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Abstract

In this paper we present a method for unsupervised clus-
tering of image databases. The method is based on a re-
cently introduced information-theoretic principle, the infor-
mation bottleneck (IB) principle. Image archives are clus-
tered such that the mutual information between the clus-
ters and the image content is maximally preserved. The
IB principle is applied to both discrete and continuous im-
age representations, using discrete image histograms and
probabilistic continuous image modeling based on mixture
of Gaussian densities, respectively. Experimental results
demonstrate the performance of the proposed method for
image clustering on a large image database. Several clus-
tering algorithms derived from the IB principle are explored
and compared.

1. Introduction

Image clustering and categorization is a means for high-
level description of image content. The goal is to find a
mapping of the archive images into classes (clusters) such
that the set of classes provide essentially the same predic-
tion, or information, about the image archive as the entire
image set collection. The generated classes provide a con-
cise summarization and visualization of the image content.
Image archive clustering is important for efficient handling
(search and retrieval) of large image databases [8, 3, 1]. In
the retrieval process, the query image is initially compared
with all the cluster centers. The subset of clusters that have
the largest similarity to the query image is chosen, follow-
ing which the query image is compared with all the images
within this subset of clusters. Search efficiency is improved
due to the fact that the query image is not compared exhaus-
tively to all the images in the database.

Image clustering may be performed using discrete image
representations (e.g. histograms) [8, 3] as well as continu-

ous image representations (e.g. probabilistic continuous im-
age modeling based on mixture of Gaussian densities) [7].
In recent work that compares between various image rep-
resentation schemes, image modeling based on mixture of
Gaussian densities was shown to outperform discrete image
representations (such as the well-known color histograms,
color correlograms, and more) [15]. In the current work
we demonstrate unsupervised clustering in both the discrete
and continuous image representations domains.

The clustering method presented in this work is based on
the information bottleneck (IB) principle [14, 12, 10] (an
earlier version was introduced in [6]). Characteristics of the
proposed method include: 1) Image models are clustered
rather than raw image pixels (image models may be discrete
or continuous); 2) The IB method provides a simultane-
ous construction of both the clusters and the distance mea-
sure between them; 3) A natural termination of the bottom-
up clustering process can be determined as part of the IB
principle. This provides an automated means for finding
the relevant number of clusters per archive; 4) The con-
tinuous agglomerative version of the IB clustering scheme
is extended to include relaxation steps for better cluster-
ing results. The continuous probabilistic image modeling
scheme is presented in section 2. The information bottle-
neck method along with clustering algorithms derived from
the IB principle is presented in section 3. The method’s
application to discrete image representation is shown. In
section 4 we extend the information bottleneck method to
the case of continuous densities. Section 5 presents results
of the proposed clustering method.

2. Grouping pixels into GMMs

In the first layer of the grouping process the raw pixel
representation of an input image is shifted to a mid-level
representation. The image representation may be discrete (
e.g. histograms) or continuous. Histograms are well known
in the literature and have been used substantially [13]. In
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Figure 1. Input image (left). Image modeling
via Gaussian mixture (right).

this section we briefly introduce the more recently proposed
continuous image representation scheme.

In the continuous domain, each image is modeled as a
mixture of Gaussians in the color (L ∗ a ∗ b) feature space.
It should be noted that the representation model is a gen-
eral one, and can incorporate any desired feature space
(such as texture, shape, etc) or combination thereof. In
order to include spatial information, the (x, y) position of
the pixel is appended to the feature vector. Following the
feature extraction stage, each pixel is represented with a
five-dimensional feature vector, and the image as a whole
is represented by a collection of feature vectors in the five-
dimensional space. Pixels are grouped into homogeneous
regions by grouping the feature vectors in the selected fea-
ture space. The underlying assumption is that the image
colors and their spatial distribution in the image plane are
generated by a mixture of Gaussians. Each homogeneous
region in the image plane is thus represented by a Gaussian
distribution, and the set of regions in the image is repre-
sented by a Gaussian mixture model.

The distribution of a d-dimensional random variable is a
mixture of k Gaussians if its density function is:

f(y) =
k∑

j=1

αj
1√

(2π)d|Σj |
exp{−1

2
(y−µj)T Σ−1

j (y−µj)}.

(1)
The Expectation-Maximization (EM) algorithm is used

to determine the maximum likelihood parameters of a mix-
ture of k Gaussians in the feature space (similar to [2]). The
Minimum Description Length (MDL) principle [4] serves
to select among values of k. In our experiments, k ranges
from 4 to 8.

Figure 1 shows two examples of learning a GMM model
for an input image. In this visualization each localized
Gaussian mixture is shown as a set of ellipsoids. Each ellip-
soid represents the support, mean color and spatial layout,
of a particular Gaussian in the image plane.

3. The Information Bottleneck principle

The second layer of the image grouping process is based
on information theoretic principle, the information bottle-
neck method (IB), recently introduced by Tishby et al.

[14]. Using the IB method, the extracted image models are
grouped, bottom-up, into coherent clusters. The IB prin-
ciple states that among all the possible clusterings of the
object set into a fixed number of clusters, the desired clus-
tering is the one that minimizes the loss of mutual infor-
mation between the objects and the features extracted from
them. Assume there is joint distribution p(x, y) on the “ob-
ject” space X and the “feature” space Y . According to the
IB principal we seek a clustering X̂ such that, given a con-
straint on the clustering quality I(X; X̂), the information
loss I(X;Y ) − I(X̂;Y ) is minimized.

The IB principle can be motivated from Shannon’s rate-
distortion theory [4] which provides lower bounds on the
number of classes we can divide a source given a distor-
tion constraint. Given a random variable X and a distor-
tion measure d(x1, x2), defined on the alphabet of X , we
want to represent the symbols of X with no more than R
bits, i.e. there are no more than 2R clusters. It is clear that
we can reduce the number of clusters by enlarging the av-
erage quantization error. Shannon’s rate-distortion theorem
states that the minimum average distortion we can obtain by
representing X with only R bits is given by the following
distortion-rate function:

D(R) = min
p(x̂|x)|I(X;X̂)≤R

Ed(x, x̂) (2)

where the average distortion Ed(x, x̂) is∑
x,x̂ p(x)p(x̂|x)d(x, x̂) and I(X; X̂) is the mutual

information between X and X̂ given by:

I(X; X̂) =
∑

x,x̂

p(x)p(x̂|x) log
p(x̂|x)
p(x̂)

.

The random variable X̂ can be viewed as a soft-
probabilistic classification of X.

Unlike classical rate-distortion theory, the IB method
avoids the arbitrary choice of a distance or a distortion mea-
sure. Instead, clustering of the object space X is done by
preserving the relevant information about another space Y .
We assume, as part of the IB approach, that X̂→X→Y is a
Markov chain, i.e. given X the clustering X̂ is independent
of the feature space Y . Consider the following distortion
function:

d(x, x̂) = DKL( p(y|X = x) || p(y|X̂ = x̂) ) (3)

where DKL(f ||g) = Ef log f
g is the Kullback-Liebler di-

vergence [4]. Note that p(y|x̂) =
∑

x p(x|x̂)p(y|x) is a
function of p(x̂|x). Hence, d(x, x̂) is not predetermined. In-
stead it depends on the clustering. Therefore, as we search
for the best clustering we also search for the most suitable
distance measure.

The loss in the mutual information between X and Y
caused by the (probabilistic) clustering X̂ can be viewed as
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the average of this distortion measure:

I(X;Y ) − I(X̂;Y ) =
∑

x,x̂,y

p(x, x̂, y) log
p(x|y)
p(x)

−
∑

x,x̂,y

p(x, x̂, y) log
p(y|x̂)
p(y)

=
∑

x,x̂,y

p(x, x̂, y) log
p(y|x)
p(y|x̂)

=
∑

x,x̂

p(x, x̂)
∑

y

p(y|x) log
p(y|x)
p(y|x̂)

= EDKL(p(y|x)||p(y|x̂)).

Substituting distortion measure (3) in the distortion rate
function (2) we obtain:

D(R) = min
p(x̂|x)|I(X;X̂)≤R

I(X;Y ) − I(X̂;Y ) (4)

which is exactly the minimization criterion proposed by IB
principle, namely, finding a clustering that causes minimum
reduction of the mutual information between the objects and
the features.

3.1. Clustering algorithms based on the IB principle

The minimization problem posed by the IB principle
can be approximated by a greedy algorithm based on a
bottom-up merging procedure [12]. The algorithm starts
with the trivial clustering where each cluster consists of a
single point. In order to minimize the over all information
loss caused by the clustering, classes are merged in every
(greedy) step such that the loss in the mutual information
caused by merging them is the smallest. Let c1 and c2 be
two clusters of symbols from the alphabet of X , the infor-
mation loss due to the merging of c1 and c2 is:

d(c1, c2) = I(Cbefore, Y ) − I(Cafter, Y ) ≥ 0

where I(Cbefore, Y ) and I(Cafter, Y ) are the mutual in-
formation between the classes and the feature space before
and after c1 and c2 are merged into a single class. Standard
information theory manipulation reveals:

d(c1, c2) =
∑

y,i=1,2

p(ci, y) log
p(ci, y)

p(ci)p(y)

−
∑

y

p(c1 ∪ c2, y) log
p(c1 ∪ c2, y)

p(c1 ∪ c2)p(y)

=
∑

y,i=1,2

p(ci, y) log
p(y|ci)

p(y|c1 ∪ c2)

=
∑

y,i=1,2

p(ci)DKL(p(y|ci)||p(y|c1 ∪ c2)). (5)

Hence, the distance measure between clusters c1 and c2,
derived from the IB principle, takes into account both the
dissimilarity between the distribution p(y|c1) and p(y|c2)
and the size of the two clusters.

The greedy AIB algorithm arranges the objects in a tree
structure, which has many advantages for database man-
agement. The algorithm also enables to define the optimal
number of clusters that represent the objects in the database.
However, the main obstacle to the greedy agglomerative
procedure is that finding an optimal clustering solution is
not guaranteed. In fact, it is not guaranteed to find a sta-
ble solution, in which each object belongs to the cluster it
is most similar to. The issue of cluster optimization is com-
mon in many (both top-down and bottom-up) hierarchical
clustering techniques. These techniques, due to their greedy
nature, often require additional relaxation steps for cluster
optimization [8].

An augmented AIB algorithm is proposed that combines
the AIB with algorithms that perform cluster optimization
in each of the tree levels. The sequential IB (SIB) cluster-
ing algorithm [10] and the K-means algorithm [5] are two
algorithms that can be used for this purpose. The SIB is a
modification of the standard K-means algorithm. Like the
K-means procedure, the sequential clustering maintains a
fixed amount of K clusters. The algorithm starts from an
initial partition C of the objects in X into clusters. At each
step of the algorithm one object x ∈ X , is “drawn” out of
its current cluster c(x) into a new singleton cluster. Using
a greedy agglomerative step, x is merged into cnew so that
cnew = argminc∈Cd({x}, c) and a new partition Cnew is
obtained. The main difference between sequential cluster-
ing and the standard K-means is in the updating scheme.
The K-means algorithm performs parallel updates: Only
after each element x selects its new cluster, do we move all
the elements to their new clusters. The cluster centers are
therefore updated once, after all the elements were moved
to their preferred location. In the sequential clustering al-
gorithm the cluster centers are modified after each element
selects its new cluster. The sequential updating scheme ac-
celerates the convergence process.

When applying the sequential algorithm and the K-
means algorithm to the IB method, the greedy merging cri-
terion, d({x}, c), is the information loss due to the merging
of two clusters (Equation (5)). The score function being
maximized in each of the algorithm iterations is the mutual
information, I(C;Y ). Since I(C;Y ) is known to be upper
bounded [4], convergence to a local maximum is guaran-
teed.
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3.2. Applying the IB principle to discrete image rep-
resentation

The IB principle has been used for clustering in a variety
of discrete domains, including documents [12, 10], galax-
ies [11] and neural codes [9]. In this work we apply the
IB principle for clustering in the image domain. We start by
applying the IB principle to clustering of discrete image rep-
resentations. In particular, we use global color histograms
for both image and cluster representation.

In the following we denote by X the set of images we
want to classify. We assume a uniform prior probability
p(x) of observing an image. Denote by Y the random vari-
able associated with the feature vector extracted from a sin-
gle pixel. The image histogram is then used to describe the
feature distribution within an image, f(y|x). The next step
is to define the distribution of the features within a cluster
of images: f(y|c). This is done by simply averaging the
histograms of the individual images within the cluster.

Let p1 = {p11, p12, . . . , p1m},p2 = {p21, p22, . . . , p2m}
be the histograms associated with image clusters c1, c2 re-
spectively. The histogram of the merged cluster c1 ∪ c2 is:

p =
|c1|

|c1 ∪ c2|p1 +
|c2|

|c1 ∪ c2|p2.

According to expression (5), the distance between the
two image clusters c1 and c2 is:

d(c1, c2) =
∑

i=1,2

|ci|
|X|DKL(pi||p) (6)

where |X| is the size of the image database. The discrete
KL distance DKL(p1||p) is computed using the following
equation:

DKL(p1||p) =
m∑

j=1

p1j log
p1j

pj
, (7)

DKL(p2||p) is computed in a similar manner.

4. Applying the IB principle to continuous dis-
tributions

In this section we generalize the IB principle to the case
where a continuous feature set is endowed with a mixture
of Gaussians distribution. Given the image set X and the
feature set Y , the Gaussian mixture model we use to de-
scribe the feature distribution within an image, x, is exactly
the conditional density function f(y|x). Assuming a uni-
form prior probability p(x) of observing an image, we have
a joint image-feature distribution p(x, y). Let c be a cluster

of images where each image x ∈ c is modeled via a GMM:

f(y|x) =
k(x)∑

j=1

αx,jN(µx,j ,Σx,j) x ∈ c

such that k(x) is the number of Gaussian components in
f(y|x). The distribution of the features within a cluster of
images f(y|c), is obtained by averaging all the image mod-
els within the cluster:

f(y|c) =
1
|c|

∑

x∈c

f(y|x) =
1
|c|

∑

x∈c

k(x)∑

j=1

αx,jN(µx,j ,Σx,j).

(8)
Note that since f(y|x) is a GMM distribution, the density
function per cluster c, f(y|c), is a mixture of GMMs and
therefore it is also a GMM.

Let f(y|c1), f(y|c2) be the GMMs associated with im-
age clusters c1, c2 respectively. The GMM of the merged
cluster c1 ∪ c2 is:

f(y|c1 ∪ c2) =
1

|c1 ∪ c2|
∑

x∈c1∪c2

f(y|x)

=
∑

i=1,2

|ci|
|c1 ∪ c2|f(y|ci).

The distance between the two image clusters c1 and c2,
as derived from expression (5), is:

d(c1, c2) =
∑

i=1,2

|ci|
|X|DKL(f(y|ci)||f(y|c1 ∪ c2)) (9)

where |X| is the size of the image database. Hence, to com-
pute the distance between two image clusters, c1 and c2, we
need to compute the KL distance between two GMM distri-
butions.

Since the KL distance between two GMMs can not be
analytically computed, we can numerically approximate it
through Monte-Carlo procedures. Denote the feature set
extracted from the images that belongs to cluster c1 by
y1 . . . yn. The KL distance DKL(f(y|c1)||f(y|c1∪c2)) can
be approximated as follows:

DKL(f(y|c1)||f(y|c1 ∪ c2)) ∼= 1
n

n∑

t=1

log
f(yt|c1)

f(yt|c1 ∪ c2)
.

(10)
Another possible approximation is to use synthetic samples
produced from the Gaussian mixture distribution f(y|c1)
instead of the image data. This enables us to compute the
KL distance without referring to the images from which
the models were built. Image categorization experiments
show no significant difference between these two proposed
approximations of the KL distance [7]. The expression
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DKL(f(y|c2)||f(y|c1 ∪ c2)) can be approximated in a sim-
ilar manner.

The agglomerative IB algorithm for image clustering is
the following:

1. Start with the trivial clustering where each image is a
cluster.

2. In each step merge clusters c1 and c2 such that infor-
mation loss d(c1, c2) (Equation 9) is minimal.

3. Continue the merging process until the information
loss d(c1, c2) is more than a predefined threshold, indi-
cating that we attempt to merge two non-similar clus-
ters.

The AIB algorithm may be augmented by utilizing clus-
ter optimization algorithms, such as the SIB and the K-
means algorithms (section 3). Implementation of the aug-
mented AIB procedure on a database of image GMMs, re-
quires the following considerations: First, in the high levels
of the tree created by the AIB algorithm, the number of clus-
ters K is small. Many images are thus affiliated with each
cluster. As a result the clusters models (centroids) are gener-
ated from a very large set of GMMs, and become very com-
plex and fuzzy (Equation 8)1. Due to the centroids fuzzi-
ness, when the optimal classification is reached, images can
be close to more than one centroid. It is thus very difficult
to reach a definite classification result, in which there are no
more changes in cluster grouping.

Second, the Monte-Carlo procedure used for estimating
the KL-distance requires a very large sample set for repre-
senting all the Gaussians in the cluster centroid. This leads
to a very high computational complexity, and makes the cal-
culation sensitive to sample noise. When an image is close
to more than one cluster centroid, using the estimated KL-
distance in the greedy classification criterion can make the
image shift from one cluster to the other in the algorithm
iterations. In such a case the entire classification result is
unstable around the optimal point.2

In order to address the above-described limitations, an
image is transitioned from one cluster to the other only if
the difference between the image and the new cluster cen-
troid is smaller than the distance between the image and its
current cluster centroid by a predefined threshold. A change
is thus performed only if it causes a significant reduction in
information loss.

A stopping criteria for the algorithm iterations is re-
quired. We use the mutual information I(C;Y ), between

1The model requires the parameters of
∑

x∈c
k(x) Gaussian distribu-

tions.
2Note that this problem doesn’t exist when calculating the KL-distance

between discrete distributions. The discrete KL-distance has a closed form
solution (Equation 7) and the stochastic process associated with the Monte-
Carlo procedure is not required.

the image clustering C and the feature set Y , as the stop-
ping criteria. Trying to maximize the mutual information
created by the various partitions (in each of the algorithm
iterations), we let the algorithm iterate as long as the mu-
tual information increases. Using mutual information as a
stopping criterion is not straight-forward when the features
are endowed with a mixture of Gaussian distribution. No
closed-form expression exists in that case. The successive
merging process performed in the AIB algorithm can give
us, as a byproduct, an approximation method for I(C;Y ).
Cluster models are merged successively into a single clus-
ter, merging two clusters at a time according to Equation
9 (The merging order is of no importance). The informa-
tion loss calculated in each step is accumulated. The total
information loss during the merging process is exactly the
mutual information I(C;Y ) we wish to approximate.

5. Results

This section presents an investigative analysis of the IB
method for image clustering. Experimental results demon-
strate the IB method’s ability to discover an optimal number
of clusters in the database using the AIB algorithm. Re-
trieval experiments are used to evaluate the clustering qual-
ity of the proposed method and of the various clustering al-
gorithms introduced. The database used throughout the ex-
periments consists of 1460 images selectively hand-picked
from the COREL database to create 16 categories. The im-
ages within each category have similar colors and color spa-
tial layout, and can be labelled with a high-level semantic
description.

The AIB clustering method described in section 4, was
applied to our database of 1460 images. The clustering is
performed on the GMM image representation. We started
with 1460 clusters where each image model is a cluster.
After 1459 steps all the images were grouped into a sin-
gle cluster. The given database was thus arranged in a tree
structure. The loss of mutual information during each merg-
ing step of the clustering process is shown in Figure 2. The
x-axis indicates the last 60 steps of the algorithm. The y-
axis shows the amount of mutual information loss (in bits)
caused by merging the two clusters selected at the corre-
sponding step. The labels associated with the last points of
the graph indicate the number of clusters created in the cor-
responding step. There is no need to present the information
loss during the entire clustering process, since meaningful
changes occur only towards the end of the process. There
is a gradual increase in information loss until we reach a
point of significant loss of information. This point helps
us determine a “meaningful” number of clusters existing in
the database. From this point on, every merge causes a sig-
nificant degradation of information and therefore leads to a
worse clustering scenario. As can be seen from Figure 2, the
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first significant jump in the graph is found in the transition
from 13 to 12 clusters.

Figure 3 presents 5 sample images from each of the 13
“meaningful” clusters created by the AIB algorithm. The
GMM generated for each cluster is shown on the right 3. A
Gaussian in the model is displayed as a localized colored
ellipsoid. Some of the Gaussians overlap spatially and thus
are not explicitly shown in the image. A clear distinction
between the groups is evident in the Gaussian mixture char-
acteristics, in blob color features and their spatial layouts.
Progressing an additional step of the algorithm, towards 12
clusters, results in the merging of clusters C12 and C13. We
note that the two clusters appear rather different. The vi-
sual inhomogeneity is consistent with the significant loss of
information, as indicated via the information loss criterion.

Figure 2. Loss of mutual information during
the AIB clustering process. The labels at-
tached to the final 19 algorithm steps, indi-
cate the number of clusters formed per step.

In the following experiments we use image retrieval to
evaluate clustering quality. We first evaluate the proposed
IB clustering methodology by comparing it to another clus-
tering methodology based on Histogram Intersection. We
then evaluate the clustering quality of the various cluster
optimization algorithms introduced in section 4. During the
retrieval process the query image is first compared with all
cluster models. The clusters most similar to the query im-
age are chosen. The query image is next compared with all
the images within these clusters.

Retrieval results are evaluated by precision versus recall
(PR) curves. Recall measures the ability of retrieving all
relevant or perceptually similar items in the database. It

3A color version may be found in http://www.eng.tau.ac.il/ ∼ hayit.

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

Figure 3. Example images for the 13 clusters
created by the AIB algorithm from the 1460
image database. A GMM model generated for
each cluster is shown on the right.
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is defined as the ratio between the number of perceptually
similar items retrieved and the total relevant items in the
database. Precision measures the retrieval accuracy and is
defined as the ratio between the number of relevant or per-
ceptually similar items retrieved and the total number of
items retrieved. A better PR curve indicates a better cluster-
ing since the query is compared only with the images within
the closest clusters. The more these clusters are correlated
with the labelled categories, the better the PR curve will be.

Retrieval results for 320 images were averaged in all of
the experiments, 20 images drawn randomly from each of
the 16 labelled categories we have in the database. PR
curves were calculated for 10,20,30,40,50, and 60 retrieved
images. The database was divided into 13 clusters in all
of the experiments. Note that this is a single point in the
agglomerative clustering process.

We first wish to evaluate the performance of the IB clus-
tering methodology. Global color histograms are used to
represent the images. The agglomerative IB clustering is
compared to the agglomerative clustering based on His-
togram Intersection (H.I.) (similar to [8]). Thirteen clusters
are generated by each clustering methodology. The distance
measure used in the retrieval process is the discrete KL dis-
tance in the AIB clustering case, and the H.I. distance in
the agglomerative H.I. clustering. Retrieval based on initial
clustering is compared to exhaustive search in both cases.
A comparison is conducted using the following PR curves:
PR for retrieval based on clustering using the IB method
and the KL-distance (solid line), PR for exhaustive retrieval
using KL-distance (dashed line), PR for retrieval based on
clustering using H.I., both for clustering and for retrieval
(dash-dot line) and exhaustive retrieval using H.I. (dotted
line).

The four PR curves can be seen to split into two groups.
The top two curves correspond to retrieval using the dis-
crete KL distance measure and the bottom two curves cor-
respond to retrieval using the H.I. distance measure. Within
each group one curve presents the results of retrieval in a
clustered dataset and the second curve presents the exhaus-
tive retrieval results. A comparison between the two re-
trieval distance measures is enabled by looking at the two
PR curves of the exhaustive search. Such a comparison in-
dicates that the information-theoretic KL distance achieves
better results than the H.I. measure. Investigating the clus-
tering methodologies is enabled by a comparison of the two
PR curves that reflect retrieval in a clustered dataset. Clus-
tering based on the AIB algorithm provides the best retrieval
results. Retrieval using clustering based on H.I. achieved
poor performance. It is interesting to note that these results
are even worse than the related exhaustive retrieval case (us-
ing the H.I. as a distance measure). These results indicate
a strong advantage for using the information-theoretic tools
of AIB for clustering and KL distance for retrieval.
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Figure 4. Precision vs recall for evaluating
the IB method relative to a method based on
H.I. Cluster search based on H.I. (dash-dot
line, HI-C). Exhaustive search based on H.I.
(dotted line, HI-F). Cluster search based on
IB method and KL-distance (solid line, HIB-
C). Exhaustive search based on KL-distance
(dashed line, HIB-F). All experiments use the
color histogram representation.

In a second experiment we wish to examine the perfor-
mance of the AIB algorithm and compare its performance
to the augmented AIB algorithms, using SIB and K-means.
The various unsupervised clustering algorithms are tested
in the continuous domain, using the GMM cluster represen-
tation. We initiate both the SIB and the K-means with the
results obtained by the AIB for 13 clusters. Since the AIB is
a greedy algorithm we expect that the iterations performed
by the SIB and the K-means algorithms will improve the
clustering results. Figure 5 summarizes the comparison re-
sults. The SIB results are plotted as a dashed line. The
K-means results are plotted as a solid line and the AIB re-
sults are plotted as a dotted line. The KL-distance is used
as the distance measure during the retrieval process. The
performance of the SIB and the K-means algorithms are
better than those of the AIB algorithm, thus encouraging
post-processing of the AIB clustering results via cluster op-
timization.

6. Discussion

We have presented the IB method for unsupervised clus-
tering of image databases. The unsupervised clustering
scheme is based on information theoretic principles. It pro-
vides image-sets for a concise summarization and visual-
ization of the image content within a given image archive.
Applying the IB principle for clustering of image archives,
using either discrete or continuous image representations,
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Figure 5. Precision vs recall for evaluating
clustering results created with different algo-
rithms. Clustering by AIB algorithm (dotted
line). Clustering by K-means algorithm (solid
line). Clustering by SIB algorithm (dashed
line). All experiments use the GMM image
representation.

is novel. So is the ability of the method to define a “mean-
ingful” number of clusters that exist in the database (this
number is an important parameter for many clustering algo-
rithms).

Retrieval results indicate a strong advantage for using the
information-theoretic tools of AIB for clustering and KL
distance for retrieval. It was demonstrated that the greedy
AIB algorithm results can be improved by using cluster op-
timization, via relaxation algorithms, such as the SIB and
K-means.

There are several issues related to our framework that
still need to be addressed. Using the Monte-Carlo proce-
dure for the KL-distance approximation is problematic for
the case of a GMM with a large number of Gaussians. In
that case a large number of samples is required for the ap-
proximation, increasing the complexity and the probability
for sampling noise. Further effort should be dedicated to
finding a more compact cluster representation (i.e. a GMM
with a reduced number of parameters). An analytical so-
lution, or a simpler estimation, for the calculation of the
KL-distance between two GMMs is also desirable.

Image variations including illumination irregularities,
texture and other artifacts are not accounted for in the mod-
els used. The additional features influence on clustering
quality should be investigated. Future work entails making
the current method more feasible for large databases and us-
ing the tree structure created by the AIB algorithm, for the
creation of a “user friendly” browsing environment.
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