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Abstract

Registration of a preoperative CT (3D) image to one or
more X-ray projection (2D) images, a special case of the
pose estimation problem, has been attempted in a variety
of ways with varying degrees of success. Recently, there
has been a great deal of interest in intensity-based meth-
ods. One of the drawbacks to such methods is the need to
create digitally reconstructed radiographs (DRRs) at each
step of the optimization process. DRRs are typically gener-
ated by ray casting, an operation that requires ����� time,
where we assume that � is approximately the size (in vox-
els) of one side of the DRR as well as one side of the CT
volume. We address this issue by extending light field ren-
dering techniques from the computer graphics community
to generate DRRs instead of conventional rendered images.
Using light fields allows most of the computation to be per-
formed in a preprocessing step; after this precomputation,
very accurate DRRs can be generated in ����� time. An-
other important issue for 2D-3D registration algorithms is
validation. Previously reported 2D-3D registration algo-
rithms were validated using synthetic data or phantoms but
not clinical data. We present an intensity-based 2D-3D reg-
istration system that generates DRRs using light fields; we
validate its performance using clinical data with a known
gold standard transformation.

1. Introduction

In order to use preoperatively acquired three-
dimensional (3D) images for intraoperative navigation, the
images must be registered to a coordinate system defined in
the operating room. The image-to-physical registration is
commonly performed using stereotactic frames and fiducial
markers. Alternatively, the preoperative 3D image can
be registered to an intraoperative two-dimensional (2D)

image. Registration of an X-ray computed tomography
(CT) image to one or more X-ray projection images (e.g.
simulator images, portal images, fluoroscopy images,
amorphous silicon detector images) is a particularly inter-
esting example of 2D-3D registration that has a number
of possible applications, including patient placement for
radiotherapy planning and treatment verification [1, 4],
radiosurgery [13], cranial neurosurgery [9], neurointerven-
tions [6, 7], spinal surgery [8, 21], orthopedic surgery [5],
and aortic stenting procedures [2, 14, 21].

The 2D-3D registration problem involves taking one or
more X-ray projection (2D) images of the patient’s anatomy
and using those projections to determine the rigid transfor-
mation � (rotation and translation) that aligns the coordi-
nate system of the CT (3D) image with that of the operating
room. Figure 1 shows a schematic representation of the 2D-
3D registration process. In general, most of the proposed
solutions to this problem fit into this general framework.
We are interested in intensity-based 2D-3D image registra-
tion [3, 9, 14, 15, 21]. In this case, the reference image is
one or more X-ray projection images, and the floating image
is a CT image. The method involves computing synthetic
X-ray images, which are called digitally reconstructed ra-
diographs (DRRs), by casting rays using a known camera
geometry through the CT image (Fig. 2). The DRR pixel
values are simply the summations of the CT values encoun-
tered along each projection ray. The pose (position and
orientation) of the CT image (given by the transformation
�) is adjusted iteratively until the DRR it produces is most
similar to the reference X-ray projection image. A variety
of similarity measures have been used, including cross cor-
relation, entropy, mutual information, gradient correlation,
pattern intensity, and gradient difference [15].

DRRs are computationally expensive to create, and their
generation is typically a bottleneck in the execution of the
registration process. In this paper, we address this issue by
using an extension of light field rendering from the com-
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Figure 1. Schematic overview of the 2D-3D registration
process. In our case, the reference image is an intraopera-
tive X-ray projection (2D) image. It is used as is with no
processing. The floating image is a CT (3D) image. It is
processed by generating DRRs (synthetic X-ray projection
images) for various orientations of the CT image relative
to the X-ray imaging system. The optimizer searches for
the rigid transformation T that produces the DRR that is
most similar to the real X-ray projection image. The op-
timal transformation is used to align the CT’s coordinate
system with that of the operating room.
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Figure 2. Schematic geometry of DRR creation.

puter graphics community [10] to generate DRRs instead
of conventional rendered images [17]. Using light fields
allows most of the computation to be performed in a pre-
processing step. After this precomputation, very accurate
DRRs can be generated substantially faster than with con-
ventional ray casting.

Another important issue for 2D-3D registration algo-
rithms is validation. Previously reported 2D-3D registra-
tion algorithms were validated using synthetic data or phan-
toms [3, 9, 14, 15, 19, 20, 21] but not clinical data. This
problem is due mainly to the fact that it is particularly dif-
ficult to obtain a gold standard transformation from clinical
data. We address this issue by using clinical spine image
data from a radiation oncology system that performs 2D-
3D registration using bone-implanted fiducial markers. This

system (CyberKnife Stereotactic Radiosurgery System, Ac-
curay, Sunnyvale, CA), uses two intraoperative orthogonal
X-ray projection images of known geometry to triangulate
the marker positions in 3D. It then registers the marker posi-
tions to their corresponding locations in a preoperative CT.
For every patient treated, the CyberKnife system archives
not only the preoperative CT and the intraoperative X-ray
projection images, but also the transformation T it calcu-
lates. We ignore the fiducial markers and use the CT and
X-ray projection images as input to our 2D-3D registration
system. We validate our results by comparing them to the
transformation T calculated by the CyberKnife system us-
ing the markers, which we use as ground truth.

The rest of this paper is organized as follows. Section
2 discusses the creation and use of light field DRRs, Sec-
tion 3 details our registration algorithm and its validation,
Section 4 presents our results, and Section 5 presents some
discussion and conclusions.

2. Light Field DRRs

In traditional light field rendering, a pixel is a value in-
dicating how much light is reflected off the first surface its
ray intersects in the direction of that ray. By contrast, in a
DRR, each pixel is a representation of the sum of the CT at-
tenuation coefficients its ray encounters along the path from
the source to the destination.

To take these differences into account we modify the
light field generation process by introducing the virtual im-
age plane (Fig. 3). The virtual image plane is placed exactly
where the ��� �� plane would be if we considered the CT data
to be a 3D scene and were performing standard light field
rendering. The two-plane parameterization of the rays is
thus unchanged from the normal case.

In the light field generation, however, instead of creat-
ing images with the standard definition of pixels, we asso-
ciate each sample �� � ���� ��� ��� ��� with a scalar function
�� �� �����, which is the sum of the CT attenuation coeffi-
cients encountered along the ray ���

:

����� �
�

������

CT����	 (1)

In standard ray casting, computation along a ray stops as
soon as it intersects an opaque surface. In our DRR for-
mulation, we need to continue to trace the ray through the
CT to determine its sum. To do so while maintaining the
same parameterization of rays in space, we must cast the
rays beyond the virtual image plane onto the effective im-
age plane. The values we use to generate the light field are
those that lie on the image created on the effective image
plane. In both cases we create a skewed perspective image.
The main difference is that in regular light field generation,
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Figure 3. (a) Standard light field geometry. Each pixel on the image plane represents the amount of light reflected to the center of
projection from the surface its ray intersects. (b) DRR light field geometry. The virtual image plane allows us to maintain the same
two-plane parameterization as in the normal case. In this case, however, the rays are extended to an effective image plane situated
beyond the CT image (the scene) so that each pixel may be associated with the sum of CT attenuation coefficients along its ray.

the effective image plane remains fixed and lies between the
scene and the focal plane. In DRR light field generation, the
virtual image plane remains fixed while the effective image
plane can move and lies on the other side of the scene from
the focal plane.

Using this extension to the light field technique, we can
create large DRR light fields from particular viewpoints
(anterior-posterior (AP) and lateral, for example), compress
them using vector quantization, and use them to generate
new DRRs using the same interpolation of the 4D ray space
used by Levoy & Hanrahan [10]. This works because for
each ray of every new DRR we create, we can find its corre-
sponding sum of attenuations by sampling the light slabs
we generate. In addition, two of the principle problems
with normal light field rendering, occlusions and lighting
variations, are not issues in the DRR domain. In particular,
the scene (the CT volume) is always a rectangular paral-
lelepiped and, thus, always convex and free from occluders.
Also, there is inherently no lighting to consider.

3. 2D-3D Registration

With an apparatus for fast DRRs in place, we can now
begin to work on the other important features of a 2D-3D
registration system. In particular, we need a reference im-
age, a similarity measure, an optimization scheme and, most
importantly, a gold standard with which to compare our re-
sults.

3.1. Gold standard

Radiation oncology has helped many people beat cancer.
Unfortunately, there are a number of people who have tu-
mors that can neither be operated on nor irradiated in the
traditional sense as they are too close to important struc-
tures, e.g. the speech center of the brain or the spinal cord.

To help these people, physicians and engineers have devel-
oped a system that uses a robot to shoot focused beams of
radiation at a tumor from many different directions. Each
beam individually is not harmful enough to hurt living tis-
sue, but the intersection of all beams receives a lethal dose
of radiation. If the beam directions are calculated carefully,
one can ensure that the tumor is the only region that receives
such a lethal dose.

The only remaining issue is that the set of all beam direc-
tions must be precalculated using a CT of the patient with
the tumor segmented out. The robot and the patient, how-
ever, are in different reference frames so there needs to be a
2D-3D registration to bring them into alignment. The cur-
rent system (depicted in Fig. 4) uses a point-based registra-
tion, which involves the insertion of several radio-opaque
bone-implanted fiducial markers. These markers show up
well in the CT, making them easy to localize. During the
procedure, the patient is imaged with two orthogonal X-
ray sources with amorphous silicon display (ASD) detec-
tors (Fig. 5a). If the same marker can be localized in both
images and the imaging geometry is known, the marker’s
3D position can be calculated in the reference frame of the
robot by triangulation. If this can be done for at least 3
non-colinear markers, their 3D positions in the operating
room can be registered to their corresponding 3D CT posi-
tions to arrive at T. It should be noted that this registration
procedure is rigid (with only 6 degrees of freedom) and it
is designed to be used for tumors on or near rigid or bony
structures.

We obtained four archived data sets of patients who have
undergone this procedure, each with a tumor close to the
spinal cord. Two of the patients have tumors near cervical
vertebrae (C3 and C5), and two have tumors near thoracic
vertebrae (T1 and T8). This data is actual, clinical data with
a built-in gold standard, namely the transformation calcu-
lated using the fiducial markers. In particular, for each pa-
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Figure 4. Photograph of the CyberKnife radiosurgery
system showing: (1) ceiling mounted diagnostic X-
ray sources, (2) compact linear accelerator mounted on
computer-controlled robot arm, and (3) amorphous silicon
detectors.

tient we have the preoperative CT, the ASD X-ray images
from both sources, and the transformation T calculated by
the system. What we propose is to perform the registra-
tion using only the image intensities. In the long run, this
would save the physicians the time and trouble of inserting
the fiducials and save the patient the morbidity associated
with such a procedure.

Our registration proceeds exactly as depicted in Fig. 1.
In particular, we focus on the shaded boxes of the figure,
those dealing with the processing of the reference image
and the floating image, the similarity measure, and the opti-
mization.

3.2. Reference image

We use the ASD images as our references. Figure 5b
shows a schematic of the system with two examples of ASD
images. Since each procedure is limited to a specific area,
e.g. a tumor near a vertebra, we crop the reference images to
include only this region. This cropping allows us to speed
up our computations and saves us from having to account
for the fact that the CT and the intraoperative images were
created at different times. By restricting the registration to
a specific region of interest, we minimize the chance that
the structures have moved relative to each other between
the time the CT is taken and the time the procedure is per-
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Figure 6. ��� �� and ��� �� planes for one view of the pa-
tient used in our experiments. These parameters did not
change from patient to patient and were chosen based on
our knowledge of the projection geometry of the X-ray sys-
tem.

formed. This cropping is performed manually and with
minimal effort.

3.3. Floating image

Given a preoperative CT, we first generate two separate
light fields, each corresponding to one of the fixed ASD im-
age views. Following [17], we use a ��� �� �� �� resolution
of �� � �� � ��� � ���. Given a CT image, we gener-
ate the light fields such that the distance between the ��� ��
and ��� �� planes are roughly equal to the distance between
the radiation sources and their respective detectors. This
heuristic is likely to give us a higher sampling density in
the light field where we need it the most. Figure 6 shows
the light field geometry for one of the ASD imagers in our
experiments.

Next, we pick a point in the CT as an origin around
which to center our registration. This point does not need
to be particularly precise. In general, a point near the struc-
ture of interest (the tumor, in this case) works best. We pick
the point manually, by looking at CT slices and choosing a
point in the center of one of the vertebral bodies closest to
the tumor.

3.4. Similarity

As a similarity measure, we use mutual information [11].
Though it had not performed well in previous 2D-3D spine
image registration work [15], we assume that this perfor-
mance was due to the low resolution of the images used
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Figure 5. (a) Head-on view of the system. The two X-ray sources are fixed into the ceiling and calibrated so that both their
intrinsic and extrinsic parameters are known. (b) A birds-eye view of system with two example ASD images.

and very restricted regions of interest, which made for ex-
tremely sparse joint histograms. Given our faster DRR cre-
ation, we are able to use higher resolution images that, in
turn, allow us to better populate a joint histogram for the
purposes of calculating mutual information. This fact, com-
bined with mutual information’s obvious success in 3D-3D
registrations, both rigid and non-rigid, made it our measure
of choice. Our cost function then becomes the sum of the
mutual information between the two reference ASD images
and their corresponding DRRs calculated with T.

3.5. Optimization

As our optimization strategy, we use Studholme et al.’s
best neighbor search [18]. This procedure takes T� as an
initial transformation and expands it by varying each pa-
rameter by a given step size. The expansion generates the
12 closest neighboring transformations T� which are each
evaluated by our cost function. The evaluation consists of
generating DRRs using each T� and the geometry of each
ASD imager and comparing them to their corresponding
reference ASD images. The neighbor with the best value
as defined by our cost function is then expanded, and so
on until no more improvements can be made. Then, the
current best transformation is taken and expanded with a
smaller step size. This continues until some predetermined
resolution that we set at the beginning.

We choose the step size in the following way. For each
parameter, a scaling factor is computed such that when

added to its corresponding parameter, the average motion
of all projected voxels in the projection plane is equal [16].

Additionally, we augmented this algorithm by perform-
ing two passes of it, one with smoothed versions of the ref-
erence images to get a good approximation of the optimal T
and then one with the actual reference images. This proce-
dure has the effect of smoothing the cost function in order
to avoid local minima.

4. Results

4.1. Regular DRRs vs. light field DRRs

We performed 2D-3D image registration using our data
set of four archived CyberKnife patient procedures com-
plete with gold standard. Two of the procedures were on
tumors close to cervical vertebrae, and two were on tumors
near the thoracic vertebrae. Specifically, we ran our reg-
istration algorithm using initial configurations derived by
randomly perturbing the gold standard by a maximum of
8 mm in translation and �Æ in rotation. These perturbations
are on the order of those suggested by Penney et al. as being
a reasonable estimate for how close one can get using a very
approximate registration procedure [15]. One way to com-
pute an approximate initial transformation is to manually
pick corresponding anatomical landmarks in the two X-ray
views, triangulate their positions in 3D, and then perform a
point-based registration with the corresponding positions of
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Patient #1
Gold Standard Regular DRRs LF DRRs

x -284.1 ����		� 		
 ����		� 		

y -247.0 ����	�� 		
 ����	�� 		

z -226.7 ����		� 		
 ����	�� 		�

 -90.4 ���	�� 		� ���	�� 		�
� -0.1 			� 		� 		�� 		�
� -89.9 ���	�� 		
 ���	�� 		�

TRE 0.0 0.85 0.92
Time 11,612 151

Table 1. Comparison data between 10 registrations with
regular DRRs and light field DRRs for the patient with a tu-
mor near the thoracic vertebrae. The TREs are very close,
while the timing differences are significant. Translation
(x,y,z) and TRE values are in millimeters. Rotation (�, �,
�) angles are in degrees. Execution times are in seconds.

Patient #2
Gold Standard Regular DRRs LF DRRs

x -254.8 ����	�� 		� ����	�� 		�
y -219.9 ���			� 		� ���			� 		�
z -158.0 �
��	�� 		� �
��	�� 		�

 -91.7 ���		� 		� ���	�� 
	�
� -0.5 �	�� 
	� �	�� 
	

� -90.2 ���	�� 		� ���	�� 
	


TRE 0.0 1.80 1.54
Time 11,631 147

Table 2. More comparison data between 10 registrations
with regular DRRs and light field DRRs for a patient with a
tumor near the cervical vertebrae. Again, the TREs are very
close, while the timing differences are significant. Units are
the same as in Table 1.

those landmarks in the CT.

Using these initial random perturbations to initialize the
system, we then perform the registration as described, once
using ray casting to generate the DRRs and once using light
fields. We performed these experiments on a PC with a 2
GHz Intel Pentium 4 processor. Table 1 shows the results
for 10 registrations on a patient with a thoracic tumor, and
Table 2 shows the same for a patient with a cervical tumor.
We display only the results for the runs that converged close
to the correct solution. All 10 runs converged in Table 1,
while only 9 of 10 converged in Table 2. Fortunately, given
the small standard deviations of the parameters on the runs
that did converge, it is relatively straightforward to decide
whether or not a registration has converged. To validate
our results, we used target registration error (TRE) [12] of a

Regular DRRs Light Field DRRs
Avg. TRE 1.35 mm 1.31 mm
Avg. Time 16,108 sec 158 sec

Table 3. Summary of our results for all four patients in
our data set. The total TRE is calculated against our known
gold standard. The light field DRRs perform just as well as
standard DRRs but do so two orders of magnitude faster.

region centered near the tumor and extending to dimensions
roughly equal to those of the vertebral bodies in question
(�	� �	� �	 mm for thoracic vertebrae and �	� �	� �	
mm for cervical vertebrae). We used the gold standard to
compare against our results.

A few interesting observations follow from this data.
First of all, the TRE values for the regular DRR registra-
tions are very close to those of the light field DRR registra-
tions. In fact, in Table 2 we actually see that the TRE for
the light field DRRs is lower than that of the regular DRRs.
We attribute this mainly to the smoothing that is inherent in
the light field DRR construction, which sometimes prevents
the cost function from overfitting noise in the optimization.
Taking all four patients in our data set together, Table 3 sum-
marizes our results. In particular, the TRE values are quite
similar, while the timings are more than two orders of mag-
nitude apart.

4.2. Capture range

Having validated the use of light fields to create fast
DRRs, we now look at the accuracy of our entire registration
procedure. In particular, we are interested in the capture
range of our algorithm. Towards this end, we took two of
our patients and performed the following experiment. We
randomly perturbed the ground truth transformation until
we had 30 transformations with TRE between 0 and 2 mm,
30 between 2 and 4 mm, and so on until the final increment
of 14 to 16 mm. We then performed our registrations and
counted how many times they converged for each range in
the scale. Figure 7 illustrates our results. It shows the per-
centage of registrations that converged to the true parame-
ters (TRE 
 �mm) vs. the initial TRE of the start configu-
ration. As we see, the capture range extends out at least to
around 6 or 7 mm of initial TRE. After that, the percentage
of success falls.

5. Conclusions

We have demonstrated the effectiveness of using light
field DRRs in the application of 2D-3D image registration
on real, clinical data with an inherent ground truth. To our
knowledge this is the first time light fields have been used
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Figure 7. Plot of percentage of successful registrations
vs. initial TRE. Each data point represents a range of TRE
of 1 mm on either side of its �-coordinate.

to speed up the bottleneck of the DRR formation in tradi-
tional 2D-3D intensity-based registration schemes. Also,
our work is the first to be validated on real, clinical data with
a known gold standard. Our results indicate that light fields
are an extremely effective way to dramatically improve the
performance of intensity-based 2D-3D registration. Using
light fields to generate our DRRs, we achieve a speedup of
approximately two orders of magnitude with no accompa-
nying loss of accuracy.

Currently, we are exploring new optimization schemes
to help avoid the problem of getting stuck in local minima
as well as looking into new similarity measures that may
smooth out the cost functions and avoid local minima alto-
gether. In addition, we are looking into the tradeoff between
registration accuracy and the resolution of the light fields.

References

[1] J. Bijhold. Three-dimensional verification of patient place-
ment during radiotherapy using portal images. Med. Phys.,
20:347–356, 1993.

[2] M. Breeuwer, J. P. Wadley, H. L. T. de Bliek, et al. The EASI
Project—Improving the effectiveness and quality of image-
guided surgery. IEEE Trans. Inform. Technol. Biomedicine,
2:156–168, 1998.

[3] L. M. G. Brown and T. E. Boult. Registration of planar film
radiographs with computed tomography. Proc. IEEE MM-
BIA 1996, pages 42–51, 1996.

[4] K. G. A. Gilhuijs, P. J. H. van de Ven, and M. van Herk.
Automatic three-dimensional inspection of patient setup in
radiation therapy using portal images, simulator images, and
computed tomography data. Med. Phys., 23:389–399, 1996.

[5] A. Gueziec, P. Kazanzides, B. Williamson, et al. Anatomy-
based registration of CT-scan and intraoperative X-ray im-
ages for guiding a surgical robot. IEEE Trans. Med. Imaging,
17:715–728, 1998.

[6] E. Kerrien, M.-O. Berger, E. Maurincomme, et al. Fully au-
tomatic 3D/2D subtracted angiography registration. MICCAI
1999, pages 664–671. Springer-Verlag, Berlin, 1999.

[7] Y. Kita, D. L. Wilson, and J. A. Noble. Real-time registration
of 3D cerebral vessels to X-ray angiograms. MICCAI 1998,
pages 1125–1133. Springer-Verlag, Berlin, 1998.

[8] S. Lavallee, J. Troccaz, P. Sautot, et al. Computer-assisted
spinal surgery using anatomy-based registration. Computer-
Integrated Surgery: Technology and Clinical Applications,
pages 425–449. MIT Press, Cambridge, MA, 1996.

[9] L. Lemieux, R. Jagoe, D. R. Fish, et al. A patient-to-
computed-tomography image registration method based on
digitally reconstructed radiographs. Med. Phys., 21:1749–
1760, 1994.

[10] M. Levoy and P. Hanrahan. Light field rendering. Comput.
Graph. (SIGGRAPH ’96), 30:31–42, 1996.

[11] F. Maes, A. Collignon, D. Vandermeulen, et al. Multimodal-
ity image registration by maximization of mutual informa-
tion. IEEE Trans. Med. Imaging, 16:187–198, 1997.

[12] C. R. Maurer, Jr., R. J. Maciunas, and J. M. Fitzpatrick.
Registration of head CT images to physical space using a
weighted combination of points and surfaces. IEEE Trans.
Med. Imaging, 17:753–761, 1998.

[13] M. J. Murphy. An automatic six-degree-of-freedom image
registration algorithm for image-guided frameless stereo-
taxic radiosurgery. Med. Phys., 24:857–866, 1997.

[14] G. P. Penney, P. G. Batchelor, D. L. G. Hill, and D. J.
Hawkes. Validation of two- to three-dimensional registration
algorithm for aligning preoperative ct images and intraoper-
ative fluoroscopy images. Med. Phys., 28:1024–1032, 2001.

[15] G. P. Penney, J. Weese, J. A. Little, et al. A comparison of
similarity measures for use in 2D-3D medical image regis-
tration. IEEE Trans. Med. Imaging, 17:586–595, 1998.

[16] T. Rohlfing, D. B. Russakoff, M. J. Murphy, and C. R. Mau-
rer, Jr. An intensity-based registration algorithm for proba-
bilistic images and its application for 2-D to 3-D image reg-
istration. Medical Imaging 2002: Image Processing, Proc.
SPIE 4684:581–591, 2002.

[17] D. B. Russakoff, T. Rohlfing, D. Rueckert, R. Shahidi,
D. Kim, and C. R. Maurer, Jr. Fast calculation of digitally re-
constructed radiographs using light fields. Medical Imaging
2003: Image Processing, Proc. SPIE 5032, 2003 (in press).

[18] C. Studholme, D. L. G. Hill, and D. J. Hawkes. Automated
three-dimensional registration of magnetic resonance and
positron emission tomography brain images by multiresolu-
tion optimization of voxel similarity measures. Med. Phys.,
24:25–35, 1997.

[19] R. Szeliski and S. Lavallee. Matching 3-D anatomical sur-
faces with non-rigid deformations using octree splines. Int.
J. Comput. Vision, 18:171–186, 1996.

[20] P. Viola and W. M. Wells, III. Alignment by maximization
of mutual information. Int. J. Comput. Vision, 24:137–154,
1997.

[21] J. Weese, G. P. Penney, T. M. Buzug, et al. Voxel-based
2-D/3-D registration of fluoroscopy images and CT scans
for image-guided surgery. IEEE Trans. Inform. Technol.
Biomedicine, 1:284–293, 1997.

7

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 


