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Abstract

A commonly used representation of a visual pattern is the
set of marginal probability distributions of the output of a
bank of filters (Gaussian, Laplacian, Gabor etc...). This
representation has been used effectively for a variety of vi-
sion tasks including texture classification, texture synthesis,
object detection and image retrieval. This paper examines
the ability of this representation to discriminate between an
arbitrary pair of visual stimuli. Examples of patterns are
derived that provably possess the same marginal statistical
properties, yet are “visually distinct.” These results suggest
the need for either employing a large and diverse filter bank
or incorporating joint statistics in order to represent a large
class of visual patterns.

1. Introduction
The ability of a visual system to discriminate among a mul-
titude of stimuli ultimately depends on the underlying rep-
resentation of a visual pattern. Computing a large number
of statistical measures from a set of filtered images is one
commonly used representation. Many successful methods
for object recognition, object detection, image retrieval, tex-
ture synthesis, and texture recognition have been developed
based on such a representation [1] [2] [3] [4]. In this class
of methods, a set of subband images is created through con-
volution with a bank of filters, Gaussian, Laplacian, Ga-
bor, etc..., then statistical measures are computed from the
subband images. A variety of statistical measures have
been proposed including: parametric models, moments, en-
tropies, histograms, and joint distributions. Detection and
recognition is performed by classifying the statistical rep-
resentation of a novel image while texture synthesis is per-
formed by randomly sampling from the ensemble of images
that match the statistics of a particular pattern. In order to
understand the ability of these methods to scale to a large
number of visual patterns it is important to examine the abil-
ity of the underlying representation to discriminate between
any pair of visual stimuli.

In this paper we address the use of marginal statistics
(histograms) of images filtered with Gaussian, Laplacian,
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derivative and Gabor functions. In particular, we derive ex-
amples of visual patterns that are “distinct” yet provably
map to the same marginal probability density function of
a large filter bank. The fact that these patterns exist does
not imply that marginal distributions are not important or
useful. To the contrary, marginal statistics have been used to
successfully synthesize and classify a variety of textures and
patterns. However, the results in this paper do suggest the
need for certain classes of filters, a large filter bank and/or
the use of joint statistical information.

One of the first models for representing a visual pattern
was proposed by Julesz, who suggested that co-occurence
statistics of k-tuples of pixels might explain texture per-
ception [5]. The model was later disproved by Julesz and
others by constructing patterns that were distinct to a hu-
man observer but shared the same high order co-occurence
statistics [6]. Later, Markov random fields were pro-
posed [7]. However, such models were difficult to deal
with due to the high computational complexity. More re-
cently texture recognition and synthesis has focused on fil-
tering theory. Faugeras and Pratt suggested representing
textures by the marginal statistics of images after apply-
ing a bank of filters. This line of research has been moti-
vated by both neurophysiological evidence that the human
visual system decomposes the retinal image into subband
channels and psychophysical evidence that textures shar-
ing similar marginal distributions are difficult to discrimi-
nate [8] [9] [10]. Heeger and Bergen developed an algo-
rithm for synthesizing textures that match the histograms
of a target texture across the levels of a Steerable pyra-
mid (oriented filters) [11]. Zhu et al. advocated using
the marginal distributions (histograms) of a large filter set
and demonstrated synthesis of a variety of visual patterns
and textures [12]. An important theoretical result linking
these filtering methods to Markov random field models was
shown by Zhu et al. [13]. Work by De Bonet and Viola
has shown texture synthesis using the joint statistics of filter
outputs [14]. In addition, Portilla and Simoncelli have also
expressed the need for joint statistics when synthesizing tex-
tures [15]. Recently, good results on texture classification
have been obtained using “textons”, which are clusters in
the joint statistical space of filter outputs [16] [17] [18].
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While it is clear that statistical measures of subband im-
ages are a useful representation of visual patterns, questions
regarding the expressive power of any particular statistic
and any particular set of filters need to be answered in order
to design efficient and robust visual systems.

Previously, Zhu et al. have shown that the histograms
of filtered images are sufficient to uniquely characterize an
image, however the proof requires an uncountably infinite
number of filters [12]. Hadjidemetriou et al. derived the
class of continuous transformations that preserve the his-
togram of an unfiltered image [19]. They also studied the
histograms of Gaussian filtered images and were able to
demonstrate sensitivity to many texture properties [20].

The main contribution of this paper is a study of the
ability of marginal statistics of commonly used filters to
discriminate visual patterns. For several classes of filters
we show the existence of patterns that map to the same
marginal distributions but are “visually distinct.” Further-
more, they are not rigid or even affine transformations of
each other. Along the way, several novel results are shown
relating the marginal statistics to the image frequencies.

2. Marginal Statistics
Given an image f(x, y) defined on the continous image do-
main Ω ⊂ �2 and a set of filters g = {g1, . . . , gk} the
subband images {f1, . . . , fk} are formed by the convolu-
tion fα = gα ∗ f . The marginal probability distributions of
the filter outputs consider each subband image in isolation
and are defined by

pα(i; f) =
1
|Ω|

∫
Ω

δ(fα − i)dΩ, (1)

where δ is the Dirac delta function. For a fixed image
size the marginal distribution is equivalent to the histogram.
Joint distributions are functions of the output of several or
all filters and given by

p(i1, i2, . . . , ik; f) =
1
|Ω|

∫
Ω

k∏
α=1

δ(fα − iα)dΩ. (2)

For a fixed set of filters the joint distribution contains more
information than the marginal distributions. However, the
storage and comparison costs of joint distributions (multi-
dimensional histograms) grow exponentially. Clearly, we
would like to fully understand the expressive power of
marginal distributions before resorting to joint statistics.

The question addressed in this paper is do patterns f
and f ′ exist that have the same marginal distributions for
a large, perhaps infinite set of filters g, meaning pα(f) =
pα(f ′),∀α : gα ∈ g. Furthermore, we place the constraint
that f and f ′ are not related by an affine transformation.
It is important to note that matching the marginal distribu-
tions implies that any statistical measure derived from the
marginal distributions, such as entropies, range, median,

will also be identical. To answer this question we consider
the class of functions that are the sum of cosine functions
occurring at integer frequencies with an arbitrary but fixed
set of weights.

Definition Given a set of n weights w = (w1, . . . , wn) :
wi ∈ R, define F (w) to be the set of functions such that for
all u = (u1, . . . , un) ∈ Z

n and v = (v1, . . . , vn) ∈ Z
n

n∑
i=1

wi cos(uix + viy) ∈ F (w).

In the following section we derive sufficient conditions to
ensure a pair of functions f, f ′ ∈ F (w) have the same or
similar histograms, p(f) = p(f ′). The conditions are inde-
pendent of the weights w and only depend on the choice
of integer frequency pairs {(u1, v1), . . . , (un, vn)} for f
and {(u′

1, v
′
1), . . . , (u

′
n, v′

n)} for f ′. Then, this result is ex-
tended by deriving additional constraints that if satisfied en-
sure f and f ′ have the same histograms after convolution
with a bank of filters.

3. Moments
The density function (1) is not defined directly on the image
f therefore we work with the moments of the distribution.
Let Mk be the kth moment of the distribution (1),

Mk(f) =
∫

ikp(i)di =
1
|Ω|

∫
Ω

f(x, y)kdΩ.

Provided the existence of the moment generating function
the moments uniquely represent the probability distribu-
tion [21]. For images, only a finite number of moments
are needed to represent the distribution due to the presence
of limited dynamic range, quantization and noise. Thus,
sufficient conditions are derived for ensuring the first k mo-
ments are identical for a pair of functions f and f ′ in F (w)
implying that p(f) ≈ p(f ′).

Dropping the normalization constant, the moments for a
function in F (w) are

Mk =
∫

Ω

(
n∑

i=1

wi cos(zi)

)k

dΩ, (3)

where zi = uix + viy. Applying the multinomial theorem1

Mk =
∫

Ω

∑
k1,k2,...,kn

k!
k1!k2! · · · kn!

n∏
i=1

wki
i coski(zi)dΩ,

where the sum is taken over all of the non-negative integers
such that

∑n
i ki = k. To simplify the notation this is written

as

Mk =
∫

Ω

∑
κ∈K

F(κ, w)
n∏

i=1

coski(zi)dΩ,

1A generalization of the binomial theorem
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with κ = (k1, . . . , kn) and K = {κ : ∀iki ≥ 0,
∑n

i ki =
k}. In order to remove the exponentiation the following
substitution

cosa(z) =
a∑

i=0

C(i, a) cos(iz), a ∈ Z

is applied. We are not concerned with the actual values of
C(i, a) except to note that they are independent of z and
have the following property

C(i, a) �= 0 ⇔ parity(i) = parity(a). (4)

Applying the substitution

Mk =
∫

Ω

∑
κ∈K

F(κ, w)
n∏

i=1

(
ki∑

ri=0

C(ri, ki) cos(rizi)

)
dΩ.

Interchanging the product and the summation results in

Mk =
∫

Ω

∑
κ∈K

F(κ, w)
∑

r∈Rκ

n∏
i=1

C(ri, ki) cos(rizi)dΩ,

where r = {r1, . . . , rn} and the summation is taken over
the set Rκ = {r : 0 ≤ ri ≤ ki, ∀i}. Again simplifying the
notation and moving the integral inside the summation

Mk =
∑
κ∈K

F(κ, w)
∑

r∈Rκ

C(r, κ)
∫

Ω

n∏
i=1

cos(rizi)dΩ,

where C(r, κ) =
∏n

i=1 C(ri, ki). From (4) C(r, κ) has the
following property

C(r, κ) �= 0 ⇔ ∀i parity(ri) = parity(ki). (5)

The product is removed by repeatedly applying by the fol-
lowing trigonometric substitution

cos(a) cos(b) =
1
2
(cos(a + b) + cos(a − b)),

resulting in

Mk =

∑
κ∈K

F(κ, w)
∑

r∈Rκ

C(r, κ)
∫

Ω

1
2n−1

∑
d2,...,dn

cos

(
n∑

i=1

dirizi

)
dΩ,

where d1 = 1 and di = ±1 for i ≥ 2. The left summation
inside the integral is taken over the 2n−1 possible assign-
ments of the di. Note that each integral of the form∫

Ω

cos(r1z1 ± r2z2 ± · · · ± rnzn)dΩ.

Recall that zi = uix + viy and ri, ui, vi ∈ Z therefore if
the integration is performed over (−π, π) in both the x and

y direction then each integral evaluates to 0 unless all of
the terms sum to 0 in which case the integral evaluates to
|Ω| = 4π2 thus,

∫
Ω

cos

(
n∑

i=1

dirizi

)
dΩ =

{
4π2 if

∑n
i dirizi = 0

0 otherwise

From this result the integral is removed and

Mk =
∑
κ∈K

F(κ, w)
∑

r∈Rκ

C(r, κ)
1

2n−1
t(u, v, r). (6)

Note that the 4π2 is removed because it cancels with the
normalization constant that was dropped in (3). The func-
tion t(u, v, r) is the number of solutions to the 2n−1 equa-
tions of the form

r1z1 ± r2z2 ± · · · ± rnzn = 0,

which is an integer in the range (0, 2n−1). Note that t is a
function of u, v, r because a particular equation,

d1r1z1 + · · · + dnrnzn = 0,

is satisfied if and only if

n∑
i=1

diriui = 0 ∧
n∑

i=1

dirivi = 0. (7)

Equation (6) separates out the dependence of the moment
function on the integer frequencies u and v and will be used
to prove several results linking the marginal distributions to
the image frequencies. From (7) the function t(u, v, r) is
determined by the solutions to a pair of Diophantine equa-
tions2.

Definition Given a function f with the integer fre-
quencies (u1, . . . , un) and (v1, . . . , vn) define A(f) =
{(m1, . . . ,mn)} ⊆ Z

n to be the set of solutions to the Dio-
phantine equations

u1m1 + u2m2 + · · · + unmn = 0
v1m1 + v2m2 + · · · + vnmn = 0.

(8)

Now, we are ready to show the conditions under which a
pair of functions f and f ′ have the same moments.

Theorem 3.1 Let f and f ′ be functions in F (w). If ∀c ∈
A(f)A(f ′) there exists an integer k̂ such that

∑n
i |ci| >

k̂ then ∀k ≤ k̂, Mk(f) = Mk(f ′).

Proof We will prove the contrapositive statement. Thus,
we assume there exists a k ≤ k̂ such that Mk(f) �= Mk(f ′).
From (6) there must exist a κ = (k1, . . . , kn) and an
r = (r1, . . . , rn) such that t(u, v, r) �= t(u′, v′, r) where

2An equation in which only integer solutions are allowed.
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∑n
i=1 ki = k and ri ≤ ki. Without loss of generality as-

sume that t(u, v, r) > t(u′, v′, r), which implies there must
exist a (d1, . . . , dn) where di ∈ {−1, 1} such that

d1r1(u1x + v1y) + · · · + dnrn(unx + vny) = 0
∧

d1r1(u′
1x + v′1y) + · · · + dnrn(u′

nx + v′ny) �= 0.

Define c = (c1, . . . , cn) such that ci = diri. Clearly, c ∈
A(f) and c �∈ A(f ′), thus ∃c ∈ A(f)A(f ′). 3 Recall that
ri ≤ ki and

∑n
i ki = k and k ≤ k̂, hence

∑n
i |ci| ≤ k̂ and

we have proven the contrapositive statement.

Corollary 3.2 If A(f)  A(f ′) = Ø then for all k the mo-
ments Mk(f) = Mk(f ′).

Proof This must follow directly from the theorem to avoid
a contradiction.

Theorem 3.1 relates the histogram to the integer frequencies
through the solution set of a pair of Diophantine equations.
Given any pair of functions in F (w) the number of iden-
tical moments are found by generating the solutions to the
Diophantine equations until a member of A(f)  A(f ′) is
found. Note that this process will always terminate pro-
vided A(f) �= A(f ′), which is the case if (u, v) and (u′, v′)
are linearly independent. From the corollary, if the frequen-
cies are related by a linear transform then all of the moments
of f and f ′ will be the same and p(f) = p(f ′). By relaxing
the constraint that all of the moments must match, functions
can be generated that are not related by an affine transforma-
tion yet have p(f) ≈ p(f ′), which in the presence of quan-
tization and noise will be statistically indistinguishable.

4. Moments of Filtered Images
Next, we consider the marginal distributions of the subband
images of f and f ′.

Theorem 4.1 Let f and f ′ be functions in F (w). Define
k̂ to be <

∑n
i |ci| for all c ∈ A(f)  A(f ′). Let g be

any symmetric or anti-symmetric function with the Fourier
transform G. If ∀i, G(ui, vi) = G(u′

i, v
′
i) then ∀k : k ≤

k̂,Mk(g ∗ f) = Mk(g ∗ f ′).

Proof Case 1: The function g is symmetric. The symmetry
implies that G is real valued, hence from the properties of
the Fourier transform it can be shown that

g ∗ f =
n∑

i=1

G(ui, vi)wi cos(ux + vy)

g ∗ f ′ =
n∑

i=1

G(u′
i, v

′
i)wi cos(u′x + v′y).

3� is the symmetric set difference operator, which is the elements be-
longing to one but not both sets.

If G(ui, vi) = G(u′
i, v

′
i) define m = (m1, . . . ,mn) : mi =

G(ui, vi)wi, thus g ∗ f ∈ F (m) and g ∗ f ′ ∈ F (m). Note
that the integer frequencies have remained the same there-
fore A(g ∗ f) = A(f) and A(g ∗ f ′) = A(f ′). This implies
that k̂ <

∑n
i |ci| for all c ∈ A(g ∗ f)  A(g ∗ f ′) thus

∀k : k ≤ k̂,Mk(g ∗ f) = Mk(g ∗ f ′) follows from theorem
3.1.
Case 2: The function g is anti-symmetric. The anti-
symmetry implies that G is imaginary, hence from the prop-
erties of the Fourier transform it can be shown that

g ∗ f =
n∑

i=1

G(ui, vi)wi sin(ux + vy)

g ∗ f ′ =
n∑

i=1

G(u′
i, v

′
i)wi sin(u′x + v′y).

The sine functions are cosine functions with a π/2 shift.
Moments are invariant to constant shifts hence case 2 fol-
lows from case 1.

Together, theorems 3.1 and 4.1 provide sufficient condi-
tions for ensuring the first k moments of the histograms
of a set of subband images match for a pair of functions
f and f ′ and a set of filters g = {g1, . . .}. We are not
concerned with the actual value of k except to note that it
can always be defined large enough such that the moments
above k are lost in quantization and noise thus we claim
pα(f) = pα(f ′),∀α : gα ∈ g. To construct examples of f
and f ′ with matching moments, the frequencies (u, v) and
(u′, v′) must be chosen carefully such that:

1. The solutions to the Diophantine equations (8) of mag-
nitude ≤ k are identical.

2. For each filter gα ∈ g with Fourier transform Gα we
have ∀i, Gα(ui, vi) = Gα(u′

i, v
′
i).

The general approach taken to construct exam-
ples of f and f ′ is to define two sets of fre-
quencies ua = {(u1, v1), . . . , (un, vn)} and
ub = {(u1, v1), . . . , (um, vm)}. Then define f = fa + fb

where fa is constructed from the frequencies ua and fb

from ub. The weights (w1, . . . , wn, wn+1, . . . , wm) are set
to 1. Similarly, f ′ = fa + R(fb) is defined where R is a
rotation of the frequencies ub and the weights are also set to
1. The exact choice of R will depend on the filters which is
addressed later. The key is to choose the frequencies such
that ua, ub do not “interact” and ua, R(ub) do not “interact”
to contribute to any of the moments ≤ k. Formally, if
c = (c1, . . . , cn+m) ∈ A(f) :

∑ |ci| ≤ k then we
require (c1, . . . , cn) ∈ A(fa) ∨ (cn+1, . . . , cm) ∈ A(fb).
Likewise, if c ∈ A(f ′) :

∑ |ci| ≤ k then we require
(c1, . . . , cn) ∈ A(fa) ∨ (cn+1, . . . , cm) ∈ A(R(fb)).
These properties imply that c /∈ A(f)  A(f ′). Rather
than iterating through possible choices of ua and ub simple
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geometric heuristics are applied to avoid interacting with
any small moments. For example, ensuring that no two
members of ub and R(ub) are parallel to any two members
of ua . The frequencies are also chosen such that “visually
distinct” patterns emerge. This is accomplished by placing
members of ub close to members of ua thus creating
interference patterns that will not exist between R(ub)
and ua. Note that although R is an affine transform the
functions f and f ′ will in general not be related by an affine
transformation. To handle certain classes of filters we need
one more theorem.

Theorem 4.2 For a function f ∈ F (w), if ∀i, ui are odd
or ∀i, vi are odd then ∀k such that k is odd,Mk(f) = 0.

Proof Consider an arbitrary odd moment k and an arbitrary
κ and r in the summation of equation (6). To prove that
Mk = 0 we only need to show that t(u, v, r) is zero for the
arbitrary term.

Define the set Oκ to contain the odd parity terms of κ.
Define the set Or to contain the odd parity terms of r. De-
fine the set Ou to contain the odd parity terms of diriui.

The fact that k is odd and
∑n

i ki = k implies that an odd
number of odd parity ki terms must exist, hence |Oκ| is odd.
We need only consider the terms in (6) where C(r, κ) �= 0.
Hence, from (5) we also know that |Or| is odd. Now, if
all of the ui are odd, the fact that |Or| is odd implies that
|Ou| is odd. If |Ou| is odd then

∑n
i diriui �= 0, hence

t(u, v, r) = 0 for the arbitrary term and therefore Mk = 0.
The same holds true if the vi are odd.

A filtering operation does not alter the frequencies of a func-
tion it only effects the weights. Thus, by using odd parity
frequencies we have a way of ensuring all of the odd mo-
ments are zero for all of the subband images of f and f ′.

Now we are ready to consider examples of f and f ′ for
several classes of commonly used filters. In order to create
example patterns discrete images must be formed. How-
ever, the theorems have assumed a continuous image model
and will not necessarily be true for sampled functions. We
work around this problem by randomly sampling the func-
tions inside each pixel in which case the expected value of
the first k moments match.

4.1. Rotationally Symmetric Filters
Rotationally symmetric filters include Gaussian, Laplacian
of Gaussian and other center surround kernels. These filters
are defined with a scale parameter σ, which determines the
size of the kernel. The common feature of this class of filters
is a rotationally symmetric Fourier transform. Any rotation
R that maps the integer frequencies to another set of integer
frequencies results in exactly the same Fourier coefficients.
Integer rotations are easily be achieved by interchanging the
u and v frequencies. Thus, f(u, v) = fa(u, v) + fb(u, v)
and f ′(u, v) = fa(u, v) + fb(v, u) have the same weights

after convolution with any of these filters applied at any
scale even if an infinite number of scales is used. Figures
(a) and (b) show examples of such patterns sampled with
256 × 256 pixels. Next to each pattern is a figure showing
the distribution of the frequencies used to construct the pat-
tern. In (a) the fixed frequencies ua are denoted by circles
and the rotated frequencies ub are denoted by plus signs and
the first 35 moments are identical. Several rotations of the
frequencies are applied to (b) and the first 4 moments are
identical. Each pattern is convolved with both Gaussian and
Laplacian of Gaussian kernels at scales σ = {1, 2, . . . , 8}
for a total of 16 subband images. For each pair of subband
images, histograms are formed with 100 bins and the L1

norm is computed. For all histograms the difference is be-
tween 1 and 3 percent of the number of pixels, a negligible
amount. Next to the patterns in (a) and (b) are example his-
tograms for the Gaussian and Laplacian filters that resulted
in largest L1 norm.

4.2. Derivative Filters
Another commonly used class of filters are the derivatives
of a Gaussian function. They have 3 parameters, the or-
der of the spatial derivative in the x and y direction and the
scale of the Gaussian. Even order derivative filters are sym-
metric while odd order derivative filters are anti-symmetric.
The Fourier transform of a derivative filter is a polynomial
in u, v modulated by a Gaussian. It is straightforward to
show that the coefficients of a derivative of Gaussian are
such that G(u, v) = G(−u, v) for symmetric filters and
G(u, v) = −G(−u, v) for anti-symmetric filters. A reflec-
tion transformation preserves the coefficients of a symmet-
ric filter, thus f(u, v) = fa(u, v) + fb(u, v) and f ′(u, v) =
fa(u, v) + fb(−u, v). To handle anti-symmetric filters
an additional constraint is needed. For an anti-symmetric
derivative filter g we have g ∗f = g ∗fa(u, v)+g ∗fb(u, v)
and g ∗ f ′ = g ∗ fa(u, v) − g ∗ fb(−u, v). This causes a
change of sign in the odd moments, resulting in a reflected
histogram. However, if all of the odd moments are zero then
the histogram is symmetric and invariant to a reflection. By
theorem 4.2 imposing the constraint that either the u or v
frequencies of fb are odd forces the odd moments to zero.
Example patterns are shown in (c) and (d). For (c) the first
9 moments match and for (d) the first 39 moments match. A
total of 80 subband images are formed using derivative fil-
ters of all orders between 0 and 3 and each filter is applied
at scales σ = {1, 2, . . . , 8}. Again all histograms matched
within an L1 difference of 1 to 3 percent. The histogram
with the largest L1 norm and the histogram of the unfiltered
image are shown.

4.3. Gabor Filters
Gabor functions are a class of oriented filters and are ex-
tensively used in texture modeling. These functions come
in symmetric/anti-symmetric pairs where each pair is a co-
sine/sine wave modulated by a Gaussian function. The
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Fourier transform of a Gabor function is a Gaussian func-
tion centered at the frequency of the cosine/sine wave. A
bank of Gabor filters is usually designed to tile the fre-
quency plane with Gaussian functions occurring at regular
intervals in orientation and scale. Given a bank of Gabor
filters with orientations {θ1, θ2, . . .} and a spacing of ψ be-
tween consecutive orientations, the Fourier coefficients of
all of the filters at orientation θi will have the following
property

G(r cos θi+
ψ

2
, r sin θi+

ψ

2
) = G(r cos θi−ψ

2
, r sin θi−ψ

2
).

Therefore, if we define the frequencies of fb such that they
have the orientations {ψ/2, 5ψ/2, 9ψ/2, . . .} and R is a ro-
tation of angle ψ the coefficients of fb will be identical to
R(fb). An example of such a pattern is discussed in the
following subsection.

4.4. Combining Filters

Function pairs that share the same marginal statistics for
combinations of these filters also exist. The patterns derived
for derivative and Gabor filters also have the same distribu-
tions for rotationally symmetric filters. However, the trans-
formation R for derivative filters is a reflection which will
not satisfy the constraint on R for Gabor filters. But the rota-
tion for Gabor filters is also a reflection, thus the constraints
for Gabor filters imply the constraints for the symmetric
derivative filters. To satisfy the constraints for the anti-
symmetric derivative filters the odd frequency constraint
must be added to the Gabor filters. Figure (e) shows an ex-
ample of a pair of patterns that have been defined this way
for a bank of Gabor filters at orientations {0, π/6, π/3, . . .}.
The patterns only share the first 5 moments however they
still have nearly identical histograms. Each pattern has been
convolved with a total of 48 Gabor filters (6 orientations and
4 scales), 80 derivative filters and 16 rotationally symmetric
filters. The marginal densities of all 144 subband images
matched to within 6 percent. A sampling of the histograms
is shown in (e).

5. Summary and Conclusions
To summarize, we have shown the existence of a class of
patterns that even if Gaussian, Laplacian, derivative and Ga-
bor filters are applied at an infinite number different scales
the patterns will not be distinguishable from the marginal
statistics alone. The main implication of this result is that
some form of joint statistical information should be added if
we wish to have vision systems that can discriminate among
a class of patterns at least as large as those that are distinct
to a human observer. It seems that in order to avoid joint
statistics oriented filters tuned to very fine degrees would
have to be employed. Thus we are faced with the question
of efficiency. Clearly, the marginal statistics contain a large
amount of information about a visual pattern. We would
like to determine the minimal amount of joint statistical in-
formation that should be added.
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