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Abstract

We propose a probabilistic algorithm able to detect the
curves that are unexpectedy smooth in a set of digital
curves. The only parameter is a false alarme rate, influ-
encing the detection only by its logarithm. We experiment
the good continuation criterion on image level lines. One
of the conclusion is that, accordingly to Gestalt Theory, one
can detect egdes in a way that is widely independent of con-
trast. We also use the same kind of method to detect corners
and junctions.

1. Introduction

Object boundaries are very often smooth curves. This
is not merely coincidental since, following Gestalt The-
ory [24], an entity is seen as an object precisely because it
has a smooth boundary. Thus, detecting smooth curves in a
very robust way is an important topic in computer vision. Of
course, regularity is not the only property that makes objects
conspicuous. Gestaltists have tried to give the (short) list of
properties, expressed since the beginning (in the 1920’s) in
geometrical terms, describing the vision process in a phe-
nomenological point of view. Without being exhaustive, we
can cite convexity, good continuation, symmetry, closed-
ness, vicinity, similarity. These properties have been called
partial gestalts by Desolneux, Moisan and Morel [9], who
initiated a program to transpose Gestalt Theory to Computer
Vision. The first step of this program is to detect robustly all
partial gestalts. The second step, also predicted by Gestalt
Theory, is to recursively group the detected features into
more rigid and stable structures, by using the same elemen-
tary Gestalt laws. We refer the reader to [15] for more de-
tails. In this paper, we are only interested in the detection of
a particular partial gestalt, namely good continuation. Good
continuations mean that we are inclined to grouping pat-
terns when they can be embedded in a smooth curve. It
applies when there are gaps in the patterns (dotted line for

instance), but also for crossing curves. In this case, per-
ception usually prefers to choose to group the parts of the
curves such that most of them are smooth. In this paper, we
do not try to detected dotted lines, but address the follow-
ing sub-problem: given a set of digital curves, we want to
detect all their regular part, and only them. We introduce a
definition of statistical regularity using the Helmholtz Prin-
ciple described by Desolneux et al. [9]. This principle does
not use an a priori or learned model, but a false a con-
trario model, based on a local independence assumption.
The detected features are large deviations from this a con-
trario model: a curve is smooth when the probability that
it is the conjonction of independent local regularity obser-
vations is very small. This shall be detailed below. Per-
ceptual grouping based on good continuation was proposed
with a variational approach by Guy and Medioni [11]. See
also [14, 21, 23] for related works in the detection of lines or
convex polygons in images. However, variational methods
are not decisive algorithms and usually require a threshold
to decide whether the optimal solution of the problem (seg-
mentation, grouping, etc...) is correct. This threshold is
usually data-dependent and its choice may be tedious. Our
method is not variational and has a unique decision thresh-
old which is an expected number of false detections. We
shall see that the detection depends only on the logarithm
of this threshold. Thus, in digital image analysis, our algo-
rithm can be considered as parameter free.
We apply it to image level lines and we observe that we de-
tect most edges. Since level lines give a constrast invariant
representation of the image, this seems contradictory with
the edge detection doctrine [3, 8, 19], which is based on
contrast. Actually, the conclusion is that we should distin-
guish at least two types of boundaries: contrasted bound-
aries and good continuations. Most of the time, they coin-
cide, but by difference, we can classify those which are due
to contrast or regularity only.
The plan is as follows: in Sect. 2 we explain the a contrario
model. In Sect. 3, we introduce our good continuation prin-
ciple. We also introduce a method to detect good continu-
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ation breakings which are candidates for corners and junc-
tions. (Sect. 4.) We display some experiments in Sect. 5 and
conclude in Sect. 6. The proofs of all the announced results
can be found in [4].

2. The a contrario model

The detection principle we use is called Helmholtz
principle and was introduced by Desolneux, Moisan and
Morel [9]. We can formulate it as follows. Assume that
we observe a finite collection C � �c�� � � � � cN � of N lo-
cal objects sharing a given quality Q (for instance color, or
orientation, or low curvature values...). Assume also that
we observe NT possible groups of these objects (that is to
say a given subset G of all the parts of C). Which among
those NT groups are perceptually meaningful? Follow-
ing Helmholtz [13], such groups are conspicuous because
they are not generic (or random) configurations. In order
to quantify this deviation to randomness, let us define the
number of false alarms (NFA)

NFA � E��fg � G� sharing Qg��

to be the expectation of the number of group candidates
g � �x�� � � � � xk� � G sharing Q when we mentally as-
sume, that, anything else held equal, the quality Q is inde-
pendently and uniformly distributed on �x�� � � � � xk�. This
independence assumption is an a contrario assumption that
has to be rejected for meaningful groups. Let us now as-
sume that NFA � �. If g � �x�� � � � � xk� share Q then
we say that g is �-meaningful. It means that, in average, we
can observe less than � such groups by chance. If � is very
small (we will see how to choose it), this allows to reject the
independence assumption, and validate the detection.

3. Good continuation principle

3.1. Meaningful good continuation

Let C be a rectifiable plane curve. We sample C with a
sample length equal to � and we assume that C has n � �
sampled points p�, ..., pn. At each pi we associate the ap-
proximate direction �i of the tangent at pi, computed from
a chord between pi and another curve point between pi and
pi�� at fixed distance of pi. For � � i � n, we denote
by ki � �i � �i��, the difference between two consecu-
tive tangent angles, called (by extension) curvature in the
following. Let us define our a contrario model. Assume
that C is an isotropic stationary random walk with indepen-
dent increments. Then, the ki are independent and identi-
cally distributed random variables, uniform in ���� ��. For
� � ��� ��, let us compute the probability P ��� n� that for

all � � i � n, jkij � �. From the stationarity and the
independence assumptions, we simply have

P ��� n� �
��
�

�n
�

If P ��� n� is very small, then there is little chance that C is
a random walk. However, we have to make clear how small
P ��� n� has to be. It is natural to assume that a good con-
tinuation does not contain any right angles, and we require
that � � �max �

�
�

. Let N� be a positive integer. We set for
all � � i � N�, �i � i

N�

�max.
Let us now consider a finite family of sampled curves
�Cj�j�J , and let Lj the number of curvature samples of
Cj . The total number of subcurves of all the Cj is less than
Nc �

P
j�J L

�
j (with equality if the curves are closed).

Definition 1 Let � be a connected subcurve of one of
the Ck, with n curvature samples �ki���i�n. Let k �
max��i�n jkij be the maximal curvature of �. Let also
� � min��i�N�

fkappai� k � �ig. We call number of false
alarms of �

NF ��� � NcN� � P ��� n�� (1)

if k � �max and NF ��� � NcN� else.

In order to make notations shorter, we shall denote “� is a
�-g.c” for � is a �-meaningful good continuation.

In the definition above, we simply multiply the probability
(in the a contrario model) to observe a curve with n cur-
vature samples smaller than one of the fixed values �i, by
the total number of tested configurationsNcN� (the number
of subcurves times the number of tested curvatures). The
meaning of this definition and the link with the general prin-
ciple of Sect. 2 is given by the following result.

Proposition 1 Assume that the curves Ck are stationary
random walks with independent increments and known
length Lk. Then the expected number of �-g.c. is smaller
than �.

The proof only relies on the additivity of expectation.

3.2. On the choice of � and �

As a direct consequence of the definition, a meaningful
continuation containing n angle samples must satisfy

�i � N� such that n �
log
�

�
NcN�

�
log
�
�i
�

� � (2)

Only the logarithm of the parameters appears in this for-
mula. In particular, � is not as crucial as it may seem in
the definition of meaningfulness (we shall check it in the
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experiments section). After some trials, we took � � �,
and we shall see in the experiments that � can span a large
set of values with no dramatic consequences. In the same
way replacingNc byNc�� is not really important, and idem
for N�. Even though level lines in images are not random
walks (since they are at least self avoiding), we experimen-
tally checked that the number of detections in an image of
white noise is linearly increasing with � and that, in prac-
tice, there are no detections for � � �.
The sampling length � must be chosen conformly to Shan-
non’s sampling theory. If the curves are extracted from
digital images, there is a minimal scale under which the
curves are smooth, but this obviously must not be consid-
ered as meaningful. Thus, we do not consider curves un-
der Nyquist’s distance, namely two pixels. It is possible to
make the algorithm scale invariant by using several values
for � (larger than Nyquist’s distance). The procedure stays
unchanged except that the number of false alarms is multi-
plied by the number of tested �.

3.3. Maximality

A very meaningful curve may contain a lot of smaller
meaningful ones. In general, we only see the largest one
(masking phenomenon). Thus, it seems reasonable to keep
only this curve. The following definition (first introduced
in [7]) aims at this.

Definition 2 Let � be a �-good continuation in a curve C.
We say that � is maximal meaningful, if

� ��� �-meaningful, �� � �	 NF ��� � NF ����.

� ��� �-meaningful, � � �� 	 NF ��� � NF ����.

Maximal good continuations form individual objects as as-
serted by the next result.

Proposition 2 Let ��, �� be two different maximal mean-
ingful good continuations on the same curve. Then �� 

�� � �.

4. Corners, junctions and terminators

Corners and junctions are usually geometrical strong
cues of shapes, and give information on the relative depth of
objects. Detecting them has been a subject of constant in-
terest for twenty years (see [1, 6, 12] among many others).
Most used algorithms are local and have several parameters.
They usually define a corner as a point where the direction
of the gradient has rapid variations. This requires a smooth-
ing and one or several thresholds.
As in [17], we consider that corners are rapid changes of
the direction of a curve, but that the curve also has to be
flat enough on both sides of the corner. We also use an a

contrario model. Therefore, the detection threshold, formu-
lated in terms of false alarms will be given a fixed value,
independent of the image.

4.1. Good continuation breaking

Let us consider an ideal corner made by two non
collinear segments with a common endpoint. Let us denote
by C the resulting (sampled) curve and i� the (sampled) ab-
scissa of the corner. For an ideal corner, the histogram of
the tangent angle �i at the point C�i� � i� has exactly two
distinct values 	� and 	�. For a more realistic curve, we ex-
pect to observe a peak around each value and a gap between
them.
We take the same angle quantization as in Sect. 3. The in-
terval ���� �� is cut into Nd � 	N� bins of the same size
�� � �

�N�
. For l 
 �, we set

	��l� � min
�l�i��

�
�i
��

�
� ���l� � max

�l�i��

�
�i
��

�

and

	��l� � min
��i�l

�
�i
��

�
� ���l� � max

��i�l

�
�i
��

�
�

where the angles �i are measured relatively to the tangent at
the corner point C�i�� and the brackets stand for the inte-
gral part. Of course, the number of points in the histogram
is equal to the length of the piece of curves we consider,
namely �l. A gap in the histogram is meaningful if its rela-
tive size is large enough. Thus, we shall impose that the rel-
ative size of the histogram in ��� ��� is large and that the rel-
ative size of the intervals �	�� ��� and �	�� ��� in �	�� ���
is small, for some l.
To quantify these properties, we adopt the a contrario model
that the values of the angles are independent and uniformly
distributed in ���� ��. As in the case of good continua-
tion, we shall define a finite number of events. The num-
ber of false alarms is defined as the product probability of
the event and the total number of considered events. An �-
meaningful event is such that its number of false alarms is
less than �. Let us fix l 
 �. We compute the probability
that

� the spanned interval of angles (normalized by ��) is
larger than s and smaller than Nd (we do not want the
curve to make a whole loop).

� the spanned intervals on each side of the corner candi-
date are respectively smaller than m� and m�,

Let us fix s, m�, m� and the lower bound of the spanned
interval. The probability that the width of the interval is
more than s is

��
�

s

Nd

��l��
�
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Knowing this, points are uniformly distributed in this in-
terval. The probability that the tangent on each side of the

corner spans angles smaller than m� and m� is
�
m�m�

s�

�l
.

Thus, if we fix the lower bound of the interval, the proba-
bility of the above event is

pangle�s�m��m�� l� �
�m�m�

s�

�l�
��

�
s

Nd

��l��	
�

(3)

In order to define a number of false alarms, we now have
to count the number of possible configurations. Elementary
calculations show that the number of possible choices for
�m��m�� s� is

NdX
s��

sX
j��

�j � �� �
�



�Nd � ��Nd�Nd � ���

There are also Nd choices for the lower bound of the inter-
val spanned by the angles. Each point shall be tested; we
denote by Ns the total number of samples. Finally, we have
to fix the maximal number of values for l (the length of the
angle). Let us denote this maximal length by L. The total
number of tested configurations is equal to

NT �
�



LNs�Nd � ��N�

d �Nd � ���

Let us now fix the value of L. We choose it as the minimal
integer such that

NT � pangle���max� �max� �max� L� � �� (4)

Remark that this definition makes sense, since this quantity
tends to 0 when L tends to ��. The interpretation is the
following. If l 
 L, a histogram with length ��max with two
modes and a gap of relative size �

�
(i.e. corresponding each

to an angle �max) forms a meaningful angle. (See definition
below.)

Remark 1 For � � �, N� � ��, Ns � ������ (which is
typically what is observed) and � � �, we get Nd � 	
, and
L � ��.

We now have all the ingredients at hand to define an �-
meaningful good continuation breaking.

Definition 3 Consider a set of curves, with a total number
of samples equal to Ns. Let C a curve in this set and C�i��
a point of this curve. We consider the piece of curve �i��l,
whose points are the C�i� � i�, for �l � i � l. We say that
C has a �-meaningful angle centered at i� if there exists l,
� � l � L, and nonnegative integers s, m� and m� such
that s � Nd and m� � m� � s satisfying the following
requirements:

1. �	�� ��� � 
�	�� ��� � �,
2. s � �� � 	� � Nd,

3. �� � 	� � m�, �� � 	� � m�,

4. 	� � �� � � � max��� � 	� � �� �� � 	� � ��. ,

5. the number of false alarms

nf�i�� l� 
 NT � pangle�s�m��m�� l� (5)

is less than �.

If C has a meaningful angle at i�, we set

l� � minfl� nf�i�� l� � �g�
We call angle at i� the piece of curve containing the points
with index between i� � l� and i� � l�. We call number of
false detections of the angle at i� the number NFa�i�� �
nf�i�� l��.

As for good continuation, this choice is motivated by the
following result.

Proposition 3 If �Cj�j�J is a set of random walk with in-
dependent and isotropic increments, the expected number of
�-meaningful angles is less than �.

4.2. Corners

A meaningful corner is simply a good continuation
breaking connecting two good continuations.

Definition 4 We say that i� is a �-meaningful corner, if

� there is a �-maximal meaningful angle centered at i�,

� and the endpoints the angle belong to a good continu-
ation.

Since �-corners are �-angles, Proposition 3 obviously holds
for �-meaningful corners.

4.3. Terminators

By the definition above, corners form a particular class of
breakings. Among corners, we can also distinguish a sub-
class that we call terminators. Roughly speaking, they are
the points where curves make a U-turn. They are not con-
sidered as corner but as the endpoint of thin objects. The
denomination is due to Bergen and Julesz [2] who studied
the terminators in texture perception.
Assume that C is a random walk with isotropic and inde-
pendant increments. Then,

E�jC�i� � C��i�j�� � �i���
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where E is the expectation relatively to the random walk
model. We take the same notations as in Def. 3 and Def. 4.
Let i� be a meaningful corner with length l. Let

dmax�l� � max
��k�l

jC�i� � k�� C�i� � k�j

and

dmin�l� � min
��k�l

jC�i� � k�� C�i� � k�j�

Definition 5 We say that i� is a �-terminator, if it is a �-
corner and if

dmax�l�� dmin�l� � �
p
�l�

where l is the length of the breaking at i�.

If we change a little bit this value, some corners may be-
come terminators and vice-versa but it still makes sense.
Indeed, if a stroke is thick enough or if we zoom in it, then
we can see it as a rectangle, and if it is thin enough (or un-
zoom it), it may appear as a needle with negligible width. In
the same way, a very sharp corner may be seen as a termi-
nator and the algorithm will reproduce this indetermination.
A definitive decision can be made only by considering more
global and high level cues.

5 Experiments

In what follows, we apply the good continuation princi-
ple to curves in grey level images. It is natural to use the
topographic map which provides a complete representation
of the image [5]. Let u be a gray level image. For � � R,
we consider the upper level set


��u� � fx s.t. u�x� � �g�
and the lower level-set


��u� � fx s.t. u�x� � �g�
The topographic map of u is the collection of the level lines
that are the boundaries of connected components of level
sets. The topographic map gives a global contrast invariant
representation of the image [10] that can be embedded in
a tree structure. It can be efficiently computed by an algo-
rithm called Fast Level Set Transform [18, 20]. The images
are quantized such that the level lines densely covers the
image.
On Fig. 1, we represent the level lines of an image (multiple
of 10) and the good continuations (computed on all level
lines). The influence of the false alarms rate is weak: for
� � � we get about 7,800 detections while we get 4,100 of
them for � � ����. The top right subfigure is the results
of meaningful edges of Desolneux, Moisan and Morel [8],

which are contrast based. As expected, the tree on the right
side of the image is detected as an edge, and is logically not
detected as a good continuation since it has a very irregular
boundary.
In the next experiment, we detect good continuations, cor-
ners and terminators on a painting by Kandinsky (Fig. 2).
We emphasize that the image is not smooth at all, that level
lines are really noisy and fill the image. As edges contain
many level lines, corners and terminators appear in clus-
ters, and this should also give them some relevance. This
corner and junction detection is less local than most of ex-
isting methods. As an exemple, we compare our result with
the classical Harris detector [12]. Let us point out that our
method also gives a quantitative meaning of the points we
find in terms of false detection rate, which could be even
stabler if we found point clusters. Moreover, we insist on
the fact that there are no critical parameters that have to
be tuned by the user. For instance Harris’ detector has
four parameters: the standard deviation of a smoothing ker-
nel, the size of the neighborhood to compute the location
of the maxima of the cornerness function, a threshold on
these maxima; the last parameter appears in the definition
of cornerness, and its value has been suggested by Harris
and Stephen [12]. We also remark that there is no distinc-
tion between corners and terminators, which are perceptu-
ally quite different. CPU time on this ����� ��� image is
61s.
In both experiments, we can check that most of edges are
good continuations. But it is even more interesting to notice
that, in spite of the large number of curves, there are only
a very small number of good continuations which are not
edges.

6. Conclusion, discussion and perspectives

In this paper, we proposed a method to define the approx-
imate regularity of digital curves. This does not use a model
of “good shape” but measures a contrario how a curve dif-
fers from a discrete random walk. The algorithm has one
parameter: the maximal number of false detections. It does
not need a precise tuning and in practice, it may be taken
equal to 1. When dealing with level lines, the sampling
should be taken minimal while staying in agreement with
Shannon’s sampling theory. In fact, several sample lengths
can be tested; the same method still applies if we simply
multiply the number of false detections by the number of
test lengths. The algorithm is decisive since we do not need
to fix thresholds a posteriori. It does not use any a priori
learning, except the number of curves in the image and the
qualitative a contrario model we use. Moreover, it does not
require any smoothing. It can be shown that detection is not
improved by smoothing. This shall be exposed in further
works.
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Figure 1. Photograph of Valbonne church . Top: on the left, the original image (512�768). On the
right, its level lines (quantized each 10 levels), and Helmholtz edges, based on contrast [8]. Bottom,
from left to right. Good continuations with � � � and � � ����, and �-meaningful corners. The main
features are stable with respect to the false detection rate since there are 7771 good continuations
for � � � and 4101 for � � ����. The most meaningful curves in a computational point of view, are
also the most visuallly meaningful. Textures can be contrasted but are not regular in general. This is
the case of the tree contour on the right side of the image. There are initially, ���� ��� complete level
lines and � � ��� possible subcurves. CPU time is 20s on a Pentium IV 2.4GHz.
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Figure 2. Good continuation and breaking detection. Top: Original image (���� � ���), level lines
(multiples of 3 for display). Middle: good continuations, and corner/junctions. Bottom row: mean-
ingful terminators, and corners detected by Harris [12] detector. In Harris detector, we have to fix
three parameters: a smoothing scale, a neighborhood size for maxima computation and a threshold
for the cornerness function. In addition, another parameter is used for the cornerness definition and
its value is suggested by Harris. With Harris’ detector, corners are detected near edges, probably
because of ringing effects.
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We applied this algorithm to detect smooth pieces of level
lines in images. It is then checked that contours are almost
always improbably smooth curves. This justifies a posteri-
ori many segmentations algorithms which take for granted
that edges are smooth (as Mumford-Shah segmentation [22]
or active contours [16]).
The detection does not depend upon any contrast informa-
tion and the coincidence of the detected curve with edges is
surprising. However, we stress that our algorithm is not an
edge detector and not meant to replace them. We a priori did
not aim at finding edges, but only curves whose variations
are too small to occur only by chance. The conclusion is
that edges satisfy many partial properties and either contrast
or the good continuation principle are almost sufficient to
find them. Of course, regularity and contrast are not always
equivalent: contrasted parts may be irregular and smooth
parts may have a low contrast. This implies that all partial
gestalts have to be examined. This, of course, increases the
computational time, but a feature that is found by several
independent detectors is much more reliable. Such an ex-
haustive detection is only a preliminary step since grouping
and masking are crucial in making structures conspicuous.
These interactions are nonlocal and represent both a theo-
retical and computational challenge.
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