicles, (2) compactness, and (3) robust-
ness against varied conditions in road scenes. Since single
camera systems are more compact than stereo camera sys-
tems, we chose a single camera system as the visual sensor.
Considering the adaptability and robustness requirements,

we avoided adopting the learning strategy, because detec-
tion of all types of vehicles under the whole range of road
conditions requires a large number of images under various
conditions, and these are not readily available. Instead, we
chose the motion information as the visual cue.

Typical motion-based obstacle detection methods [5, 14,
16] estimate the motion of the ground plane and detect ob-
stacle regions whose motions differ from that of the ground
plane. Zhang et al. [21] adopt an approach without mo-
tion estimation of the ground plane. When some of feature
points, such as corners, are on the ground plane and the oth-
ers belong to obstacles and thus such a set of feature points
does not have a planar motion, it is determined that an ob-
stacle exists. The basic assumption of these methods is that
there are a sufficient number of feature points both on the
ground plane and on obstacles. However, there are often
few feature points on the ground plane in real road scenes,
as seen in Fig. 8 and Fig. 10(b).

One general approach to motion-based obstacle detec-
tion might be to reconstruct the 3-D structure of a scene
from the motions in an image sequence [4, 8, 15]. The
motions are computed by finding correspondences between
points on a pair of images captured from different view-
points. Sinclair et al. [18] extract planar regions that con-
serve the values of two projective invariants based on the
correspondences of five corner points, and estimate the nor-
mal of each segmented plane. However, in some real road
scenes, such as rainy scenes and scenes with variable light-
ing conditions, these bottom-up methods pose difficulty in
terms of robustness because errors in finding correspon-
dences, which is a low-level procedure, result in poor es-
timation of the 3-D structure or the normals.

To achieve robustness, prior knowledge about road
scenes has been introduced. Carlsson et al. [2] estimate the
velocity of the known ground plane, and detect obstacles as
regions whose motions differ from the estimated motion of
the ground plane. This method also requires feature points
on the ground plane for motion estimation of the ground
plane. Hu et al. [11] and Sato et al. [17] restrict the ego-
motion of an observer based on the prior knowledge of road
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scenes. In such methods, only negligible components of the
egomotion in real road scenes should be restricted. Thus,
making effective use of prior knowledge for robust obstacle
detection in various scenes is a significant issue.

In this paper, we present an obstacle detection method
that effectively combines a projective invariant, i.e. the
cross ratio, and prior knowledge of a road scene. The
prior knowledge that we employ is the vanishing lines1 of
the ground plane and the surface planes of the obstacles.
The proposed method works without feature points on the
ground and with pitching and yawing of the observer. Al-
though we assume that some textures are on the surface
of the obstacles and rolling of the observer is negligible,
the assumptions are valid and the proposed method robustly
works in real road scenes.

2. Obstacle Detection with Projective Invariant

2.1. Projective Invariant for Horizontal Lines

Projective invariants are quantities that do not change un-
der projective transformations. The cross ratio, which is
known to be a projective invariant, is defined for a group of
four colinear points, A, B, C, and D, as:

����� �
��

��
�
��

��
� (1)

where ����� denotes the cross ratio of the four colinear
points, A, B, C, and D, and �� represents the distance be-
tween A and C, etc (see Fig. 1).

In this paper we introduce the following two assump-
tions on road scenes: (1) artifacts in road scenes, such as
other vehicles and road signs painted on the ground plane,
contain some parallel horizontal line segments, that we call
horizontal segments, and (2) the surface of an artifact is ap-
proximated to a plane. Let ��, �� , �� , and �� be copla-
nar horizontal segments on the surface plane of an artifact.
They pass through A, B, C, and D, respectively, and are
perpendicular to the line passing through A, B, C, and D.
The distance between two colinear points, e.g. ��, is re-
placed by the distance, ��� , between coplanar horizontal
segments, �� and �� .

We assume a pinhole camera model. Although, for sim-
plicity, we describe the case with the optical axis of the on-
board camera parallel to the road (see Fig. 1), the following
discussion is easily extended to a general camera configura-
tion with a depression angle. For this camera configuration,
the surface of the obstacles is approximately represented by
a fronto-parallel plane, which we call the obstacle plane,
and the ground plane is perpendicular to the obstacle plane
and parallel to the optical axis.

1It should be noted that the projective invariant is employed together
with vanishing points for purposes other than obstacle detection, such as
3-D motion analysis [13] and estimation of time-to-contact.
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Figure 1. Four colinear points and four copla-
nar parallel horizontal segments on the sur-
face plane of an obstacle.

A horizontal segment, ��, on the ground plane or on the
obstacle plane is projected to a parallel horizontal segment
in an image, ��, which we also call a horizontal segment.
The distance, Æ��, between two horizontal segments, �� and
��, is represented by the difference of their vertical posi-
tions, �� and ��. The value of the cross ratio for a group of
four coplanar horizontal segments, ��, �� , �� , and ��, is
constant for the projective transformation:

����� �
���

���

�
���

���

�
Æ��
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�
Æ��
Æ��

� (2)

where Æ�� � �� � �� etc.
While a plane containing a group of four coplanar hori-

zontal segments, ��, ��, �� , and ��, moves between the
time 	� and 	�, their cross ratio is conserved:
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�
Æ���	��

Æ���	��
�

Æ���	��

Æ���	��
�
Æ���	��

Æ���	��
� �����
 (3)

Eq. (3) is a motion constraint for the four coplanar hor-
izontal segments. If any of the four horizontal segments
belong to an obstacle plane and the others are on the ground
plane, such a group of four horizontal segments does not
satisfy the motion constraint because the segments are not
coplanar. An obstacle detection method based on this copla-
narity condition, which tests the planarity of a set of mo-
tions [21], requires texture, including corners and horizontal
segments, both on the ground plane and on obstacles. Such
an assumption is often invalid in real road scenes.

2.2. Introducing Vanishing Lines

We introduce the orientation of the ground plane and that
of the obstacle plane, which are the prior knowledge of road
scenes, into estimation of the cross ratio. Given the orien-
tation of a plane, the vanishing line of the plane is easily
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computed. By substituting the vanishing line for one of the
four horizontal segments in Eq. (3), we combine the projec-
tive invariant and prior knowledge of road scenes.

The vanishing line of the ground plane and that of the
obstacle plane are respectively � � � and � � � in our
camera configuration as long as both pitching and rolling of
the onboard camera are zero.

We replace �� in Eq. (3) by the vanishing line of the
ground plane, � � �, and obtain the motion constraint for
the ground plane, which we call the GP motion constraint:

�
���	��

� �
���	��

�
���	��

� �
���	��

�

�
���	��

� �
���	��

�
���	��

� �
���	��

��
� (4)

where �
 � �, and ���	� denotes the vertical position of ��
at time 	.

Similarly, the motion constraint for obstacles, which we
call the obstacle motion constraint, is obtained by replacing
�� by the vanishing line of the obstacle plane, � ��:

���	��� ���	��

���	��� ���	��
�

���	��� ���	��

���	��� ���	��
���� (5)

where �� �
���	������	��
���	������	��

.

2.3. Obstacle Detection

Basically, we determine that a group of three horizontal
segments belongs to an obstacle if the motion of the group
satisfies the obstacle motion constraint better than the GP
motion constraint. As described in Section 2.1, the obstacle
detection method based on four horizontal segments tests
the coplanarity of the segments, which is a variant of the ex-
isting method proposed by Zhang et al. [21]. In contrast, our
method based on three horizontal segments tests whether
the orientation of a plane that they belong to is close to that
of the ground plane or to that of the obstacle plane. Exam-
ining the orientation makes it possible to detect obstacles in
a scene without feature points on the ground plane.

We predict the positions of ���	�� and ���	�� based on
the GP motion constraint and the obstacle motion con-
straint, respectively. The predicted position based on the
GP motion constraint, �
� �	�� and �
� �	��, and the predicted
position based on the obstacle motion constraint, ��� �	�� and
��� �	��, are obtained as follows:��

�
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�
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 (7)

Small differences between the observations 2, ���	�� and
2The position of a horizontal segment at times �� is obtained by track-

ing the horizontal segment (see Section 3.1).

���	��, and the predictions based on the obstacle motion
constraint, ��� �	�� and ��� �	��, signify that the three hori-
zontal segments belong to obstacles. Thus, we define the
validity of three horizontal segments, ��, ��, and ��, for the
obstacle motion constraint as:

���� � �

��� ���

���� (8)

��
��� � ���� �	��� ���	���� ���� �	��� ���	���� (9)

�

��� � ��
� �	��� ���	���� ��
� �	��� ���	���
 (10)

When ���� has a large positive value, the three horizontal
segments belong to obstacles.

Predicted positions based on the GP motion constraint,
however, include errors caused by pitching and rolling of
the onboard camera because pitching and rolling vary the
vanishing line of the ground plane. Though rolling is neg-
ligible because rolling of the observer is relatively minor
in road scenes, pitching should be taken into consideration.
We redefine the difference, �


���, to be the minimum differ-
ence between the observations and the predictions for vari-
ous shifts, , of the vanishing line:

�
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�
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Note that � denotes the focal length and ��� is the maxi-
mum shift of the vanishing line.

The error of prediction based on the obstacle motion con-
straint is negligible, because pitching can be approximated
to vertical shifts of an image, and the obstacle motion con-
straint (Eq. (5)) is independent of the vertical shifts, i.e.
����	��� �� ����	��� � � ���	��� ���	�� etc.

2.4. Discussion

We have presented an obstacle detection method based
on three horizontal segments. In this section we discuss
algorithms based on four and two horizontal segments in
addition to the proposed method, and show the conditions
under which each algorithm is applicable. The conditions
will clearly illustrate the advantage of the proposed method.

As described in Section 2.1, obstacles can be detected by
testing the coplanarity of four horizontal segments without
prior knowledge about road scenes. In contrast, the pro-
posed method is capable of detecting obstacles in a scene
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without feature points on the ground plane by introducing
the vanishing lines as a prior knowledge.

If the image shift caused by pitching of the onboard cam-
era is negligibly small, the pitching compensation described
by Eq. (11)–(15) is unnecessary. In this case, the validity for
the obstacle motion constraint can be defined based on two
horizontal segments as:

��� � ��
� �	��� ���	��� � ���� �	��� ���	��� (16)
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���	��
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(17)

��� �	�� � ���	�� �������	��� ���	��� (18)

Note that �� � ���	������	��.
Fig. 2(a) shows the number of detected horizontal seg-

ments belonging to a vehicle approaching an onboard cam-
era. The distances, �, where two, three, and four horizontal
segments are first observed are 170, 30, and 28 [m], respec-
tively. This means that a method based on few horizontal
segments is capable of computing the validity for remote
vehicles, and is thus advantageous for the detection of such
remote vehicles.

Motion-based obstacle detection methods require large
motions in an image sequence for reliable obstacle detec-
tion. As we observe the motions by tracking each horizontal
segment (see Section 3.1), a method that tracks a group of
horizontal segments for a long period is capable of detecting
obstacles early. Fig. 2(b) shows the average duration (num-
ber of frames) of tracking for all combinations of two, three,
or four horizontal segments. Since the method based on two
horizontal segments has the longest tracking duration, this
method is capable of finding obstacles earlier than the other
two. This is because tracking failure makes the tracking du-
ration for three or four horizontal segments shorter than that
for two horizontal segments.

However, the method based on two horizontal segments
is applicable only to scenes where the image shifts due to
pitching of the onboard camera are negligibly small. On
the other hand, our method is capable of canceling pitch-
ing through Eqs. (11)–(15). When three horizontal seg-
ments, ��, ��, and ��, belonging to an obstacle approach
the onboard camera with pitching, the difference, �


���, for
the GP motion constraint does not become zero, because
no shifts, , simultaneously makes the two differences,
��
� �	�� � � ����	�� � �� and ��
� �	�� � � ����	�� � ��,
zero (see Fig. 3).

The method based on four horizontal segments requires
texture, including corners and horizontal segments, on the
ground plane, and the method based on two horizontal seg-
ments places a restriction on pitching. In contrast with these
methods, the proposed method is applicable to various real
road scenes because it does not have such restrictions.

3. Preceding Vehicle Detection System

3.1. Algorithm

Fig. 4 shows the flow of procedures in each frame for a
preceding vehicle detection system based on the proposed
method described in Section 2. We first set a detection area
and extract horizontal segments in this area. Our system
employs a fixed detection area covering the driving lane
with typical width in front of the observer (see Fig. 5). Next,
we add the detected horizontal segments to a list, which
we call a tracking list, and track the horizontal segments
in the tracking list. Since tracking failure causes a spatio-
temporally inconsistent motion of horizontal segments, we
eliminate such horizontal segments from the tracking list.
Finally, we detect obstacles based on the proposed method.
The details of the procedures are as follows.

Detection of Horizontal Segments Horizontal segments
in an image are observed as horizontal edges. We introduce
the separability [6] of image intensities for robust detection
of horizontal edges in real road scenes. The separability is a
quantity which represents the statistical difference between
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Figure 4. Flow of procedures for a preceding
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the image intensities of two arbitrary regions, with large
values of separability signifying the existence of edges be-
tween the two regions. In order to extract horizontal edges,
two vertically aligned regions are appropriate.

The detection area is first horizontally divided into eight
even regions, ��� � � � � �� (see Fig. 5), and a “separability
filter” is set, which consists of two vertically aligned re-
gions covering the two adjacent even regions, e.g. �� and
��. Next, the separability is computed while the position of
the separability filter is shifted upward. Finally, separability
filters whose separabilities are local maximums are selected
and the border line segments between their two vertically
aligned regions are determined to be horizontal segments.

Tracking of Horizontal Segments We track horizontal
segments by finding correspondences between horizontal
segments in the tracking list in a frame, 	, and those de-
tected in the next frame, 	 � �, using a template matching
technique. We chose the orientation code matching [20]
(OCM) proposed by Ullah et al. as one of the robust tem-
plate matching techniques. The similarity measure between
any two images is defined based on the quantized orienta-
tion of the edges, which is refer to as the “orientation code”
(OC). The similarity measure is the sum of the differences
in OCs.

Considering that the border line between the ground

Ti

li(t)

Oj(x  -Umax)

lj(t+1)

Oj(x  +Umax)

frame t+1frame t

Template 
matching

Ti

Ti

Figure 6. Tracking of a horizontal segment.

plane and the preceding vehicles, which we call the “ve-
hicle bottom,” is detected as a horizontal segment, the tem-
plate, ��, is set to be the upper rectangular region for each
horizontal segment in the tracking list in a frame, 	 (see
Fig. 6). The size of the template is adaptively determined
based on the size of the typical preceding vehicle in an im-
age. For each horizontal segment, ���	�, in a frame, 	, candi-
dates for the corresponding horizontal segment are selected
in the next frame, 	 � �, around the position of ���	�. For
each candidate, ���	���, the sum of the differences in OCs
is computed between the template, ��, and the upper rect-
angular regions, �����, of ���	 � �� for various horizontal
positions, ������ ����� � � � ��� � �����, where ���
is the horizontal position of the template, ��, and ���� is
the maximum horizontal velocity between two successive
frames. This one-dimensional search is applied to all the
candidates, and the position with the smallest sum of the
differences in OCs is determined to be the next position in
the frame, 	� �.

Elimination of Horizontal Segments In order to reduce
false detection, it is important to eliminate horizontal seg-
ments whose motions are incorrectly estimated.

We eliminate horizontal segments satisfying any of the
following conditions:

1. The template, ��, contains few edges.
2. The template, ��, contains few corners.
3. The trajectory departs significantly from the constant

motion model.
4. The motion is inconsistent with the motions of adja-

cent horizontal segments.

Template matching is unstable for conditions 1 and 2. Con-
ditions 3 and 4 are for preserving the temporal consistency
and the spatial consistency of motions, respectively.

Detection of Obstacles From the tracking list we select
three horizontal segments, ��, ��, and ��, whose horizontal
positions are close to each other. The validity, ����, is com-
puted based on Eqs. (8)-(15). We determine that 	� and 	�
are, respectively, the current frame and the earliest frame
where all of ��, ��, and �� are in the tracking list.

If the horizontal shifts of ��, ��, and �� between 	� and
	� are exceptionally different from each other or the verti-
cal position order changes, they may not belong to a single
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rigid object. Furthermore, if both ��
��� and �


��� have large
values, ��, ��, and �� belong neither to the ground plane nor
to the obstacle plane. We do not compute ���� in such cases.

In order to give the system higher immunity against mea-
surement errors in each frame, we accumulate the time se-
ries of the validity:

�����	�� �
�

	�	�	�

�����	�� (19)

where �����	� denotes the validity in the frame, 	. If
�����	�� is larger than a positive threshold, the three hori-
zontal segments, ��, ��, and ��, are candidate obstacles. Note
that �� belongs to several groups of three horizontal seg-
ments other than the group ��, ��, and ��. If �� is determined
to be a candidate obstacle a sufficient number of times, we
determine that �� belongs to an obstacle.

The vehicle bottom is estimated as the horizontal seg-
ment that has been determined to belong to an obstacle and
is closest to the bottom of the image.

3.2. Implementation on the Onboard LSI

In order to achieve onboard image processing, we
have developed an LSI (see Fig. 7) that has high image-
processing performance and fulfills the specifications for
onboard devices3. This LSI is a general-purpose image pro-
cessor that is capable of executing any type of image pro-
cessing by replacing the software.

Our LSI has three processing units and a data conversion
unit. Each processing unit consists of a RISC processor core
and a VLIW coprocessor that is capable of executing sev-
eral types of SIMD operations. The data conversion unit
converts a data set such as an image according to a conver-
sion table that defines the conversion of each datum. Typical

3Our LSI works at temperatures between ���ÆC and ��ÆC with a
power consumption of less than 1 W at an operation frequency of 150
MHz.
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types of conversion include affine transformations of an im-
age. Our preceding vehicle detection system employs this
unit for computing the OC.

Fig. 7 shows a prototype image processing board using
our LSI. The image processing board has three video input
channels to provide video sequences for the LSI, and has a
VGA video output channel to display the results of image
processing.

Our LSI is capable of executing the proposed method,
which is described in Section 3.1, at about 10 – 50
[ms/frame] using one processing unit and the data con-
version unit. Thus, it is possible to execute other image-
processing applications on the other two processing units.
For reference, about 4 – 40 [ms/frame] is required when a
standard PC with a Pentium III 933-MHz CPU is used with-
out MMX instructions.

4. Experiments

Fig. 8 shows results of preceding vehicle detection ob-
tained by our system described in Section 3. In Fig. 8(a),
horizontal segments detected in the detection area are super-
imposed on the original image. The rectangles in Fig. 8(b)
indicate tracking windows for the horizontal segments, and
the horizontal long line is the estimated vehicle bottom. The
accumulated validity, �����	�, for the horizontal segments,
��, ��, and ��, has a large positive value of 26, and the three
horizontal segments are determined to belong to the preced-
ing vehicle.
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The graphs in Fig. 8(c) plot values of the cross ratio for
the four horizontal segments, ��, ��, ��, and �� (shown as
“Inv4”) and those for the three horizontal segments, ��, ��,
and ��, combined, respectively, with the vanishing line of
the ground plane (shown as “Inv3-H”) and that of the ob-
stacle plane (shown as “Inv3-V”)4. Note that we normalize
the values as follows: � ���� � ����� � ����������, where
���� is the value of the cross ratio at a frame � and � ����
is the normalized cross ratio. The Inv4 graph, whose nor-
malized cross ratio stays around zero, indicates that the four
horizontal segments are coplanar, and the obstacle detection
methods that test coplanarity cannot detect the preceding
vehicle when all the four segments belongs to the obsta-
cle plane. Since � ���� of the Inv3-H graph has large value
while that of the Inv3-V graph stays around zero, the pro-
posed method based on three horizontal segments is capa-
ble of detecting the preceding vehicle because the proposed
method discriminates the orientation of the plane that the
three horizontal segments belong to.

Fig. 9 shows a result of obstacle detection for a scene
containing road signs on the ground plane. In this scene,
pitching of the onboard camera causes vertical shifts of the
image. Nevertheless, the accumulated validity, �����	�, for
the horizontal segments, ��, ��, and ��, has a small negative
value of -21, which means that the group is correctly classi-
fied as the ground plane.

Figs. 10(a)-(f) show the results of preceding vehicle de-
tection in various scenes. Our system is capable of detecting
various types of vehicles in various scenes with poor light-
ing conditions and with disturbances such as raindrops and
wipers on the windshield.

We evaluated the performance of our preceding vehicle
detection system. Fig. 11(a) shows results of a simulation
that computes the distances at which a vehicle approaching
the observer was detected for various relative velocities. To
observe sufficiently large motions in an image in the case
of slowly moving vehicles, our system needs to track hori-
zontal segments over a large number of frames. When the
duration of tracking is short, e.g. T=10 [frame], due to poor

4The cross ratios combined with the vanishing line of the ground plane
and that of the obstacle plane are

�
�

��
�

�

��

�
�
�

�

��
�

�

��

�
and ��� �

������� � ���, respectively.

(a) Truck and cross walk. (b) Pick-up truck with black
tarp covering.

(c) Vehicle cutting in. (d) Trailer.

(e) Night scene. (f) Rainy scene.

Figure 10. Detection of various types of vehi-
cles in various conditions.

lighting conditions, image noise, wipers, and so on, tracking
of three horizontal segments is terminated before the system
can detect obstacles, and the distances at which vehicles are
detected therefore become short.

Fig. 11(c) shows results of obstacle detection for scenes
of fine weather, rainy weather, and night, consisting of
video sequences that are for 105, 40 and 75 minutes long,
respectively. The image region below the vanishing line of
the ground plane is divided into four vertically even regions,
(1), (2), (3), and (4), as shown in Fig. 11(b), and the number
of successful detections, the number of failures in detect-
ing a preceding vehicle, and the number of misestimations
of the vehicle bottom are shown in Fig. 11(c) for each ver-
tically even region. The number of false detections of the
ground plane as an obstacle is also shown. Preceding vehi-
cles are successfully detected in most cases in regions (2),
(3), and (4). However, in region (1) where the preceding
vehicles are far ahead, it is difficult to stably detect them.
Failure of detection and misestimation of the vehicle bot-
tom occur under bad lighting conditions where preceding
vehicles are not clearly seen, because the detection and the
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Fine (105 min.) Rain (40 min.) Night (75 min.)
Pos. � � P� � � P� � � P�
(1) 87 20 5 11 10 1 26 17 3
(2) 157 2 19 46 3 5 99 6 7
(3) 152 1 15 61 1 11 90 0 13
(4) 63 0 7 30 0 6 39 0 8
F 2 4 10

(c) Results of obstacle detection (�: successful detec-
tion, �: failure in finding an obstacle, P�: misesti-
mation of obstacle position, F: false detection of the
ground plane as an obstacle).

Figure 11. Performance evaluation.

tracking of horizontal segments are difficult in such scenes.
False detection is also caused by failure in tracking horizon-
tal segments.

5. Conclusions

We proposed an obstacle detection method that com-
bines a projective invariant (cross ratio) and prior knowl-
edge of road scenes. The prior knowledge consists of the
vanishing lines of the ground plane and the obstacle plane.
Our method is capable of detecting obstacles even when
there are no feature points on the road and the onboard cam-
era moves with pitching and yawing. Experimental results
shows that our obstacle detection system is capable of de-
tecting preceding vehicles, except for vehicles far ahead,
in various real road scenes. We implemented the proposed
method on a newly developed LSI that satisfies the spec-
ifications for onboard devices and achieves on-line image
processing at 10 – 50 [ms/frame].
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