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Abstract

The problem of selecting a subset of relevant features in
a potentially overwhelming quantity of data is classic and
found in many branches of science including — examples
in computer vision, text processing and more recently bio-
informatics are abundant. In this work we present a def-
inition of ”relevancy” based on spectral properties of the
Affinity (or Laplacian) of the features’ measurement matrix.
The feature selection process is then based on a continuous
ranking of the features defined by a least-squares optimiza-
tion process. A remarkable property of the feature relevance
function is that sparse solutions for the ranking values nat-
urally emerge as a result of a “biased non-negativity” of a
key matrix in the process. As a result, a simple least-squares
optimization process converges onto a sparse solution, i.e.,
a selection of a subset of features which form a local max-
ima over the relevance function. The feature selection al-
gorithm can be embedded in both unsupervised and super-
vised inference problems and empirical evidence show that
the feature selections typically achieve high accuracy even
when only a small fraction of the features are relevant.

1. Introduction

As visual recognition, text classification, speech recognition
and more recently bio-informatics aim to address larger and
more complex tasks the problem of focusing on the most
relevant information in a potentially overwhelming quan-
tity of data has become increasingly important. Examples
from computer vision, text processing and Genomics are
abundant. For instance, in visual recognition the pixel val-
ues themselves often form a highly redundant set of fea-
tures; methods using an “over-complete” basis of features
for recognition are gaining popularity [16], and recently
methods relying on abundance of simple efficiently com-
putable features of which only a fraction of are relevant
were proposed for face detection [23] — and these are only
few examples from the visual recognition literature.

From a practical perspective, large amounts of irrelevant

features affects learning algorithms at three levels. First,
most learning problems do not scale well with the growth of
irrelevant features — in many cases the number of training
examples grows exponentially with the number of irrelevant
features [11]. Second, is a substantial degradation of classi-
fication accuracy for a given training set size [1, 9]. The ac-
curacy drop affects also advanced learning algorithms that
generally scale well with the dimension of the feature space
such as the Support Vector Machines (SVM) as recently ob-
served in [25]. The third aspect has to do with the run time
of the learning algorithm on test instances. In most learn-
ing problems the classification process is based on inner-
products between the features of the test instance and stored
features from the training set, thus when the number of fea-
tures is overwhelmingly large the run-time of the learning
algorithm becomes prohibitively large for real time appli-
cations, for example. Another practical consideration is the
problem of determining how many relevant features to se-
lect. This is a difficult problem which is hardly ever ad-
dressed in the literature and consequently it is left to the
user to choose manually the number of features. Finally,
there is an issue of whether one is looking for the minimal
set of (relevant) features, or simply a possibly redundant but
relevant set of features.

The potential benefits of feature selection include, first
and foremost, better accuracy of the inference engine and
improved scalability (defying the curse of dimensionality).
Secondary benefits include better data visualization and un-
derstanding, reduce measurement and storage requirements,
and reduce training and inference time. Blum and Langley
[2] in a survey article distinguish between three types of
methods: Embedded, Filter and Wrapper approaches. The
filter methods apply a preprocess which is independent of
the inference engine (a.k.a the predictor or the classifica-
tion/inference engine) and select features by ranking them
with correlation coefficients or make use of mutual infor-
mation measure. The Embedded and Wrapper approaches
construct and select feature subsets that are useful to build
a good predictor. The issue being the notion of relevancy,
i.e., what constitutes a good set of features. The modern
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approaches, therefore, focus on building feature selection
algorithms in the context of a specific inference engine. For
example, [25, 3] use the Support Vector Machine (SVM)
as a subroutine (wrapper) in the feature selection process
with the purpose of optimizing the SVM accuracy on the
resulting subset of features. These wrapper and embedded
methods in general are typically computationally expensive
and often criticized as being “brute force”. Further details
on relevancy versus usefulness of features and references to
historical and modern literature on feature selection can be
found in the survey papers [2, 10, 8].

In this paper the inference algorithm is not employed
directly in the feature selection process but instead gen-
eral properties are being gathered which indirectly indi-
cate whether a feature subset would be appropriate or not.
Specifically, we use clustering as the predictor and use spec-
tral properties of the candidate feature subset to guide the
search. This leads to a “direct” approach where the search
is conducted on the basis of optimizing desired spectral
properties rather than on the basis of explicit clustering and
prediction cycles. The search is conducted by the solution
of a least-squares optimization function using a weighting
scheme for the ranking of features. A remarkable prop-
erty of the energy function is that sparse solutions for the
weights naturally emerge as a result of a “biased non-
negativity” of a key matrix in the process. The algorithm,
called Q − α, is iterative, very efficient and achieves re-
markable performance on a variety of experiments we have
conducted.

There are several benefits of our approach: First, we
avoid the expensive computations associated with Embed-
ded and Wrapper approaches, yet still make use of a pre-
dictor to guide the feature selection. Second, the frame-
work can handle both unsupervised and supervised infer-
ence within the same framework and handle any number
of classes. In other words, since the underlying inference is
based on clustering class labels are not necessary, but on the
other hand, when class labels are provided they can be used
by the algorithm to provide better feature selections. Third,
the algorithm is couched within a least-squares framework
— and least-squares problems are the best understood and
easiest to handle. Finally, the performance (accuracy) of the
algorithm is remarkable.

2 Algebraic Definition of Relevancy

A key issue in designing a feature selection algorithm in
the context of an inference is defining the notion of rele-
vancy. Definitions of relevancy proposed in the past [2, 10]
lead naturally to a explicit enumeration of feature subsets
which we would like to avoid. Instead, we take an alge-
braic approach and measure the relevance of a subset of
features against its influence on the cluster arrangement of

the data points with the goal of introducing an energy func-
tion which receives its optimal value on the desired feature
selection. We will consider below a measure of relevancy
based on the Standard spectrum — the use of the Laplacian
spectrum is detailed in [26].

Consider a data set M consisting of column vectors (data
points) M1, ..., Mq each a vector in Rn representing n fea-
tures x1, ..., xn. Let the row vectors of M be denoted by
m�

1 , ..., m�
n pre-processed such that

∑
i mi = 0 and nor-

malized to unit norm ‖mi‖ = 1. Let S = {xi1 , ..., xil
}

be a subset of (relevant) features from the set of n fea-
tures and let αi ∈ {0, 1} be the indicator value associated
with feature xi, i.e., αi = 1 if xi ∈ S and zero other-
wise. Let As be the corresponding affinity matrix whose
(i, j) entries are the inner-product between the i’th and j’th
data points restricted to the selected coordinate features, i.e.,
As =

∑l
j=1 αij mij m�

ij
where mim�

i is the rank-1 ma-
trix defined by the outer-product between mi and itself. Fi-
nally, let Qs be a q×k matrix whose columns are the first k
eigenvectors of As associated with the highest eigenvalues
λ1 ≥ ... ≥ λk.

We define “relevancy” as directly related to the cluster-
ing quality of the data points restricted to the selected co-
ordinates. In other words, we would like to measure the
quality of the subset S in terms of cluster coherence of the
first k clusters, i.e., we make a direct linkage between clus-
ter coherence of the projected data points and relevance of
the selected coordinates.

We measure cluster coherence by analyzing the (stan-
dard) spectral properties of the affinity matrix As. Con-
sidering the affinity matrix as representing weights in an
undirected graph, it is known that maximizing the quadratic
form x�Asx where x is constrained to lie on the standard
simplex (

∑
xi = 1 and xi ≥ 0) provides the identification

of the maximal clique of the (unweighted) graph [14, 6], or
the maximal “dominant” subset of vertices of the weighted
graph [17]. Likewise there is evidence (motivated by find-
ing cuts in the graph) that solving the quadratic form above
where x is restricted to the unit sphere provides cluster
membership information (cf. [15, 24, 18, 20, 4, 5]). In
this context, the eigenvalue (the value of the quadratic form)
represents the cluster coherence. In the case of k clusters,
the highest k eigenvalues of As represent the corresponding
cluster coherences and the components of an eigenvector
represent the coordinate (feature) participation in the corre-
sponding cluster. The eigenvalues decrease as the intercon-
nections of the points within clusters get sparser (see [19]).
Therefore, we define the relevance of the subset S as:

rel(S) = trace(Q�
s A�

s AsQs)

=
∑
r,s

αirαis(m
�
ir

mis)m
�
ir

QsQ
�
s mis =

k∑
j=1

λ2
j ,
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where λj are the ordered eigenvalues of As. Note that the
proposed measure of relevancy handles interactions among
features up to a second order. To conclude, achieving a high
score on the combined energy of the first k eigenvalues of
As indicate (although indirectly) that the q input points pro-
jected onto the l-dimensional feature space are “well clus-
tered” and that in turn suggests that S is a relevant subset of
features.

Rather than enumerating all possible feature subsets S
and ranking them according to the value of rel(S) we con-
sider the prior weights α1, ..., αn as unknown real numbers
and define the following optimization function:

Definition 1 (Relevant Features Optimization) Let M be
an n × q input matrix with rows m�

1 , ..., m�
n . Let Aα =∑n

i=1 αimim�
i for some unknown scalars α1, ..., αn. The

weight vector α = (α1, ..., αn)� and the orthonormal q×k
matrix Q are determined at the maximal point of the follow-
ing optimization problem:

max
Q,αi

trace(Q�A�
α AαQ) (1)

subject to
n∑

i=1

α2
i = 1, Q�Q = I

Note that the optimization function does not include the
inequality constraint αi ≥ 0 and neither a term for “encour-
aging” a sparse solution of the weight vector α — both of
which are necessary for a “feature selection”. As will be
shown later in Section 4, the sparsity and positivity condi-
tions are implicitly embedded in the nature of the optimiza-
tion function and therefore “emerge” naturally with the op-
timal solution.

Note also that it is possible to maximize the gap∑k
i=1 λ2

i − ∑q
j=k+1 λ2

j by defining Q = [Q1|Q2] where
Q1 contains the first k eigenvectors and Q2 the remaining
q − k eigenvectors (sorted by decreasing eigenvalues) and
the criterion function (1) would be replaced by:

max
Q=[Q1|Q2],αi

trace(Q�
1 A�

α AαQ1) − trace(Q�
2 A�

α AαQ2).

We will describe in Section 3 an efficient algorithm for
finding a local maximum of the optimization (1) and later
address the issue of sparsity and positivity of the resulting
weight vector α. The algorithms are trivially modified to
handle the gap maximization criterion and those will not be
further elaborated here. We will describe next the problem
formulation using an additive normalization (the Laplacian)
of the affinity matrix.

3 An Efficient Algorithm

We wish to find an optimal solution for the non-linear prob-
lem (1). We will focus on the Standard spectrum matrix Aα

and later discuss the modifications required for Lα. If the
weight vector α is known, then the solution for the matrix
Q is readily available by employing a Singular Value De-
composition (SVD) of the symmetric (and positive definite)
matrix Aα. Conversely, if Q is known then α is readily de-
termined as shown next. We already saw that

trace(Q�A�
α AαQ) =

∑
i,j

αiαj(m�
i mj)m�

i QQ�mj

= α�Gα

where Gij = (m�
i mj)m�

i Q�Qmj is symmetric and posi-
tive definite. The optimal α is therefore the solution of the
optimization problem:

max
α

α�Gα subject to α�α = 1,

which results in α being the eigenvector of G associated
with its largest eigenvalue. A possible scheme, guaranteed
to converge to a local maxima, is to start with some ini-
tial guess for α and iteratively interleave the computation of
Q given α and the computation of α given Q until conver-
gence. We refer to this scheme as the Basic Q−α Method.

A more advanced scheme with superior convergence rate
and more importantly accuracy of results (based on empir-
ical evidence) is to embed the computation of α within the
“orthogonal iteration” [7] cycle for computing the largest k
eigenvectors, described below:

Definition 2 (Standard Power-Embedded Q − α Method)
Let M be an n× q input matrix with rows m�

1 , ..., m�
n , and

some orthonormal q × k matrix Q(0), i.e., Q(0)�Q(0) = I .
Perform the following steps through a cycle of iterations
with index r = 1, 2, ...

1. Let G(r) be a matrix whose (i, j) components are

(m�
i mj)m�

i Q(r−1)Q(r−1)�mj .

2. Let α(r) be the largest eigenvector of G(r).

3. Let A(r) =
∑n

i=1
α

(r)
i mim�

i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR−→ Q(r)R(r).

6. Increment index r and go to step 1.

The method is very efficient and achieves very good perfor-
mance (accuracy). Note that steps 4,5 of the algorithm con-
sist of the “orthogonal iteration” module, i.e., if we were to
repeat steps 4,5 only we would converge onto the eigenvec-
tors of A(r). However, note that the algorithm does not re-
peat steps 4,5 in isolation and instead recomputes the weight
vector α (steps 1,2,3) before applying another cycle of steps
4,5. The convergence proof, a faster converging method us-
ing the “Ritz” acceleration [7] to the basic power method
and the manner in which supervised inference can be han-
dled in this framework can be found in [26].

3

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



4 Sparsity and Positivity of α

The optimization criteria (1) is formulated as a least-squares
problem and as such there does not seem to be any appar-
ent guarantee that the weights α1, ..., αn would come out
non-negative (same sign condition), and in particular sparse
when there exists a sparse solution (i.e., there is a relevant
subset of features). These two conditions are critical for
the compatibility of the algorithm for feature selection. The
positivity is required for making the variables αi serve as
weights, and the sparsity for the feature selection itself —
otherwise the scheme would produce some feature combi-
nation rather than feature selection.

Typically, these conditions should be specifically pre-
sented into the optimization criterion one way or the other.
The possible means for doing so include introduction of in-
equality constraints, use of L0 or L1 norms, adding specific
terms to the optimization function to “encourage” sparse so-
lutions or use a multiplicative scheme of iterations which
preserve the sign of the variables throughout the iterations
(for a very partial list see [16, 12, 22]). It is therefore some-
what surprising, if not remarkable, that the least-squares
formulation of the feature selection problem could consis-
tently converge onto same-sign and sparse solutions.

The key for the emergence of a sparse and positive α has
to do with the way the entries of the matrix G are defined.
Recall that Gij = (m�

i mj)m�
i Q�Qmj and that α comes

out as the largest eigenvector of G (at each iteration). If
G were to be non-negative (and irreducible), then from the
Perron-Frobenious theorem the first eigenvector is guaran-
teed to be non-negative (or same-sign). However, this is not
the case and G in general has negative terms as well as posi-
tive ones. A closer look shows that each entry of G consists
of a sum of products of three inner-products:

Gij =
k∑

l=1

(m�
i ql)(m

�
j ql)(m

�
i mj).

In general, a product of the form f = (a�b)(a�c)(b�c),
where ‖a‖ = ‖b‖ = ‖c‖ = 1 satisfies −1 < f ≤ 1 where
f = 1 when a = b = c. Since f > −1 there is an asymme-
try on the expected value of f , i.e., the expected values of
the entries of G are biased towards a positive value — and
we should expect a bias towards a positive first eigenvector
of G. In the context of deriving the probability that the first
eigenvector of G is positive we will address the following
three questions:

• What is the minimal value of f = (a�b)(a�c)(b�c)
when a, b, c vary over the n-dimensional unit hyper-
sphere? We will show that the −1/8 ≤ f ≤ 1.

• Given a uniform sampling of the vectors a, b, c over
the n-dimensional unit hypersphere, what is the mean

µ and variance σ2 of f? The result that −1/8 ≤ f ≤ 1
suggests that µ > 0.

• Given that Gij ∼ N(µ > 0, σ2) sampled i.i.d, what is
the probability (as a function of n) that the first eigen-
vector of G is strictly non-negative (same sign)?

We will show that for a random matrix G, the probability
of the leading eigenvector α of G to be strictly non-negative
rapidly approaches 1 with n.

Proposition 1 The minimal value of f =
(a�b)(a�c)(b�c) where a, b, c ∈ Rn are defined
over the unit hypersphere is −1/8.

Proof: Let e1, e2, e3 ∈ Rn be three units vectors
(1, 0, ..., 0), (0, 1, 0, ..., 0) and (0, 0, 1, 0, ..., 0). The param-
eterization of 3 points on the unit hypersphere takes the
form:

[a, b, c] = [e1, e2, e3]


 1 cos(β) cos(γ1)

0 sin(β) sin(γ1) cos(γ2)
0 0 sin(γ1)sin(γ2)



(2)

Setting the partial derivatives of

f = cos(β) cos(γ1) (cos(β) cos(γ1) + sin(β) sin(γ1) cos(γ2))
(3)

with respect to β, γ1, γ2 to zero and solving for the ex-
tremum points (using a symbolic solver such as Maple)
yields 36 solutions for the triplet (β, γ1, γ2). When these
solutions are substituted in expression (3) the values f =
{−1/8, 0, 1} appear with multiplicity {16, 14, 4}, respec-
tively.

Proposition 2 The expected value of f =
(a�b)(a�c)(b�c) where a, b, c ∈ Rn are uniformly
sampled over the unit hypersphere is µ = 1

6 with a
standard deviation (s.t.d) σ =

√
21

6 .

Proof: Let the parameterization of 3 points on the unit
hypersphere be described as in (2), where 0 ≤ β ≤ 2π,
−1 ≤ cos(γ1) ≤ 1 and 0 ≤ γ2 ≤ π are sampled uniformly
inside their respective interval domains. This parameteriza-
tion guarantees a uniform sampling of all the unit direction
triplets which is invariant to rotation. For instance, a uni-
form sampling of γ1 would have resulted in a bias (at the
poles) which can be fixed by sampling cos(γ1) uniformly
instead (as can be verified by deriving the Jacobian of the
joint distribution). The expectation µ can be computed by
the following integral:

µ =
1
4π

∫ π

0

∫ 1

−1

∫ 2π

0

(a�b)(a�c)(b�c)dγ2d(cos(γ1))dβ

=
1
4π

∫ π

0

∫ 1

−1

∫ 2π

0

cos(β)cos(γ1)(cos(β)cos(γ1)

+ sin(β)
√

1 − cos(γ2
1)cos(γ2))dγ2dcos(γ1)dβ =

1
6
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The s.t.d of the distribution can be similarly computed with
the result of σ =

√
2 1

6 .
Each entry Gij is a a sum of k such terms, each with a

mean of 1/6 and s.t.d
√

2(1/6), therefore the mean of Gij

is k(1/6) with s.t.d
√

2k(1/6). In the sequel we will take
the worst case where k = 1. Next, we address the probabil-
ity that a matrix G whose entries are normally distributed
N(µ, σ2) will have a strictly non-negative first eigenvector.
The theorem is a result of joint work with Ofer Zeitouni
from U. of Minnesota and Michael Ben-Or from the He-
brew U.

Theorem 1 (Weak Version) Let G be a symmetric n × n
matrix whose entries are drawn i.i.d from a Normal distri-
bution Gij ∼ N(µ > 0, σ2). Let v1 be the leading eigen-
vector of G. There exists σ0 which depends on µ such that
for all σ ≤ σ0,

P (v1 ≥ 0) →n→∞ 1.

In other words, the probability that the entries of the lead-
ing eigenvector are non-negative approaches unity with in-
creasing size of n.

Proof: Let G = µJ + σS where J = 11� and Sij are
i.i.d. sampled according to N(0, 1). Let e = 1√

n
1. and let

v1, ..., vn and λ1, ..., λn be the spectrum of G. It is known
that λi = O(

√
n) for i = 2, 3..., n. For λ1 we can assert the

following bound:

µn − O(1) ≤ λ1 ≤ µn + O(
√

n)

(see [26] for derivation). Since vi, i = 1, ..., n form an or-
thonormal basis, let e =

∑
i aivi and since e and the eigen-

vectors are of unit norm we have
∑

i a2
i = 1. We have

therefore e�Ge =
∑

i λia
2
i . Since λi = O(

√
n) for i =

2, ..., n and
∑

i a2
i = 1 we have: e�Ge ≤ λ1a

2
1 + O(

√
n).

Using the bound e�Ge ≥ µn − O(1), we have:

µn − O(1) ≤ λ1a
2
1 + O(

√
n)

µn − O(
√

n)
µn + O(

√
n)

≤ a2
1 ≤ a1

from which we can conclude (with further manipulation):

1 − 1
µO(

√
n)

≤ a1.

Consider now that a1 is the angle between e and v1:

1√
n

∑
i

v1i = e�v1 = a1 ≥ 1 − 1
µO(

√
n)

,

from which we obtain:
∑

i

v1i ≥
√

n − O(1).

Finally, assume that v1i < 0, then this implies:

0 > λv1i = (Gv1)i = µ
∑

i

v1i + σ(Sv)i

≥ µ
√

n − O(1) + σ(Sv)i

By concentration inequalities for the Gaussian process (e.g.,
Talagrand’s [21]),

P (∃w : ‖w‖2 = 1, σ|(Sw)i| > µ
√

n) ≤ e−Cn

where the constant C depends on µ and σ and in particular
we should have σ < σ0 where σ0 depends on µ. Thus, the
probability for a particular entry i of the leading eigenvector
decays exponentially in n and since there are n possibilities
for i, the probability that there is a negative entry decays
exponentially as well.

A much stronger theorem can be proven (but not shown
here) of the claim that the probability of positive leading
eigenvector approaches unity regardless of the value of σ.
In other words, for any fixed positive value of µ the prob-
ability increases with the value of n. For the value of
µ = 1/6 and σ =

√
2/6 the probability we acheive in sim-

ulations becomes very close to 1 once n > 20 (see Fig. 1a).
On the other hand, for µ = 0.1 and σ = 1 the value of n
must exceed 500 in order for the probability to be close to
1.

Regarding the issue of sparsity of the weight vector α.,
It has been observed in the past that the key for sparsity lies
in the positive combination of terms (cf. [12]) — therefore
there is a strong (somewhat anecdotal) relationship between
the positivity of α and the sparsity feature. In [26] we es-
tablish the relationship between the “sparsity gap” and the
fraction of relevant features 0 < p ≤ 1. We show there that
the gap between the high and low values of αi is inversely
proportional to the value of p. In other words, the sparsity
result is significant when the ratio between the number of
relevant and irrelevant features is high.

In the next section we will present a number of experi-
ments, both synthetic and with real data. Fig. 1b shows the
weight vector α for a random data matrix M , and for a syn-
thetic experiment (6 relevant features out of 202) described
in the next section. One can clearly observe the positivity
and sparsity of the recovered weight vector — even for a
random matrix.

5 Experiments

Synthetic Data

We compared the Q−α algorithm with three classical filter
methods (Pearson correlation coefficients, Fisher criterion
score and the Kolmogorov-Smirnoff test), standard SVM
and the wrapper method using SVM of [25]. The data set
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(a) (b) 0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4
Alpha distribution for the linear synthetic data set
Alpha distribution for a completely random data

Figure 1: (a) Probability of positive leading eigenvector of the matrix G in simulations. The probability is very close to 1 starting from
n = 20. (b) Positivity and sparsity demonstrated on the synthetic feature selection problem described in Section 5 (6 relevant features out
of 202) and of a random data matrix. The alpha weight vector (sorted for display) comes out positive and sparse.

we used follow precisely the one described in [25] which
was designed for supervised 2-class inference. In [25] two
experiments were designed, one with 6 relevant features
out of 202 referred to as “linear” problem, and the other
experiment with 2 relevant features out of 52 designed in
a more complex manner and referred to as “non-linear”
problem. In the linear data the class label y ∈ {−1, 1}
was drawn at equal probability. The first six features were
drawn as xi = yN(i, 1), i = 1..3, and xj = N(0, 1),
j = 4..6 at probability 0.7, otherwise they were drawn as
xi = N(0, 1), i = 1..3, and xj = yN(i − 3, 1), j = 4..6.
The remaining 196 dimensions were drawn from N(0, 20).
The reader is referred to [25] for details of the non-linear ex-
periment. We ran Q−alpha on the two problems once with
known classes (supervised version) and with unknown class
labels (unsupervised version). In the supervised case the se-
lected features were used to train an SVM and in the unsu-
pervised case the class labels were not used for the Q − α
feature selection but were used for the SVM training. The
unsupervised test appears artificial but is important for ap-
preciating the strength of the approach as the results of the
unsupervised are only slightly inferior to the supervised test.
In Fig. 2a we overlay the Q − α results (prediction error of
the SVM on a testing set) on the figure obtained by [25].
The performance of the supervised Q − α closely agrees
with the performance of the wrapper SVM feature selection
of [25]. The performance of the unsupervised version does
not fall much behind. Similar results were obtained for the
non-linear problem but are omitted due to lack of space.
Additional simulations can be found in [26].

Real Image Unsupervised Feature Selection

The strength of the Q−α method is that it applies for unsu-
pervised settings as well as supervised. An interesting un-
supervised feature selection problem in the context of visual
processing is the one of automatic selection of relevant fea-
tures which discriminate among perceptual classes. Assume
one is given a collection of images where some of them
contain pictures of a certain object class (say, green frogs
(Rana clamitans specie)) and other images contain pictures

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Span−Bound & Forward Selection
RW−Bound & Gradient
Standard SVMs
Correlation Coefficients
Kolmogorov−Smirnov Test
Supervised Q − α method
Unserpervised Q − α method

Figure 2: Comparison of feature selection methods following
[25]. Performance curves of Q − α were overlaid on the figure
adapted from [25]. The x-axis is the number of training points and
the y-axis is the test error as a fraction of test points. The thick
solid lines correspond to the Q − α supervised and unsupervised
methods (see text for details).

of a different class of objects (say, American toads) — see
Fig. 3. We would like to automatically, in an unsupervised
manner, select the relevant features such that a new picture
could be classified to the correct class membership.

The features were computed by matching patches of
equal size of 20 × 20 pixels in the following manner. As-
suming that the object of interest lies in the vicinity of the
image center, we defined 9 “template” patches arranged in
a 3 × 3 block centered at the image. We had 27 images
(18 from one class and 9 from the other), which in turn de-
fines 27 ∗ 9 = 243 feature coordinates. Each image was
sampled by 49 “candidate” patches (covering the entire im-
age) where each of the 243 template patches was matched
against the 49 patches in its respective image and the score
of the best match was recorded in 243 × 27 data matrix.
The matching between a pair of patches was based on L1-
distance between the respective color histograms in HSV
space. The resulting α weight vector forms a feature se-
lection from which we create a submatrix of data points
and construct its affinity matrix and the associated matrix
of eigenvectors Q. The rows of the Q matrix were clustered
using k-means into two clusters. A test image was classified
based on distance from the cluster centroids. Performance
on test images varied between 80% to 90% correct classi-
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Figure 3: Image samples of several animal classes — American
toad (top row) and Green frogs (Rana clamitans), elephants, and
sea elephants. The objects appear in various positions, illumina-
tion, context and size.
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Figure 4: Unsupervised feature selection for automatic object dis-
crimination from images. (a),(b) the first 20 features from pictures
containing the American frog and the Green frog ranked by the α
weight vector. (c) the (sorted) α values. (d),(e),(f) similar to the
elephant and sea elephant.

fication over many experiments over several object classes
(including elephants, sea elephants, and so forth). This per-
formance was compared to spectral clustering using all the
243 features which provided a range of 55% to 65% correct
classification.

Fig. 4a and Fig. 4b show the 20 most relevant templates
selected for the two classes, and Fig. 4c shows the alpha
values. Note that the α weights are positive as predicted
from Theorem 1 and exhibit a sharp break when the relevant
features begin (sparsity).

References

[1] H. Almuallim and T .G .Dietterich. Learning with many irrel-
evant features. Proc. 9th Nat. Conf. on AI, 1991.

[2] A. Blum and P. Langley. Selection of relevant features and
examples in machine learning. AI, 97(1-2), 1997.

[3] P.S. Bradley and O.L. Mangasarian feature selection via con-
cave minimization and support vector machines ICML, 1998

[4] M. Brand and K. Huang. A unifying theorem for spectral em-
bedding and clustering In 9th Int. Conf. on AI and Statistics,
2002.

[5] F.R.K. Chung. spectral graph theory. AMS, 1998.
[6] L.E. Gibbons, D.W. Hearn, P.M. Pardalos, and M.V. Ramana.

Continuous characterizations of the maximum clique prob-
lem. Math. Oper. Res., 22:754–768, 1997.

[7] G. Golub and C.V. Loan, Matrix Computations, 3rd ed., Johns
Hopkins University Press, Baltimore, MD, 1996.

[8] I. Guyon and A. Elissef. An introduction to variable and fea-
ture selection. Journal of Machine Learning Research, 2003.

[9] K. Kira and L. Rendell. A practical approach to feature selec-
tion. ICML, 1992.

[10] R. Kohavi and G. John. Wrappers for feature selection. Ar-
tificial Intelligence, 97(1-2), 273–324, 1997.

[11] P. Langley and W. Iba. Average-case analysis of a nearest
neighbor algorithm. In Proceedings of the 13th Int. Conf. on
Artificial Intelligence, 1993.

[12] D.D. Lee and H.S. Seung. learning the parts of objects by
non-negative matrix factorization. Nature 401(10), 1999

[13] D. D. Lewis. Feature selection and feature extraction for
text categorization. In Proceedings of Speech and Natural
Language Workshop, 1992.

[14] T.S. Motzkin and E.G. Straus. Maxima for graphs and a new
proof of a theorem by turan. Canadian Journal of Math.,
17:533–540, 1965.

[15] A.Y. Ng, M.I. Jordan and Y. Weiss. On Spectral Clustering:
Analysis and an algorithm. NIPS, 2001.

[16] B.A. Olshausen and D.J. Field. Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images. Nature, 381(13), 1996.

[17] M. Pavan and M. Pelillo. A new graph-theoretic approach to
clustering and segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2003.

[18] P. Perona and W. T. Freeman. A Factorization Approach to
Grouping. ECCV,1998.

[19] S. Sarkar and K.L. Boyer Quantitative measures of change
based on feature organization: eigenvalues and eigenvectors
In CVIU, 71(1), pp. 110-136, 1998.

[20] J. Shi and J. Malik. Normalized Cuts and Image Segmenta-
tion. PAMI 22(8), 2000.

[21] Talagrand Concentration of measure and isoperimetric in-
equalities in product spaces. Publ. Math. I.H.E.S. 81, 1995,
73-203.

[22] V.N. Vapnik. The nature of statistical learning. Springer,
2nd edition, 1998.

[23] P. Viola and M. Jones. Robust Real-time Object Detection
IJCV, 2002.

[24] Y. Weiss. Segmentation using eigenvectors: a unifying view.
ICCV, 1999.

[25] Weston, J., S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio
and V. Vapnik. Feature Selection for SVMs. NIPS, 2001.

[26] L. Wolf and A. Shashua. Feature Selection for Unsuper-
vised and Supervised Inference: the Emergence of Sparsity
in a Weighted-based Approach. Technical report 2003–58,
School of Eng. and CS, June 2003.

7

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 


