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Abstract

We consider the problem of image segmentation us-
ing active contours through the minimization of an energy
criterion involving both region and boundary functionals.
These functionals are derived through a shape derivative
approach instead of classical calculus of variation. The
equations can be elegantly derived without converting the
region integrals into boundary integrals. From the deriva-
tive, we deduce the evolution equation of an active contour
that makes it evolve towards a minimum of the criterion.
We focus more particularly on statistical features globally
attached to the region and especially to the probability den-
sity functions of image features such as the color histogram
of a region. A theoretical framework is set for the minimiza-
tion of the distance between two histograms for matching
or tracking purposes. An application of this framework to
the segmentation of color histograms in video sequences is
then proposed. We briefly describe our numerical scheme
and show some experimental results.

1 Introduction

Active contours are powerful tools for image and video
segmentation or tracking. They can be formulated in the
framework of variational methods. The basic principle is
to construct a PDE (Partial Differential Equation) from an
energy criterion, including usually both region and bound-
ary functionals, by computing some sort of Euler-Lagrange
equations; this PDE changes the shape of the current curve�
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according to some velocity field which can be thought of as
a descent direction of the energy criterion. Given a closed
curve enclosing an initial region, one then computes the so-
lution of this PDE for this initial condition. The correspond-
ing family of curves decreases the energy criterion and con-
verges toward a (local) minimum of the criterion hopefully
corresponding to the objects to be segmented.

Originally, snakes [1], balloons [2] or geodesic active
contours [3] are driven towards the edges of an image
through the minimization of a boundary integral of fea-
tures depending on edges. Active contours driven by the
minimization of region functionals in addition to boundary
functionals have appeared later. Introduced by [4] and [5],
they have been further developed in [6, 7, 8, 9, 10, 11, 12].
In effect, the use of active contours for the optimization of
a criterion including both region and boundary functionals
appears to be powerful.

However, the PDE computation is not trivial when the
energy criterion involves region functionals. This is mostly
due to the fact that the set of image regions does not have a
structure of vector space, preventing us to use in a straight-
forward fashion gradient descent methods. To circumvent
this problem, many methods have been proposed in the lit-
erature. Some authors do not compute the theoretical ex-
pression of the velocity field (basically the gradient of the
energy criterion) but choose a deformation of the curve that
will make the criterion decrease [7, 8] (they compute a di-
rection of descent). Other authors [6, 10] compute the the-
oretical expression of the velocity vector from the Euler-
Lagrange equations. First, region integrals are transformed
into boundary integrals using the Green-Riemann theorem.
Second, the corresponding Euler-Lagrange equations are
derived, and used to define a dynamic scheme to evolve the
initial region. Another alternative is to compute the gra-
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dient directly from the region formulation without reducing
it to boundary integrals. In [13], a level set formulation is
introduced directly in the criterion and in [11], the authors
propose to compute the derivative of the criterion while tak-
ing into account the discontinuities across the contour. In
[14, 15, 16] the computation of the evolution equation is
achieved through shape derivation principles.

This computation becomes more involved when global
information about regions is present in the energy criterion,
the so-called region-dependent case. It happens when sta-
tistical features of a region such as, for example, the mean
or the variance of the intensity, are involved in the mini-
mization. Some region-dependent features have been suc-
cessfully used in [13, 11, 12, 17] for segmentation and clas-
sification. In [14, 15, 16] we propose a general framework
based on shape derivation tools for the computation of the
related evolution equation.

In this article, we first recall shape derivation principles
to construct the evolution equation from the energy crite-
rion including both region and boundary functionals. We
then turn our attention to statistical region-based functionals
based on probability density functions of image features. In
[17], such features have been used to maximize the mutual
information between a binary region label and the intensity
value, for nonparametric segmentation. We propose here
an energy criterion that minimizes the distance between the
probability density functions of the current region and the
reference one, and we consider regions tracking or match-
ing applications. The shape derivation tools allow us to
easily derive the velocity field that defines the evolution of
the region boundary. The global evolution equation is then
given for first and second order histograms. This theoretical
framework can be applied to the problem of region segmen-
tation using a given reference color histogram in a sequence
of images. The region defined by the active contour evolves
so that the distance between the current region histogram
and the reference one decreases, allowing us to segment the
region of interest. Experimental results are provided includ-
ing the visualization of the evolution of region histograms
during the propagation of the curve.

Region and boundary functionals are presented in sec-
tion 2 while shape derivation tools are presented in section
3. The theoretical framework for the minimization of region
functionals involving the distance between probability den-
sity functions is set in section 4. The application to region
segmentation on videos using color histograms is detailed
in section 5.

2 Problem Statement

In many image processing problems, the issue is to find
a set of image regions that minimize a given error criterion.
This criterion is often a combination of region and boundary

functionals. The basic idea is to derive a Partial Differential
Equation (PDE) that will drive the boundary of an initial
region towards a local minimum of the error criterion. The
key point is to compute the velocity vector at each point of
the boundary at each time instant.

To fix ideas, in the two-dimensional case, the evolving
boundary, or active contour, is modeled by a parametric
curve �����
	���
��������
����	���
�	���������	���
�
 , where � may be its
arc-length and� is an evolution parameter, the time. The
active contour is then driven by the following PDE:

��� �"!$#�&% �'����	���
% � �)( with �����*�,+�
-�.�0/�	
where � / is an initial curve defined by the user and( the
velocity vector of �����
	���
 . This velocity is the unknown
that must be derived from the error criterion so that the so-
lution �'�$12	���
 converges towards a curve achieving a local
minimum and thus, hopefully, towards the boundary of the
object to be segmented, as�*354 .

Let us now define more precisely the region and bound-
ary functionals. Let6 be a class of domains (open, regular
bounded sets, i.e.7 � ) of 8:9 , and ; an element of6 of
boundary% ; , which we sometimes denote� . A boundary
functional, <>= , may be expressed as a boundary integral of
some scalar function? of image features:< = � % ;@
-�BACED ?F�HG�
JI�K0��G�
 (1)

where % ; is the boundary of the region andI�K its area ele-
ment. The derivation of this boundary functional is classical
[3, 18] and leads to the following velocity vector:( = �ML ?F�HG�
�NPORQS?���G�
UTWVYXZV
where V is the inward unit normal vector of� and N its
mean curvature. The idea is to use a local parametrization
of � to reduce (1) to a standard problem in the calculus of
variations.

A region functional,<�[ , may be expressed as an integral,
in a domain ; of 6 , of some function\ of some region
features: < [ ��;@
��.AD \U�HG]	^;@
�I
G (2)

In that case, the computation of the velocity vector is not as
easy since the set of image regions does not have a struc-
ture of vector space. Moreover, the scalar function\ in (2)
is generally region-dependent. This dependency on the re-
gion must be taken into account when searching for a local
minimum of the functional.

In the literature, the classical approach is based upon the
idea of transforming all functionals into boundary function-
als thereby reducing (through a local parametrization of the
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boundary) the problem of minimization to a standard prob-
lem in the calculus of variations from which the computa-
tion of the Gâteaux derivatives follows. We propose here an
approach based upon the use of shape derivation tools and
we study the case of region-dependent features. We first re-
call principles of shape derivation and we then apply these
tools when\ is a region-dependent function involving re-
gion histograms.

Note that we propose a comparison between calculus of
variation and shape derivation tools for the computation of
the velocity vector in [16]. Also note that we could have
added a dependency of? on % ; , see [19] for details.

3 Computation of the derivative using shape
derivation tools

In this part, we propose to introduce shape derivation
tools [20, 21] for the computation of the derivative.

Since the set of all image regions, namely6 , is not a vec-
tor space, it is difficult to compute the derivative of the crite-
rion with respect to the domain; . To circumvent this prob-
lem, shape derivation methods propose to apply a family of
transformations_F� , indexed by a real parameter�a`M+ , to; , ;b�H��
b�c_F�J��;@
 . The region functional becomes a func-

tion of � , <-����
*�"!$#�d<]��;b�H��
�
 . The error criterion<]����
 is
then derived with respect to� using shape derivation princi-
ples. Let us introduce the transformations and recall a theo-
rem giving relation between derivatives that will be helpful
for derivation of region functionals.

3.1 Introduction of transformations

As it has already been pointed out, the optimization of
the region functional (2) is difficult since the set of regular
domains (regular open bounded sets)6 of 8U9 does not have
the structure of a vector space. Variations of a domain must
then be defined in some way. Let us consider a reference
domain ;cef6 and the set gh of applications_ji�;k3l8U9 ,
which are at least as regular as homeomorphisms (i.e. one
to one with_ and _nm � continuous). We definegh �poq_ one to one	�_r	�_ m � e�s �ut v ��;w	�8 9 
Wx
where:s �ut v ��;w	�8 9 
-�cyW_zi�;{3|8 9 such that_zeY} v ��;w	^8 9 
 and%>~ _kef} v ��;w	�8 9 
�	J�U�j�
	WT�T�TF	��U�
Given a shape function�MiW6B3���� , for _Be�gh , let us de-
fine g�P�H_w
-�,�P�H_���;@
�
 . The key point is thats �"t v ��;w	^8U9�

is a Banach space. This allows us to define the notion of
derivative with respect to the domain; as follows:

Definition 1 � is Gâteaux differentiable with respect to;
if and only if g� is Gâteaux differentiable with respect to_ .

In order to compute Gâteaux derivatives with respect to_ we introduce a family of deformation��_S�H��
�
 �
��/ such
that _S����
je gh for �5`�+ , _S��+�
z�&��I , and _S��1 
Be7 � ��L +�	��@X��^s �"t v ��;w	^8]9�
"	��B��+ .

For a pointG�e�; , we denote:G-�H��
��,_��H�J	�G�
 with _S��+J	�G�
-�,G;b����
'�{_��H�J	u;@
 with _S��+J	u;@
-�);
Let us now define the velocity vector field� corresponding
to _S�H��
 as���H�J	�G�
���% _% � ���J	�G�
���G�e�;�����`�+
3.2 Computation of the derivative

We now introduce two main definitions:

Definition 2 The Ĝateaux derivative of < [ ��;@
 �� D \U�HG]	^;@
�I
G in the direction of� , noted ��<0 [ ��;@
"	��¡� ,
is equal to:�)<  [ ��;@
�	��¢�£�¥¤2¦¨§�Z©b/ <�[
��;b�H��
�
-Oª<�[q��;@
�
Definition 3 The shape derivative of\U��G]	^;@
 , noted\q«Z�HG]	u;w	�¬�
 , is equal to:\q«Z�HG]	u;w	���
'�­¤¨¦2§�Z©b/ \U�HG]	^;b����
�
-O�\U��G]	^;@
�
3.2.1 Relation between the Ĝateaux derivative and the

shape derivative

The following theorem gives a relation between the Gâteaux
derivative and the shape derivative for the region functional
(2).

Theorem 1 The Ĝateaux derivative of the functional<�[
��;@
n� �D \U�HG]	^;@
JI
G in the direction of� is the follow-

ing:�k<  [ ��;@
�	��¢�£�AD \q«Z�HG]	u;w	���
$I�G�O ACED \U�HG]	^;@
��H���HG�
-TE®°¯±G³²W
$I�K0�HG�

where ® is the unit inward normal to% ; and I�K its area
element.

The proof can be found in [20, 21]. Note that Theorem
1 provides a necessary condition for a domaing; to be an
extremum of<-��;@
 :A ´D \ « ��G]	�g;w	��f
�I
G]OnAC ´D \U�HG]	�g;@
��H���HG�
�T VR��G�
�
µI�K0�HG�
@�.+:���¶1
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3.3 Computation of the evolution equation of an
active contour

We now make good use of the previous results to derive
the velocity vector of the active contour.

3.3.1 Region-independent features

We first consider the simple case where the function\ does
not depend on; , i.e. \z�·\U��G�
 . In that case, the shape
derivative \q« is equal to zero and the Gâteaux derivative of<�[ is simply (Theorem 1):�)<  [ ��;@
�	��¢�£�BO ACED \U�HG�
��H���HG�
�TW®p¯$G³²�
�I�K��HG�

This leads to the following evolution equation for region-
independent descriptors:� � �.\�V with �'�H�*�)+�
-�,� / 1
This is the classical result [6, 9] when\ has no region de-
pendency. Let us now consider the more general case where
the function\ has some region dependency.

3.3.2 General case

As far as the general case is considered, we have to
express the domain integral of the shape derivative, i.e.� D \ « �HG]	�g;n	���
$I�G , as a boundary integral which makes ap-
pear the normal velocity����T�V�
 . In order to do so, we can
model the region feature\ as a linear combination of do-
main integrals as it has been done in [15], which is suitable
for many region features such as functions of the mean or
of the variance. In this case, using Theorem 1, the Gâteaux
derivative in the direction of� of the functional<�[ defined
in (2) is:�)<  [ ��;@
�	��·�£�O¸A¹º���S�HG]	u;@
Y»ª\U�HG]	u;@
�
b���¶��G�
]TWVR��G�
�
�I�K0��G�

where ���HG]	u;@
 are some terms coming from the depen-
dency on the region of\ whose expression is given in [15].
This leads to the following evolution equation for region-
dependent descriptors:� � �j���ª»ª\F
$V with �����*�)+�
-�)� / 1
In this article, we extend the computation of the evolution
equation fo region-based functions\ depending on acontin-
uousfamily of region criteria. We more particularly focus
on the minimization of the distance between regions proba-
bility density functions.

4 Matching histograms

A natural way of generalizing the use of statistical im-
age feature for image segmentation is to consider the full
probability distribution of the feature of interest within the
region, e.g. intensity, color, texture, etc. . . It turns out that
in attempting to do so, one is naturally led to extend the
criterion (2) to the case where the function\ depends on a
continuousfamily of region criteria.

4.1 Histograms estimation

Consider a function¼,i�8U9¸3�8U½ which describes the
feature of interest. Suppose we have learnt the probability
density function (pdf) of the feature¼ within the image re-
gion of interest, and let¾µ��¿n
 be this pdf. Given a region; ,
we can estimate the pdf of the feature¼ through the use of
the Parzen method [22]: letÀ.i³8U½Á3�8:� be the Parzen
window, a smooth positive function whose integral is equal
to 1. For the sake of simplicity but without loss of gener-
ality, we assume thatÀ is an Â -dimensional Gaussian with
0-mean and varianceÃ � , we noteÀ:��¿n
-�{?
Ä���¿w
�� ���ÅqÆ0Ã � 
 ½ÈÇ ��É ��À³��OËÊ ¿ Ê �Å
Ã � 
"	
and we defineg¾µ��¿�	^;@
-� �Ì ��;@
 A D ? Ä ��¼'��G�
]O�¿w
µI�G]	
where¼��HG�
 is the value of the feature of interest at the pointG of ; and

Ì
is a normalizing constant, in general depend-

ing of ; , such that
��Í�Î g¾µ��¿�	^;@
JI�¿k�j�
1 ThereforeÌ ��;@
-� A D A Í Î ?
Ä���¼��HG�
-O¶¿b
µI�¿ËI�GË� Ê ; Ê

4.2 Minimizing distance between histograms

We next assume that we have a functionÏªi
8U�¶Ðw8U�.38 � which allows us to compare two pdfs. This function is
small if the pdfs are similar and large otherwise. It allows
us to introduce the following functional which represents
the ”distance” between the current histogramg¾µ��¿S	u;@
 and
the reference one¾µ��¿b
 :Ñ ��;@
�� A Í Î Ï�� g¾µ��¿Ò	^;@
�	�¾µ��¿w
�
µI�¿ (3)

The distance can be the Hellinger distance:ÏÈ� g¾J��¿�	u;@
"	^¾µ��¿b
�
��j��Ó g¾µ��¿�	^;@
UO{Ó ¾µ��¿b
�
 � 	
or the non symmetric chi-2 comparison function:ÏÈ� g¾J��¿�	u;@
"	^¾µ��¿b
�
�� � g¾J��¿S	u;@
UO¶¾µ��¿w
�
 �¾µ��¿n
 1
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Using the tools developed in section 3, we compute the
Gâteaux derivative of the functional

Ñ
. We have the

Theorem 2 The Ĝateaux derivative in the direction� of
the functional

Ñ
defined in (3) is:� Ñ   ��;@
"	��¢�£�O �Ê ; Ê A¹ÕÔ % �"ÏÈ� g¾��$1Ö
"	�¾µ��1 
�
�×Z?
ÄF��¼��HG�
�
�OØ7Ù��;@
�Ú-�H�¶T V�
�I�K��HG�
�	

where 7Ù��;@
Ë� � Í�Î % �"ÏÈ� g¾J��¿�	^;@
�	�¾µ��¿n
�
 g¾µ��¿Ò	u;@
µI�¿ and% ��ÏÈ�$12	�1Ö
 the partial derivative ofÏÈ�HÛÜ	W1 
 according to the
first variable Û .
Proof :
By definition of

Ñ
we have� Ñ   ��;@
�	��¢�£�.A Í Î �z��ÏÈ� g¾J��¿Ò	^;@
"	^¾µ��¿b
�
�
   	��¢��I�¿

Let us compute the Gâteaux derivative ofÏÈ� g¾J��¿Ò	^;@
�	�¾µ��¿w
�
 .
We define:ÏÈ� g¾J��¿S	u;@
"	^¾µ��¿n
�
�� \U��ÝS�q��¿Ò	^;@
�	�Ýn�
��;@
�

where: ÝS�Ü��¿Ò	u;@
�� A D ?
Ä���¼'��G�
]O�¿w
µI�GÞ � ��¿�	�G�
ß� ? Ä ��¼��HG�
-O¶¿b
Ýn�
��;@
ß� Ê ; Ê � A D I�G
We obtain:��\   	��¢�£�)\ÜàUár��Ý  � 	��â�)»b\Üà�ãw�ªÝ  � 	��·�£�% ��ÏÈ� g¾J��¿S	u;@
"	�¾µ��¿w
�
Ê ; Ê ����Ý  � 	��·�kO g¾µ��¿�	^;@
È��Ý  � 	��â�Ø
�	
and, using Theorem 1:��\   	��¢�£�O % �"Ï�� g¾J��¿Ò	u;@
"	�¾µ��¿w
�
Ê ; Ê A ¹ä� Þ �q��¿S	�G�
UO g¾µ��¿Ò	^;@
�
F�H�¶T V�
�I�K��HG�

Plugging this result into the expression of� Ñ  ���;@
"	����
and swapping the order of integration, we obtain� Ñ   ��;@
"	��¢�£�O �Ê ; Ê A¹ Ô A Í Î ?
ÄF��¼'��G�
UO¶¿b
 % ��ÏÈ� g¾J��¿S	u;@
"	�¾µ��¿n
�
µI�¿
O A ÍFÎ % ��Ï�� g¾J��¿�	^;@
�	�¾µ��¿b
�
 g¾J��¿S	u;@
µI�¿ Ú ����TWV�
�I�K��HG�


The first integral on the right-hand side is the convolution% �"ÏÈ� g¾J��1 
�	�¾µ��1 
�
�×]?
Ä of the function% ��Ï�� g¾J�$1Ö
"	^¾µ�$1Ö
�
Èi�8:½¥38 with the function? Ä . The final result is� Ñ   ��;@
"	��·�£�O �Ê ; Ê
å A¹�æ % �"ÏÈ� g¾J��1 
�	�¾µ��1 
�
³×�?
Ä���¼��HG�
�
�ç>�H�èT�V�
$I�K0��G�

O¸A¹­7Ù��;@
��H��TWV�
�I�K0��G�
�é�	

where7Ù��;@
�� �"Í Î % � ÏÈ� g¾J��¿S	u;@
"	�¾µ��¿n
�
 g¾���¿�	^;@
µI�¿Õê
4.3 Generalization to second order histograms

A further generalization of the previous case is to con-
sider second order histograms which describe the proba-
bility of having the value¿ � at pixel G and the value¿ �
at pixel GR»cë , where ë is a fixed (usually small) vector
of �*9 . This has been used very much in computer vision
for analysing textures [23]. The corresponding pdf, noted¾�ìJ��¿b�Ü	�¿w�E
 can be estimated with the same Parzen window
technique. We defineg¾WìJ��¿n�Z	^¿£��	^;@
-��Ì ì ��;@
 A D ?
Ä���¼��HG�
]O�¿n��
�?
ÄF��¼'��G*»aë�
:O¶¿b�W
JI
G]	
The normalizing constant

Ì ìµ��;@
 is given byÌ ìµ��;@
��A D A Í�Î�í�Í�Î ?
ÄF��¼��HG�
�Or¿n��
�?
ÄF��¼'��G³»bë�
"Or¿w�W
JI�¿n��I�¿w��I
G
And so,

Ì ì ��;@
�� Ê ; Ê . We therefore defineÑ ìJ��;@
-� AÍ Î í�Í Î ÏÈ� g¾�ìJ��¿n�Ü	�¿w�q	u;@
"	�¾WìJ��¿n�Z	^¿b�W
�
JI�¿ ��I�¿£�
(4)

For second-order histograms we have the

Theorem 3 The Ĝateaux derivative in the direction� of
the functional

Ñ ì defined in (4) is:� Ñ  ì ��;@
"	��·�£�BO �Ê ; Ê�å O*A¹­7 ì ��;@
 ç �H�kT�V�
�I�K0��G�
�»A¹ æ % � ÏÈ� g¾ ì ��
"	^¾ ì ��
�
^×µ�î? Ä�ï ? Ä 
���¼��HG�
"	^¼'��G³»bë�
�
 ç �H�¶T V�
$I�K0�HG�
±é�	
where: 7 ì ��;@
�� AÍ�Î-í�ÍFÎ % � Ï�� g¾ ì ��
"	^¾ ì ��
�
 g¾ ì ��
µI�¿ � I�¿ �

and ?
Ä ï ?
Ä���¿ �Z	^¿£�E
���?
Ä���¿n��
�?
ÄF��¿w�W
 .
Proof : The proof is identical to that of Theorem 2.ê
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5 Color histograms: segmentation of regions
in video sequences

This work has been motivated by [24, 25] where the
tracking algorithms take benefit of statistical color ditribu-
tions. We propose here to use active contours in order to fit
exactly the shape of the object to be segmented. We con-
sider a video sequence where each frame is represented by
the color function¼äir8 � 3ð8 � . The color space used
is � Þ 	uñS
 where

Þ
stands for the hue andñ for the value1.

The goal is to segment a reference region, given in the previ-
ous image of the sequence, into the current one by minimiz-
ing the distance between the reference histogram¾ of the
region in the previous image and the estimated histogramg¾
in the current frame. From an initial curve chosen by the
user in the current frame, we want to make an active con-
tour evolve towards the region in the current frame whose
histogram is closest to the reference histogram of the previ-
ous frame.

In order to introduce a competition between the region
of interest and the background region, we also consider the
complement;@ò of the region; of interest. They share the
same boundary,� , but with normals pointing in opposite
directions. We note¾qò the reference histogram of;@ò and
we look for the region; which minimizes the following
criterion2:<-��;@
-� Ñ ��;@
�» Ñ ��; ò 
³»aó A ¹ I>� (5)

In this criterion, the first two terms are region function-
als while the last one is a boundary functionals. The last
one minimizes the curve length and is a regularization term
weighted by the positive parameteró . We have of course:Ñ ��;@
�� A Í ã Ï�� g¾J��¿�	^;@
�	�¾µ��¿w
�
µI�¿Ñ ��; ò 
-�kA Í ã ÏÈ� g¾J��¿S	u; ò 
"	�¾ ò ��¿w
�
µI�¿
Computation of the Gâteaux derivative A straightfor-
ward application of Theorem 2 yields� Ñ   ��;@
"	��¢�£�O �Ê ; Ê A¹ Ô % �"ÏÈ� g¾��$12	^;@
"	^¾µ�$1Ö
�
^×E?
ÄF��¼��HG�
�
"OØ7Ù��;@
�ç>�H�¶T V�
$I>�-	

with: 7Ù��;@
-� AÍ Î % �"ÏÈ� g¾���¿�	^;@
"	^¾µ��¿n
�
 g¾µ��¿Ò	^;@
JI�¿a1 (6)

1We ignore the saturation to avoid the curse of dimensionality.
2The results are even better if we introduce the region area in the crite-

rion by minimizing ô£õ÷ö�ø$ù ö�ù�úPô£õ2öFû"ø$ù ö0ûWù$úÙüUý^þbÿ�� .

Similar results hold for;@ò :� Ñ   ��; ò 
"	��¢�£��Ê ; ò Ê A¹ÕÔ % �"ÏÈ� g¾��$12	�; ò 
"	�¾ ò ��1 
�
�×E?
ÄF��¼'��G�
�
�OØ7Ù��; ò 
�ç�����T V�
$I>�-	
7Ù��; ò 
-�¥AÍ Î % � Ï�� g¾µ��¿Ò	^; ò 
�	�¾ ò ��¿b
�
 g¾J��¿�	^; ò 
µI�¿¸1 (7)

Computation of the evolution equation of an active con-
tour It is well known that the minimization of the curve
length leads to the Euclidean curve shortening flowó�N
[3, 18]. Then, from the previous derivatives, we can deduce
the evolution of an active contour that will evolve towards
a minimum of the criterion< defined in (5). We find the
following evolution equation:���S�,�nV (8)

with �z� �Ê ; Ê Ô % � ÏÈ� g¾��$12	^;@
"	^¾µ�$1Ö
�
"×q? Ä ��¼��HG�
�
WOb7Ù��;@
 ÚO �Ê ; ò Ê Ô % � Ï�� g¾J�$12	^; ò 
�	�¾ ò �$1Ö
�
^×E? Ä ��¼��HG�
�
"OØ7Ù��; ò 
 Ú »bó�N
where N is the curvature of� and 7Ù��;@
 , 7Ù��;@òu
 are given
by equations (6) and (7), respectively.

Let us take the example of the Hellinger distance, where% �"ÏÈ�HÛÜ	^¿b
£�­� � ÛnO Ó ¾µ��¿b
�
�� � Û , we find for the velocity
vector:

�c�)ó�N�» �Ê ; Ê Ô � Ó g¾µ�$1W	^;@
UO Ó ¾µ�$1Ö
�
Ó g¾µ��1�	^;@
 ×E?
Ä���¼��HG�
�
"OØ7Ù��;@
�Ú
O �Ê ; ò Ê Ô � Ó g¾µ��1�	u; ò 
]O Ó ¾ ò �$1Ö
�
Ó g¾µ�$1W	^; ò 
 ×�? Ä ��¼'��G�
�
�Of7Ù��; ò 
 Ú
We note that, for each region, two terms appear in the ve-
locity, a local one that compares the two histograms for the
intensity of the current point¼��HG�
 and a global one7Ù��;@
 .
5.1 Implementation

As far as the numerical implementation is concerned, we
use the level set method approach first proposed by Osher
and Sethian [26] and applied to active contours in [27]. The
key idea of the level set method is to introduce an auxiliary
function �Ù��G]	���
 such that������
 is the zero level set of� .
The function � is often chosen to be the signed distance
function of ������
 . The evolution equation (8) then becomes:

% �P�H��
% � �)� Ê Q�� Ê 1 (9)
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The velocity function� is computed only on the curve������

but we can extend its expression to the whole image domain; . To implement the level set method, solutions must be
found to circumvent problems coming from the fact that the
signed distance function� is not a solution of the PDE (9);
see [28] for details. In our work, the function� is reinitial-
ized so that it remains a distance function.

5.2 Experimental results

Experimental results have been obtained on the sequence
“Erik” from the European group COST211.

Experiments are conducted using the chi-2 comparison
fucntion with Ï���ÛÜ	��U
'�M�HÛ>Or¾µ��¿n
�
 � �Ü¾µ��¿b
 and% � ÏÈ�HÛÜ	^¿w
��ÅJ�HÛwO�¾µ��¿b
�
��q¾µ��¿n
 .

The region of interest is the face. We assume that it has
been segmented in the first image as shown in Fig.1.a. The
first two reference histograms are computed. These two his-
tograms are represented in Fig.1.b using different colors for
each of the two regions. The reference histogram for the
face,¾ , is represented in red using an intensity depending on
the value of the probability density function, while the ref-
erence histogram for the background,¾qò , is shown in green.
The two reference histograms are also given Fig.1.c for the
background reference histogram¾qò and Fig.1.d for the ob-
ject reference histogram,¾ . For a given region; , and for
a point ¿M�­L � � 	�� � X
	 , the function g¾µ��¿�	^;@
 represents the
probability to obtain

Þ �HG�
���� � and ñ*�HG�
���� � for G
belonging to the region; .

Then, using the two reference histograms of the previous
frame, we make the active contour evolve using equation (8)
in the current frame. The initial curve is chosen to be a cir-
cle. The evolution of the active contour in the current frame
is shown in Fig.2. We can notice that the final contour in
Fig.2.c nicely describes the region of interest, and the face is
accurately segmented. We can also visualize the evolution
of the object histogram,g¾µ��¿S	u;@
 , during the propagation of
the active contour in Fig.2. The final object histogram given
Fig.2.d can be compared to the reference object histogram
Fig.1.d, showing an efficient minimization of the distance
between the two histograms.

6 Conclusion

In this article, we have concentrated on the problem of
finding local minima of a large class of region functionals
by applying methods of shape derivation [20, 21].

We have turned our attention to a new class of region-
based functionals by considering histograms of image fea-
tures. The shape derivation tools have allowed us to easily
derive the velocity field that defines the evolution of the re-
gion boundary.

(a) Reference segmentation

H

V

(0,0)

(b) Reference histograms

(c) Background reference (d) Object reference

Figure 1. The reference segmentation of the previous
frame (a), the two reference histograms,� , in red for the
face, and� û in green for the background (b), the corre-
sponding background reference histogram� û (c) and the
corresponding object reference histogram� (d).

The final part of the paper has been devoted to an ap-
plication of the previous methods to the problem of region
segmentation with a given color histogram in a sequence of
images. Our experimental results show that the technique
has indeed some interesting potentials.
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