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Abstract 
 
Previous works have demonstrated that the face recogni-
tion performance can be improved significantly in low 
dimensional linear subspaces. Conventionally, principal 
component analysis (PCA) and linear discriminant analy-
sis (LDA) are considered effective in deriving such a face 
subspace. However, both of them effectively see only the 
Euclidean structure of face space. In this paper, we pro-
pose a new approach to mapping face images into a sub-
space obtained by Locality Preserving Projections (LPP) 
for face analysis.  We call this Laplacianface approach. 
Different from PCA and LDA, LPP finds an embedding 
that preserves local information, and obtains a face space 
that best detects the essential manifold structure. In this 
way, the unwanted variations resulting from changes in 
lighting, facial expression, and pose may be eliminated or 
reduced. We compare the proposed Laplacianface ap-
proach with eigenface and fisherface methods on three 
test datasets. Experimental results show that the proposed 
Laplacianface approach provides a better representation 
and achieves lower error rates in face recognition.  
 
1. Introduction 

In recent years, computer vision research has wit-
nessed a growing interest in subspace analysis techniques 
[1][6][14][16][20][21]. A face image can be represented 
as a point in the image space (given by the number of 
pixels in the image). Before we utilize any classification 
technique, it is beneficial to first perform dimensionality 
reduction to project an image into a low dimensional fea-
ture space or so-called face space, due to the considera-
tion of learnability and computational efficiency. Specifi-
cally, learning from examples is computationally infeasi-
ble if it has to rely on high-dimensional representations.  
In particular, Principal Component Analysis (PCA) [16] 
and Linear Discriminant Analysis (LDA) [1] have been 
applied to face recognition with impressive results.  

PCA is an eigenvector method designed to model lin-
ear variation in high-dimensional data. PCA performs 
dimensionality reduction by projecting the original n-
dimensional data onto the k(<<n)-dimensional linear sub-
space spanned by the leading eigenvectors of the data’s 
covariance matrix. Its goal is to find a set of mutually 
orthogonal basis functions that capture the directions of 

maximum variance in the data and for which the coeffi-
cients are pairwise decorrelated. For linearly embedded 
manifolds, PCA is guaranteed to discover the dimension-
ality of the manifold and produces a compact representa-
tion. 

LDA is a supervised learning algorithm. LDA searches 
for the projection axes on which the data points of differ-
ent classes are far from each other and at the same time 
where the data points of a same class are close to each 
other. Unlike PCA which encodes information in an or-
thogonal linear space, LDA encodes discriminating in-
formation in a linear separable space whose bases are not 
necessarily orthogonal.  

Recently, a number of research efforts have shown that 
the face images possibly reside on a nonlinear submani-
fold [9][10][11][15]. However, both PCA and LDA effec-
tively see only the Euclidean structure. They fail to dis-
cover the underlying structure, if the face images lie on a 
nonlinear submanifold hidden in the image space. Some 
nonlinear techniques have been proposed to discover the 
nonlinear structure of the manifold, i.e. Isomap [15], LLE 
[9], and Laplacian eigenmaps [2]. These nonlinear meth-
ods do yield impressive results on some benchmark artifi-
cial data sets. However, they yield maps that are defined 
only on the training data points and how to evaluate the 
maps on new testing points remains unclear. Therefore, 
these nonlinear manifold learning techniques might not be 
suitable for some computer vision tasks, such as face rec-
ognition. 

In the meantime, there has been some interest in the 
problem of developing low dimensional representations 
through kernel based techniques for face recognition 
[5][19]. These methods can discover the nonlinear struc-
ture of the face images. However, they are computation-
ally expensive. Moreover, none of them explicitly consid-
ers the structure of the manifold on which the face images 
possibly reside.  

In this paper, we propose a new approach to face rep-
resentation and recognition, which explicitly considers the 
face manifold structure. To be specific, an adjacency 
graph is constructed to model the local structure of the 
face manifold. A Locality Preserving Subspace for face 
representation is learned by using Locality Preserving 
Projections (LPP). Each face image in the image space is 
mapped to a low-dimensional face subspace, which is 
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characterized by a set of feature images, called Laplacian-
faces. The face subspace preserves local structure, and 
thus has more discriminating power than eigenfaces from 
the classification viewpoint. Moreover, the locality pre-
serving property makes our algorithm insensitive to the 
unwanted variations due to changes in lighting, facial 
expression, and viewing points.  

It is worthwhile to highlight several aspects of the pro-
posed approach here: 
1. While PCA aims to preserve the global structure of the 

image space, and LDA aims to preserve the discrimi-
nating information; LPP aims to preserve the local 
structure of the image space. In many real world clas-
sification problems, the local manifold structure is 
more important than the global Euclidean structure, 
especially when nearest-neighbor like classifiers are 
used for classification. 

2. An efficient subspace learning algorithm for face rec-
ognition should be able to detect the nonlinear mani-
fold structure of the face space. Our proposed Lapla-
cianface method explicitly considers the manifold 
structure which is modeled by an adjacency graph. 

3. LPP shares some similar properties with LLE, such as 
locality preserving character. However, their objective 
functions are totally different. LPP is obtained by find-
ing the optimal linear approximations to the eigen-
functions of the Laplace Beltrami operator on the 
manifold [2][4]. LPP is linear, while LLE is nonlinear. 
Moreover, LPP is defined everywhere, while LLE is 
defined only on the training data points and it is un-
clear how to evaluate the map for new test points. In 
contrast, LPP may be simply applied to any new data 
point to locate it in the reduced representation space. 

The rest of this paper is organized as follows: Section 
2 describes the objective functions of PCA and LDA. The 
Locality Preserving Projection algorithm is described in 
section 3. In section 4, we present the manifold ways of 
face analysis. The experimental results are shown in Sec-
tion 5. Finally, we give concluding remarks and future 
work in Section 6. 

2. PCA and LDA 

One approach to coping with the problem of excessive 
dimensionality of the image space is to reduce the dimen-
sionality by combining features. Linear combinations are 
particular attractive because they are simple to compute 
and analytically tractable. In effect, linear methods project 
the high-dimensional data onto a lower dimensional sub-
space. 

Considering the problem of representing all of the vec-
tors in a set of n d-dimensional samples x1, x2, …, xn, with 
zero mean, by a single vector y={y1, y2, …, yn} such that 
yi represent xi. Specifically, we find a linear mapping 
from the d-dimensional space to a line. Without loss of 
generality, we denote the transformation vector by w. 

That is, wTxi = yi. Actually, the magnitude of w is of no 
real significance, because it merely scales yi. In face rec-
ognition, each vector xi denotes a face image. 

Different objective functions will yield different algo-
rithms with different properties. PCA seeks a projection 
that best represents the data in a least-squares sense. The 
matrix wwT is a projection onto the principal component 
space spanned by {w} which minimizes the following 
objective function, 
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The output set of principal vectors w1, w2, …, wk are an 
orthonormal set of vectors representing the eigenvectors 
of the sample covariance matrix associated with the k < d 
largest eigenvalues. 

While PCA seeks directions that are efficient for repre-
sentation, LDA seeks directions that are efficient for 
discrimination. Suppose we have a set of n d-dimensional 
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where m is the total sample mean vector, |Ci| is the num-
ber of samples in class Ci, m

(i) are the average vectors of 
Ci, and x(i) are the sample vectors associated to Ci. We call 
SW the within-class scatter matrix and SB the between-
class scatter matrix.  

3. Learning a Locality Preserving Subspace 

Both PCA and LDA aim to preserve the global struc-
ture. However, in many real world applications, the local 
structure is more important, especially when nearest-
neighbor search needs to be performed. In this section, we 
describe how to learn a Locality Preserving Subspace by 
using Locality Preserving Projections (LPP) [4]. LPP is a 
linear approximation of the nonlinear Laplacian Eigen-
maps [2]. It seeks to preserve the intrinsic geometry of the 
data and the local structures. The objective function of 
LPP is as follows: 

∑ −
ij

ijji Syy 2)(min
y

 

The objective function with our choice of symmetric 
weights Sij (Sij = Sji) incurs a heavy penalty if neighboring 
points xi and xj are mapped far apart. Therefore, minimiz-
ing it is an attempt to ensure that if xi and xj are “close” 
then yi and yj are close as well. Sij can be thought of as a 
similarity measure between objects. Let w denote the 
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transformation vector. By simple algebra formulation, we 
can reduce the above objective function as follows: 
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where X = [x1, x2, …, xn], and D is a diagonal matrix; its 
entries are column (or row, since S is symmetric) sums of 
S, Dii = ∑j Sji.. L = D – S is the Laplacian matrix [3]. Ma-
trix D provides a natural measure on the data points. The 
bigger the value Dii (corresponding to yi) is, the more 
“important” is yi. Therefore, we impose a constraint as 
follows: 
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Finally, the minimization problem reduces to finding: 
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The transformation vector w that minimizes the objective 
function is given by the minimum eigenvalue solution to 
the generalized eigenvalue problem: 

ww TT XDXXLX λ=  

Note that the two matrices XLXT and XDXT are both sym-
metric and positive semi-definite. 

The derivation reflects the intrinsic geometric structure 
of the manifold. The theoretical justification for LPP can 
be traced back to [4]. 

4. Manifold Ways of Face Analysis 

In the above two sections, we have described three dif-
ferent linear subspace learning algorithm. The key differ-
ence between PCA, LDA and LPP is that, PCA and LDA 
aim to discover Euclidean structure, while LPP aims to 
discover manifold structure. In this Section, we discuss 
the manifold ways of face analysis. 

4.1. Manifold Learning via Dimensionality Re-
duction 

In many cases, face images may be visualized as points 
drawn on a low-dimensional manifold hidden in a high-
dimensional Euclidean space. Specially, we can consider 
that a sheet of rubber is crumpled into a (high dimensional) 

ball. The objective of a dimensionality-reducing mapping 
is to unfold the sheet and to make its low-dimensional 
structure explicit. If the sheet is not torn in the process, 
the mapping is topology-preserving. Moreover, if the rub-
ber is not stretched or compressed, the mapping preserves 
the metric structure of the original space. In this paper, 
our objective is to discover the face manifold by a local-
ity-preserving mapping for face representation and recog-
nition. 

4.2. Learning Laplacianfaces for Representation 

In section 3, we have described LPP, a method for 
learning a locality preserving subspace. It is obtained by 
finding the optimal linear approximations to the eigen-
functions of the Laplace Betrami operator on the manifold 
[4]. Base on LPP, we describe our Laplacianface method 
for face representation and recognition.  

In the face analysis and recognition problems one is 
confronted with the difficulty that the matrix XDXT is 
sometimes singular. This stems from the fact that, some-
times the number of images in the training set (m) is much 
smaller than the number of pixels in each image (n). In 
such case, the rank of XDXT is at most m, while XDXT is 
an n×n matrix, which implies that XDXT is singular. To 
overcome the complication of a singular XDXT, we first 
project the image set to a PCA subspace so that the result-
ing matrix XDXT is nonsingular. Another consideration of 
using PCA as preprocessing is for noise reduction. This 
method, we call Laplacianface, can learn an optimal sub-
space for face representation and recognition.  

The algorithmic procedure of Laplacianface is for-
mally stated below: 

1. PCA projection: We project the image set {xi} into 
the PCA subspace by throwing away the smallest prin-
cipal components. In our experiments, we kept 98% 
information in the sense of reconstruction error. For 
the sake of simplicity, we still use x to denote the im-
ages in the PCA subspace in the following steps. We 
denote the transformation matrix of PCA by WPCA. 

2. Constructing the nearest-neighbor graph: Let G 
denote a graph with n nodes. The ith node corresponds 
to the face image xi. We put an edge between nodes i 
and j if xi and xj are “close”, i.e. xi is among k nearest 
neighbors of xi or xi is among k nearest neighbors of xj. 
Note that, one might take a more utilitarian perspec-
tive and construct a nearest-neighbor graph based on 
the class labels. That is, we put an edge between two 
nodes if and only if they have the same class label. 
The constructed nearest-neighbor graph is an ap-
proximation of the local manifold structure. 

3. Choosing the weights: If node i and j are connected, 
put 
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where t is a suitable constant. Otherwise, put Sij = 0. 
The weight matrix S of graph G models the face mani-
fold structure by preserving local structure. The 
justification for this choice of weights can be traced 
back to [2]. 

4. Eigenmap: Compute the eigenvectors and eigenvalues 
for the generalized eigenvector problem: 

                          ww TT XDXXLX λ=                      (1) 

where D is a diagonal matrix whose entries are col-
umn (or row, since S is symmetric) sums of S, 

∑=
j jiii SD . L = D – S is the Laplacian matrix. The 

ith column of the matrix X is xi. 
Let w0, w1, …, wk-1 be the solutions of equation (1), or-
dered according to their eigenvalues, λ0<λ1<…<λk-1. Thus, 
the embedding is as follows: 

xyx TW=→  
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where y is a k-dimensional vector. W is the transformation 
matrix. This linear mapping best preserves the manifold’s 
estimated intrinsic geometry in a linear sense. The column 
vectors of W are the so called Laplacianfaces which span 
the face subspace.  

4.3 Face Manifold Analysis 

Now consider a simple example of image variability, a 
set of face images are generated while the human face 
rotates slowly. Intuitively, the set of face images corre-
spond to a continuous curve in image space, since there is 
only one degree of freedom, i.e. the angel of rotation. 
Thus, we can say that the set of face images are intrinsi-
cally one-dimensional. Actually, much recent work 
[9][10][11][15] has shown that the face images do reside 
on a low-dimensional submanifold embedded in high-
dimensional image space. Therefore, an effective sub-
space learning algorithm should be able to detect the 
nonlinear manifold structure. The conventional algorithms, 
such as PCA and LDA, model the face images in Euclid-
ean space. They effectively see only the Euclidean struc-

Figure 1. Two-dimensional linear embedding of face images by Locality Preserving Projec-
tion. As can be seen, the face images are divided into two parts, the faces with open mouth 
and the faces with closed mouth. Moreover, it can be clearly seen that the pose and expres-
sion of human faces change continuously and smoothly, from top to bottom, from left to 
right. The bottom images correspond to points along the right path (linked by solid line), il-
lustrating one particular mode of variability in pose. 
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ture; thus, they fail to detect the intrinsic low dimension-
ality. 

With neighborhood preserving character, the LPP al-
gorithm is capable of capturing the intrinsic manifold 
structure to a large extent. Figure 1 shows an example that 
the face images with various pose and expression of a 
person are mapped into a two-dimensional subspace. The 
face image data set used here is the same as that used in 
[9]. The representative face images are shown in the dif-
ferent parts of the space. As can be seen, the face images 
are divided into two parts. The left part includes the face 
images with open mouth, and the right part includes the 
face images with closed mouth. This is because that, by 
trying to preserve local structure in the embedding, LPP 
implicitly emphasizes the natural clusters in the data. 
Specifically, it makes the neighboring points in the image 
space nearer in the face space, and faraway points in the 
image space farther in the face space. Some theoretical 
analysis can be found in [2][4][12]. Moreover, we can see 
from the figure that the pose and expression of the faces 

change continuously and smoothly. The bottom images 
correspond to points along the right path (linked by solid 
line), illustrating one particular mode of variability in 
pose. This observation tells us that LPP is capable of cap-
turing the intrinsic face manifold structure. 

5. Experimental Results 

In this section, several experiments are carried out to 
show the effectiveness of our proposed Laplacianface 
method for face representation and recognition. We begin 
with two simple synthetic examples to compare LPP and 
PCA.  

5.1 Simple Synthetic Examples 

Two simple synthetic examples are given in Fig. 2. 
Both of the two data sets correspond to an essentially one-
dimensional manifold. Projection of the data points onto 
the first basis would then correspond to a one-dimensional 
linear manifold representation. The second basis, shown 
as a shorter line segment in the figure, would be discarded 
in this low-dimensional example. As can be seen, PCA 
captures the direction of maximum variance in the data. 
LPP finds direction which preserves local structure and 
the discriminating power. Moreover, PCA is sensitive to 
outliers while LPP is not. 

5.2 Face Representation Using Laplacianfaces 

As we described previously, a face image can be repre-
sented as a point in image space. A typical image of size 
m×n describes a point in m×n-dimensional image space. 
However, due to the unwanted variations resulting from 
changes in lighting, facial expression, and pose, the image 
space might not be an optimal space for visual representa-
tion and recognition. 

In section 2, we have discussed how to learn a locality 
preserving face subspace which is insensitive to outlier 
and noise. The images of faces in the training set are used 
to learn such a face subspace. The subspace is spanned by 
the Laplacianfaces as described in section 4.2. We can 
display the Laplacianfaces as a sort of feature images. 
Using the Yale face database as the training set, we pre-
sent the first 10 Laplacianfaces in Figure 3, together with 

Figure 3. The first 10 Eigenfaces (first row), Fisherfaces (second row) and Lapla-
cianfaces (third row) calculated from the face images in the YALE database. 

Figure 2. The left plots show the results of PCA. 
The right plots show the results of LPP. The first 
basis is shown as a longer line segment, and the 
second basis is shown as a shorter line seg-
ment. Clearly, LPP has more discriminating 
power than PCA, and is less sensitive to outliers.
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eigenfaces and fisherfaces. Thus, a face image can be 
mapped into the locality preserving subspace spanned by 
the Laplacianfaces.  

5.3 Face Recognition 

Once the Laplacianfaces are created, face recognition 
[1][16][17] becomes a pattern classification task. In this 
section, we investigate the performance of our proposed 
Laplacianface method for face recognition. The system 
performance is compared with the eigenface method [16] 
and the fisherface method [1], two of the most popular 
methods in face recognition.  

In this study, three face databases were tested. The first 
one is the Yale database [18], the second one is the PIE 
(pose, illumination, and expression) database from CMU 
[13], and the third one is the MSRA database collected by 
our own. In all the experiments, preprocessing to locate 
the faces was applied. Original images were normalized 
(in scale and orientation) such that the two eyes were 
aligned at the same position. Then, the facial areas were 
cropped into the final images for matching. The size of 
each cropped image in all the experiments is 32×32 pixels, 
with 256 grey levels per pixel. Thus, each image can be 
represented by a 1024-dimensional vector in image space. 
No further preprocessing is done. Figure 5 shows an ex-
ample of the original face image and the cropped image. 
Different pattern classifiers have been applied for face 
recognition, including nearest-neighbor [16], Bayesian [7], 
and support vector machine [8], etc. In this paper, we ap-
ply nearest-neighbor classifier for its simplicity. 

The recognition process has three steps. First, we cal-
culate the Laplacianfaces from the training set of face 
images; then, the new face image to be identified is pro-
jected into the face subspace spanned by the Laplacian-
faces; finally, the new face image is identified by a near-
est-neighbor classifier. 

For Yale and PIE database, a random subset of a fixed 
size is taken with labels to form the training set. The rest 
of the database is considered to be the testing set.  

5.3.1 Yale Database 

The Yale face database [18] is constructed at the Yale 
Center for Computational Vision and Control. It contains 
165 grayscale images of 15 individuals. The images dem-
onstrate variations in lighting condition (left-light, center-
light, right-light), facial expression (normal, happy, sad, 

sleepy, surprised, and wink), and with/without glasses. 
For each individual, 6 faces are used for training, and the 
rest 5 are used for testing.  

The face subspace is constructed by our Laplacian-
faces method to best preserve the local structure while 
reducing the dimensionality of the image space. For each 
face image, it can be projected into the face subspace by 
the transformation matrix W, i.e. Laplacianfaces.  

The recognition results are shown in Table 1. It is 
found that the Laplacianface approach significantly out-
performs both eigenface and fisherface approaches. The 
error rate is 11.3%, 20.0% and 25.3% for Laplacianface, 
fisherface, and eigenface methods, respectively. The cor-
responding face subspaces are called optimal face sub-
spaces for each method. There is no significant improve-
ment if more dimensions are used. Figure 7 shows a plot 
of error rate vs. dimensionality reduction. Note that, the 
upper bound of the dimensionality of fisherfaces is c-1 
where c is the number of individuals.  

5.3.2 PIE Database 

The CMU PIE face database contains 68 subjects with 
41,368 face images as a whole. The face images were 
captured by 13 synchronized cameras and 21 flashes, un-
der varying pose, illumination and expression. We use 
170 near frontal face images for each individual in our 
experiment, 85 for training and the other 85 for testing.   
Figure 4 shows some of the faces with pose, illumination 
and expression variations in the PIE database.  

Table 2 shows the recognition results. As can be seen, 
Laplacianface method performed better than eigenface 
and fisherface methods. Figure 8 shows a plot of error 
rate vs. dimensionality reduction. 

5.3.3. MSRA Database 

This database was collected at the Microsoft Research 
Asia. It contains 12 individuals, captured in two different 
sessions with different backgrounds and illuminations. 64 
to 80 face images are collected for each individual in each 
session. All the faces are frontal. Figure 6 shows the sam-
ple cropped face images from this database. In this test, 
one session is used for training and the other is used for 
testing. Table 3 shows the recognition results. Laplacian-
face approach has lower error rate (8.2%) than those of 
eigenface (35.4%) and fisherface (26.5%). Figure 9 shows 
a plot of error rate vs. dimensionality reduction. 

Figure 4. The sample cropped face images of one 
individual from PIE database. The original face 
images are taken under varying pose, illumina-
tion, and expression. 

Figure 5. The original face image and the 
cropped image.  
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5.4. Discussions 

Three experiments have been systematically performed. 
These experiments reveal a number of interesting points: 

1. All these three approaches performed better in the 
optimal face subspace than in the original image 
space. 

2. In all the three experiments, the Laplacianface ap-
proach consistently performed better than the ei-
genface and fisherface approaches. Especially, it 
significantly outperformed the fisherface and ei-
genface approaches on Yale database and MSRA 
database.  

3. Though Laplacianface does not explicitly consider 
the classification problem, it still outperforms fish-
erfaces, which is based on discriminant analysis. 
This is because that, Laplacianface approach en-
codes more discriminating information in the low-
dimensional face subspace by preserving local 
structure which is more important than the global 
structure for classification, especially when nearest 
neighbor like classifiers are used. In fact, if there is 
a reason to believe that Euclidean distances (||xi – 
xj||) are meaningful only if they are small (local), 
then the LPP algorithm finds a projection that re-
spects such a belief. Another reason is that, as we 
show in Fig. 1, the face images probably reside on 
a nonlinear manifold. Therefore, an efficient and 
effective subspace representation of face images 
should be capable of charactering the nonlinear 
manifold structure, while the Laplacianfaces are 
exactly derived by finding the optimal linear ap-
proximations to the eigenfunctions of the Laplace 
Beltrami operator on the face manifold [2][4]. By 
discovering the face manifold structure, our Lapla-
cianface approach can identify the person with 
various pose, illumination and expression. 

4. The Laplacianface approach appears to be the best 
at simultaneously handling variation in lighting, 
pose and expression. 

6. Conclusion and Future Work 

The manifold ways of face representation and recogni-
tion is introduced in this paper in order to detect the un-
derlying nonlinear manifold structure in the manner of 
subspace learning. To the best of our knowledge, this is 
the first devoted work on face representation and recogni-
tion which explicitly considers manifold structure in a 
linear manner. The manifold structure is approximated by 
the nearest-neighbor graph computed from the data points. 
Using the notion of the Laplacian of the graph, we then 
compute a transformation matrix which maps the face 
images into the face subspace. We call this Laplacian-
faces approach. The Laplacianfaces are obtained by find-
ing the optimal linear approximations to the eigenfunc-
tions of the Laplace Beltrami operator of the face mani-
fold [2][4]. This linear transformation optimally preserves 
local manifold structure. Experimental results on the Yale 
database, CMU PIE database, and MSRA database show 
the effectiveness of our method. 

One of the central problems in face manifold learning 
is to estimate the intrinsic dimensionality of the nonlinear 
manifold, or, degrees of freedom. Moreover, by using 
kernel methods, the linear projective maps can be easily 
extended to nonlinear maps, i.e. kernel Laplacianfaces 
which might be able to detect the nonlinear face manifold 
structure. We are currently exploring these problems in 
theory and practice. 

 
 

Table 1.  Performance comparison on the Yale 
database 

Approach Dims Error Rate 

Eigenfaces 33 25.3% 
Fisherfaces 14 20.0% 

Laplacianfaces 28 11.3% 
 

Table 2.  Performance comparison on the PIE 
database 

Approach Dims Error Rate 

Eigenfaces 150 20.6% 
Fisherfaces 67 5.7% 

Laplacianfaces 110 4.6% 
 

Table 3.  Performance comparison on MSRA da-
tabase 

Approach Dims Error Rate 

Eigenfaces 142 35.4% 
Fisherfaces 11 26.5% 

Laplacianfaces 66 8.2% 

Figure 6. The sample cropped face images of 8
individuals from MSRA database. The face im-
ages in the first row are taken in the first ses-
sion, which are used for training. The face im-
ages in the second row are taken in the second 
session, which are used for testing. The two 
images in the same column are corresponding 
to the same individual. 
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Figure 7. Error rate vs. dimensionality reduction 

on Yale database 

 

Figure 8. Error rate vs. dimensionality reduction 
on Pie database 

 
Figure 9. Error rate vs. dimensionality reduction 

on Our Own database 
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