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Abstract

Evaluating sums of multivariate Gaussians is a common
computational task in computer vision and pattern recogni-
tion, including in the general and powerful kernel density
estimation technique. The quadratic computational com-
plexity of the summation is a significant barrier to the scal-
ability of this algorithm to practical applications. The fast
Gauss transform (FGT) has successfully accelerated the
kernel density estimation to linear running time for low-
dimensional problems. Unfortunately, the cost of a di-
rect extension of the FGT to higher-dimensional problems
grows exponentially with dimension, making it impracti-
cal for dimensions above 3. We develop an improved fast
Gauss transform to efficiently estimate sums of Gaussians
in higher dimensions, where a new multivariate expansion
scheme and an adaptive space subdivision technique dra-
matically improve the performance. The improved FGT
has been applied to the mean shift algorithm achieving lin-
ear computational complexity. Experimental results demon-
strate the efficiency and effectiveness of our algorithm.

1 Introduction

In most computer vision and pattern recognition applica-
tions, the feature space is complex, noisy and rarely can be
described by the common parametric models [7], since the
forms of the underlying density functions are in general un-
known. In particular, data in high-dimensional feature space
becomes more sparse and scattered, making it much more
difficult to fit them with a single high-dimensional density
function. By contrast, without the assumption that the form
of the underlying densities are known, nonparametric den-
sity estimation techniques [22, 20] have been widely used
to analyze arbitrarily structured feature spaces.

The most widely studied and used nonparametric tech-
nique is kernel density estimation (KDE), first introduced
by Rosenblatt [22], then discussed in detail by Parzen [20]
and Cacoullos [3]. In this technique the density function
is estimated by a sum of kernel functions (typically Gaus-

sians) centered at the data points. A bandwidth associated
with the kernel function is chosen to control the smooth-
ness of the estimated densities. In general, more data points
allow a narrower bandwidth and a better density estimate.

Many approaches in computer vision and pattern recog-
nition use kernel density estimation, including support vec-
tor machines [23], M -estimation [18], normalized cut [24]
and mean shift analysis [5]. With enough samples, the ker-
nel density estimates provably converge to any arbitrary
density function. On the other hand, the number of samples
needed may be very large and much greater than would be
required for parametric models. Moreover, the demand for
large number of samples grows rapidly with the dimension
of the feature space. Given N source data points, the direct
evaluation of densities at M target points takes O(MN)
time. The large dataset also leads to severe requirements
for computational time and/or storage.

Various methods have been proposed to make the pro-
cess of kernel density estimation more efficient. The exist-
ing approaches can be roughly divided into two categories.
One is based on the k-nearest neighbor searching, where
spatial data structures and/or branch and bound are em-
ployed to achieve the computational saving [21, 6, 10, 19].
One is based on the fast Fourier transform (FFT) for eval-
uating density estimates on gridded data which, however,
are unavailable for most applications [25]. Recently the fast
multipole method (FMM) and fast Gauss transform (FGT)
have been used to reduce the computational time of kernel
density estimation to O(M + N) time, where the data are
not necessarily on grids [15, 8].

As faster computers and better video cameras become
cheaper, the collection of sufficient data is becoming pos-
sible, which results in a steady increase in the size of the
dataset and the number of the features. Unfortunately the
existing approaches including the fast Gauss transform suf-
fer from the curse of dimensionality. The complexity of
computation and storage of the FGT grows exponentially
with dimension. In this paper, we proposed an improved
fast Gauss transform (IFGT) to efficiently evaluate the sum
of Gaussians in higher dimensions. By higher dimensions,
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we mean dimensions up to ten. Such high dimensional
spaces are commonly used in many applications such as in
video sequence analysis and eigenspace based approaches.
We also show how the IFGT can be applied to the ker-
nel density estimation. Specifically the mean shift algo-
rithm [11, 4, 5] is chosen as a case study for the IFGT.
The mean shift algorithm is based on the KDE and re-
cently rediscovered as a robust clustering method. How-
ever, the mean shift algorithm suffers from the quadratic
computational complexity, especially in higher dimensions.
The proposed IFGT successfully reduced the computational
complexity into linear time.

2 FMM and FGT
The fast Gauss transform introduced by Greengard and

Strain [15, 26] is an important variant of the more general
fast multipole method [13, 16]. Originally the FMM was
developed for the fast summation of potential fields gener-
ated by a large number of sources, such as those arising in
gravitational or electrostatic potential problems in two or
three dimensions. Thereafter, this method was extended to
other potential problems, such as those arising in the so-
lution of the Helmholtz and Maxwell equations, those in
chemistry and interpolation of scattered data [16].

2.1 Fast Multipole Method
We briefly describe the FMM here. Consider the sum

v(yj) =
N∑

i=1

uiφi(yj), j = 1, . . . , M. (1)

Direct evaluation requires O(MN) operations. In the
FMM, we assume that the functions φi can be expanded
in multipole (singular) series and local (regular) series that
are centered at locations x∗ and y∗ as follows:

φ(y) =
p−1∑
n=0

bn(x∗)Sn (y − x∗) + ε(p), (2)

φ(y) =
p−1∑
n=0

an(y∗)Rn (y − y∗) + ε(p), (3)

where Sn and Rn respectively are multipole (singular) and
local (regular) basis functions, x∗ and y∗ are expansion cen-
ters, an, bn are the expansion coefficients, and ε is the error
introduced by truncating a possibly infinite series after p
terms. The operation reduction trick of the FMM relies on
expressing the sum (1) using the series expansions (2) and
(3). Then the reexpansion for (3) is:

v(yj) =
N∑

i=1

uiφi(yj) =
N∑

i=1

ui

p−1∑
n=0

cniRn (yj − x∗) , (4)

for j = 1, . . . ,M . A similar expression can be obtained for
(2). Consolidating the N series into one p term series, by

rearranging the order of summations, we get

v(yj) =
p−1∑
n=0

[
N∑

i=1

uicni

]
Rn (yj − x∗) =

p−1∑
n=0

CnRn (yj − x∗) .

(5)
The single consolidated p term series (5) can be evaluated at
all the M evaluation points. The total number of operations
required is then O(Mp + Np) � O(Np) for N ∼ M . The
truncation number p depends on the desired accuracy alone,
and is independent of M , N .

The functions φi in the FMM are not valid over the
whole domain. So the singular expansions (2) are gener-
ated around clusters of sources. In a fine-to-coarse pass,
the generated coefficients are translated into coarser level
singular expansions through a tree data structure by “trans-
lation” operators. In a coarse-to-fine pass, the coefficients
of the singular expansions at coarser level are converted via
a sequence of translations to coefficients of regular expan-
sions at finer levels, then evaluated at each evaluation point.

2.2 Fast Gauss Transform
The fast Gauss transform was introduced in [15] for effi-

cient computation of the weighted sum of Gaussians

G(yj) =
N∑

i=1

qi e−‖yj−xi‖2/h2
(6)

where qi are the weight coefficients, {xi}i=1,...,N are
the centers of the Gaussians (called “sources”), h is the
bandwidth parameter of the Gaussians. The sum of
the Gaussians is evaluated at each of the “target” points
{yj}j=1,...,M . Direct evaluation of the sum at M target
points due to N sources requires O(MN) operations.

The original FGT directly applies the FMM idea by us-
ing the following expansions for the Gaussian:

e−‖y−xi‖2/h2
=

p−1∑
n=0

1
n!

(
xi − x∗

h

)n

hn

(
y − x∗

h

)
+ ε(p),

(7)

e−‖y−xi‖2/h2
=

p−1∑
n=0

1
n!

hn

(
xi − y∗

h

) (
y − y∗

h

)n

+ ε(p),

(8)

where the Hermite functions hn(x) are defined by

hn(x) = (−1)n dn

dxn

(
e−x2

)
.

The two expansions (7) and (8) are identical, except that
the arguments of the Hermite functions and the monomi-
als (Taylor series) are flipped. The first is used as the
counterpart of the multipole expansion, while the second
is used as the local expansion. The FGT then uses these
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expansions and applies the FMM mechanism to achieve its
speedup. Conversion of a Hermite series into a Taylor se-
ries is achieved via a translation operation. The error bound
estimate given by Greengard and Strain [15] is incorrect,
and a new and more complicated error bound estimate was
presented in [1].

The extension to higher dimensions was done by treating
the multivariate Gaussian as a product of univariate Gaus-
sians, applying the series factorizations (7) and (8) to each
dimension. For convenience’s sake, we adopt the multi-
index notation of the original FGT papers [15]. A multi-
index α = (α1, . . . , αd) is a d-tuple of nonnegative inte-
gers. For any multi-index α ∈ Nd and any x ∈ Rd, we
have the monomial

xα = xα1
1 xα2

2 · · ·xαd

d .

The length and the factorial of α are defined as

|α| = α1 + α2 + . . . + αd, α! = α1!α2! · · ·αd!.

The multidimensional Hermite functions are defined by

hα(x) = hα1(x1)hα2(x2) · · ·hαd
(xd).

The sum (6) is then equal to the Hermite expansion about
center x∗:

G(yj) =
∑
α≥0

Cαhα

(
yj − x∗

h

)
, (9)

where the coefficients Cα are given by

Cα =
1
α!

N∑
i=1

qi

(
xi − x∗

h

)α

. (10)

The FGT in higher dimensions is then just an accumu-
lation of the product of the Hermite expansions along each
dimension. If we truncate each of the Hermite series after
p terms (or equivalently order p − 1), then each of the co-
efficients Cα is a d-dimensional matrix with pd terms. The
total computational complexity for a single Hermite expan-
sion is O((M + N)pd). The factor O(pd) grows exponen-
tially as the dimensionality d increases. Despite this defect
in higher dimensions, the FGT is quite effective for two and
three-dimensional problems, and has already achieved suc-
cess in some physics, computer vision and pattern recogni-
tion problems [14, 8].

Another serious defect of the original FGT is the use of
the box data structure. The original FGT subdivides the
space into boxes using a uniform mesh. However, such
a simple space subdivision scheme is not appropriate in
higher dimensions, especially in applications where the data
might be clustered on low dimensional manifolds. First
of all, it may generate too many boxes (largely empty) in

higher dimensions to store and manipulate. Suppose the
unit box in 10 dimensional space is divided into tenths along
each dimension, there are 1010 boxes which may cause trou-
ble in storage and waste time on processing empty boxes.
Secondly, and more importantly, having so many boxes
makes it more difficult for searching nonempty neighbor
boxes. Finally, and most importantly the worst property of
this scheme is that the ratio of volume of the hypercube to
that of the inscribed sphere grows exponentially with di-
mension. In other words, the points have a high probability
of falling into the area inside the box and outside the sphere.
The truncation error of the above Hermite expansions (7)
and (8) are much larger near the boundary than near the ex-
pansion center, which will bring large truncation errors on
most of the points.

In brief, the original FGT suffers from the following two
defects that are the motivation behind this paper:

1. The exponential growth of complexity with dimen-
sionality.

2. The use of the box data structure in the FMM is ineffi-
cient in higher dimensions.

3 Improved Fast Gauss Transform
3.1 A Different Factorization

The defects listed above can be thought as a result of
applying the FMM methodology to the FGT blindly. As
shown in section 2, the FMM was developed for singular
potential functions whose forces are long-ranged and nons-
mooth (at least locally), hence it is necessary to make use of
the tree data structures, multipole expansions, local expan-
sions and translation operators. In contrast, the Gaussian is
far from singular — it is infinitely differentiable! There is
no need to perform the multipole expansions which account
for the far-field contributions. Instead we present a sim-
ple new factorization and space subdivision scheme for the
FGT. The new approach is based on the fact that the Gaus-
sian, especially in higher dimensions, decays so rapidly that
the contributions outside of a certain radius can be safely
ignored.

Assuming we have N sources {xi} centered at x∗ and
M target points {yj}, we can rewrite the exponential term
as

e−‖yj−xi‖2/h2
= e−‖∆yj‖2/h2

e−‖∆xi‖2/h2
e2∆yj ·∆xi/h2

,
(11)

where ∆yj = yj − x∗,∆xi = xi − x∗. In expression (11)
the first two exponential terms can be evaluated individually
at either the source points or the target points. The only
problem left is to evaluate the last term where sources and
target coordinates are entangled. One way of breaking the
entanglement is to expand it into the series

e2∆yj ·∆xi/h2
=

∞∑
n=0

Φn(∆yj)Ψn(∆xi), (12)
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where Φn and Ψn are the expansion functions and will
be defined in the next section. Denoting φ(∆yj) =
e−‖∆yj‖2/h2

, ψ(∆xi) = e−‖∆xi‖2/h2
, we can rewrite the

sum (6) as

G(yj) =
N∑

i=1

qjφ(∆yj)ψ(∆xi)
∞∑

n=0

Φn(∆yj)Ψn(∆xi).

(13)
If the infinite series (12) absolutely converges, we can

truncate it after p terms so as to obtain a desired precision.
Exchanging the summations in (13), we obtain

G(yj) = φ(∆yj)
p−1∑
n=0

CnΦn(∆yj) + ε(p), (14)

Cn =
N∑

i=1

qiψ(∆xi)Ψn(∆xi). (15)

The factorization (14) is the basis of our algorithm. In
the following sections, we will discuss how to implement it
in an efficient way.

3.2 Multivariate Taylor Expansions
The key issue to speed up the FGT is to reduce the factor

pd in the computational complexity. The factor pd arises
from the way that the multivariate Gaussian is treated as
the product of univariate Gaussian functions and expanded
along each dimension. To reduce this factor, we treat the
dot product in (12) as a scalar variable and expand it via
the Taylor expansion. The expansion functions Φ and Ψ are
expressed as multivariate polynomials.

We denote by Πd
n the space of all real polynomials in d

variables of total degree less than or equal to n; its dimen-
sionality is rnd =

(
n+d

d

)
. To store, manipulate and evalu-

ate the multivariate polynomials, we consider the monomial
representation of polynomials. A polynomial p ∈ Πd

n can
be written as

p(x) =
∑
|α|≤n

Cαxα, Cα ∈ R. (16)

It is computationally convenient and efficient to stack all
the coefficients into a vector. To store all the rnd coefficients
Cα in a vector of length rnd, we sort the coefficient terms
according to Graded lexicographic order. “Graded” refers
to the fact that the total degree |α| is the main criterion.
Graded lexicographic ordering means that the multi-indices
are arranged as

(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1),
(2, 0, . . . , 0), (1, 1, . . . , 0), . . . , (0, 0, . . . , 2), . . . , (0, 0, . . . , n).

The power of the dot product of two vectors x and y can
be expanded into multivariate polynomial:

(x · y)n =
∑
|α|=n

(
n

α

)
xαyα, (17)

1

↓ a ↓ b ↓ c

a b c

↓ a ↓ b ↓ c

a2 ab ac b2 bc c2

↓ a ↓ b ↓ c

a3 a2b a2c ab2 abc ac2 b3 b2c bc2 c3

Figure 1: Efficient expansion of the multivariate polynomials.
The arrows point to the leading terms.

where
(

n
α

)
= n!

α1!···αd! are the multinomial coefficients. So
we have the following multivariate Taylor expansion of the
Gaussian functions:

e2x·y =
∑
α≥0

2|α|

α!
xαyα. (18)

From Eqs.(11), (14) and (18), the weighted sum of Gaus-
sians (6) can be expressed as a multivariate Taylor expan-
sions about center x∗:

G(yj) =
∑
α≥0

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α

, (19)

where the coefficients Cα are given by

Cα =
2|α|

α!

N∑
i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

. (20)

If we truncate the series after total degree p − 1, the
number of the terms rp−1,d =

(
p+d−1

d

)
is much less than

pd in higher dimensions (as shown in Table 1). For in-
stance, when d = 12 and p = 10, the original FGT needs
1012 terms, the multivariate Taylor expansion needs only
293930. For d −→ ∞ and moderate p, the number of terms
becomes O(dp), a substantial reduction.

One of the benefits of the graded lexicographic order is
that the expansion of multivariate polynomials can be com-
puted efficiently. For a d-variate polynomial of order n, we
can store all terms in a vector of length rnd. Starting from
the order zero term (constant 1), we take the following steps
recursively. Assume we have already evaluated terms of or-
der k − 1. Then terms of order k can be obtained by mul-
tiplying each of the d variables with all the terms between
the variable’s leading term and the end, as shown in the Fig-
ure 1. The required storage is rnd and the computations of
the terms require rnd − 1 multiplications.

3.3 Spatial Data Structures
As discussed above, we need to subdivide space into

cells and collect the influence of the sources within each
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Table 1: Number of terms in d-variate Taylor expansion truncated after order p − 1.
p\d 1 2 3 4 5 6 7 8 9 10 11 12

4 4 10 20 35 56 84 120 165 220 286 364 455
5 5 15 35 70 126 210 330 495 715 1001 1365 1820
6 6 21 56 126 252 462 792 1287 2002 3003 4368 6188
7 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564
8 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388
9 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970

10 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930

cell. The influence on each target can be summarized from
its neighboring cells that lie within a certain radius from the
target. To efficiently subdivide the space, we need to devise
a scheme that adaptively subdivides the space according to
the distribution of points. It is also desirable to generate
cells as compact as possible.

Based on the above considerations, we model the space
subdivision task as a k-center problem, which is defined as
follows: given a set of n points and a predefined number
of the clusters k, find a partition of the points into clusters
S1, . . . , Sk, and also the cluster centers c1, . . . , ck, so as to
minimize the cost function — the maximum radius of clus-
ters:

max
i

max
v∈Si

‖v − ci‖.

The k-center problem is known to be NP -hard [2]. Gon-
zalez [12] proposed a very simple greedy algorithm, called
farthest-point clustering. Initially pick an arbitrary point v0

as the center of the first cluster and add it to the center set
C. Then for i = 1 to k do the follows: in iteration i, for
every point, compute its distance to the set C: di(v, C) =
minc∈C ‖v−c‖. Let vi be a point that is farthest away from
C, i.e., a point for which di(vi, C) = maxv di(v, C). Add
vi to set C. Report the points v0, v1, . . . , vk−1 as the cluster
centers. Each point is assigned to its nearest center.

Gonzalez [12] proved that farthest-point clustering is a 2-
approximation algorithm which computes a partition with
maximum radius at most twice the optimum. The proof
uses no geometry beyond the triangle inequity, so it hold
for any metric space. Hochbaum and Shmoys [17] proved
that the factor 2 cannot be improved unless P = NP . The
direct implementation of farthest-point clustering has run-
ning time O(nk). Feder and Greene [9] give a two-phase
algorithm with optimal running time O(n log k).

The predefined number of clusters k can be determined
as follows: run the farthest-point algorithm until the max-
imum radius of clusters decreases to a given distance. In
practice, the initial point has little influence on the final
radius of the approximation, if number of the points n is
sufficiently large. Figure 2 displays the results of farthest-
point algorithm. In two dimensions, the algorithm leads to
a Voronoi tessellation of the space. In three dimensions, the
partition boundary resembles the surface of a crystal.
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Figure 2: The farthest-point algorithm divides 40000 points into
64 clusters (with the centers indicated by the crosses) in 0.48 sec-
onds on a 900MHZ PIII PC. Left: 2 normal distributions; Right:
Uniform distribution.

3.4 The Algorithm
The improved fast Gauss transform consists of the fol-

lowing steps:
Step 1 Assign the N sources into K clusters using the

farthest-point clustering algorithm such that the radius is
less than hρx.

Step 2 Choose p sufficiently large such that the error es-
timate (24) in appendix is less than the desired precision ε.

Step 3 For each cluster Sk with center ck, compute the
coefficients given by the expression (20):

Ck
α =

2|α|

α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

.

Step 4 Repeat for each target yj , find its neighbor clus-
ters whose centers lie within the range hρy . Then the sum
of Gaussians (6) can be evaluated by the expression (19):

G(yj) =
∑

‖yj−ck‖≤hρy

∑
|α|<p

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

.

The amount of work required in step 1 is O(NK) (for
large K, we can use Feder and Greene’s O(N log K) algo-
rithm [9] instead). The amount of work required in step 3 is
of O(N rpd). The work required in step 4 is O(Mn rpd),
where n is the maximum number of the neighbor clusters
for each target. For most nonparametric statistics, computer
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vision and pattern recognition applications, the precision re-
quired is moderate, we can get small K and small rpd. Since
n ≤ K, the improved fast Gauss transform achieves linear
running time. The algorithm needs to store the K coeffi-
cients of size rpd, so the storage complexity is reduced to
O(Krpd).

4 Mean Shift Analysis with IFGT
Segmentation using the mean shift analysis is chosen as a

case study for the IFGT. Mean shift is a clustering technique
based on kernel density estimation, which is very effec-
tive and robust for the analysis of complex feature spaces.
The mean shift procedure employing a Gaussian kernel con-
verges to the stationary point following a smooth trajectory,
which is theoretically important for convergence [5]. In
practice, the quality of the results almost always improves
when the Gaussian kernel is employed. Despite its superior
performance, the Gaussian kernel is not as widely used in
mean shift as it should be. In part this may be due to the
high computational costs which we try to alleviate in the
paper.

Given n data points x1, . . . ,xn in the d-dimensional
space Rd, the kernel density estimator with kernel function
K(x) and a window bandwidth h, is given by [22, 20, 7]

f̂n(x) =
1

nhd

n∑
i=1

K

(
x − xi

h

)
, (21)

where the d-variate kernel K(x) is nonnegative and inte-
grates to one. The Gaussian kernel is a common choice.

The mean shift algorithm is a steepest ascent procedure
which requires estimation of the density gradient:

∇f̂h,K(x) =
2ck,d

nhd+2

n∑
i=1

(xi − x)g

(∥∥∥∥x − xi

h

∥∥∥∥
2
)

= ck,g f̂h,G(x)




∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) − x


 ,

(22)

where g(x) = −k′
N (x) = 1

2kN (x) which can in turn be
used as profile to define a Gaussian kernel G(x). The ker-
nel K(x) is called the shadow of G(x) [4]. Both have the
same expression. f̂h,G(x) is the density estimation with the
kernel G. ck,g is the normalization coefficient. The last term
is the mean shift

m(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) − x, (23)

which is proportional to the normalized density gradient and
always points toward the steepest ascent direction of the
function. The mean shift algorithm iteratively performs the
following two steps till it reaches the stationary point:

Table 2: Running times in milliseconds for direct evaluation, fast
Gauss transform and improved fast Gauss transform in three di-
mensions.

Case N = M Direct FGT IFGT

1 100 2.9 5.5 4.6
2 200 11.4 13.0 12.5
3 400 46.1 37.0 21.1
4 800 184.2 121.8 33.2
5 1600 740.3 446.0 68.1
6 3200 2976.2 1693.8 132.8
7 6400 17421.4 6704.3 263.0
8 12800 68970.2 26138.6 580.2
9 25600 271517.9 103880.8 1422.0

• Computation of the mean shift vector m(xk).
• Updating the current position xk+1 = xk + m(xk).
The numerator in expression (23) is a weighted sum of

Gaussians except that the weights are vectors. The denomi-
nator is a uniform weighted sum of Gaussians. So both can
be evaluated by the improved fast Gauss transform as d + 1
independent weighted sums of Gaussians. The computation
has been further reduced because they share the same space
subdivisions and series expansions.

5 Experimental Results
The first experiment compares the performance of our al-

gorithm with the original fast Gauss transform. Since there
is no practical fast Gauss transform in higher dimensions
available, we only make comparisons in three dimensions.
The sources and targets are uniformly distributed in a unit
cube. The weights of the sources are uniformly distributed
between 0 and 1. The bandwidth of the Gaussian is h = 0.2.
We set the relative error bound to 2% which is reasonable
for most kernel density estimation, because the estimated
density function itself is an approximation. Table 2 re-
ports the CPU times using direct evaluation, the original fast
Gauss transform (FGT) and the improved fast Gauss trans-
form (IFGT). All the algorithms are programmed in C++
and were run on a 900MHz PIII PC. We can find the running
time of the IFGT grows linearly as the number of sources
and targets increases, while the direct evaluation and the
original FGT grows quadratically, though it is lower than
the direct evaluation. The poor performance of the FGT
in 3D is also reported in [8]. This is probably due to the
fact that the number of boxes increases significantly by a
uniform space subdivision in 3D, which makes the cost to
compute the interactions between the boxes grow quadrati-
cally.

The second experiment is to examine the performance
of IFGT in higher dimensions. We randomly generate the
source and target points in a unit hypercube based on a uni-
form distribution. The weights of the sources are uniformly
distributed between 0 and 1. The bandwidth is set to h = 1.
The results are shown in Fig. 3. We compared the running

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

N

C
P

U
 ti

m
e

direct method, 4D
fast method, 4D
direct method, 6D
fast method, 6D
direct method, 8D
fast method, 8D
direct method, 10D
fast method, 10D

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

N

M
ax

 a
bs

 e
rr

or

4D
6D
8D
10D

Figure 3: The running times in seconds (Top) and maximum ab-
solute errors (Bottom) of the IFGT (h = 1) v.s. direct evaluation
in dimensions 4, 6, 8, 10.

time of the direct evaluation to the IFGT with h = 1 and
N = M = 100, . . . , 10000. The comparisons are per-
formed in dimensions from 4 to 10 and results in dimen-
sions 4, 6, 8, 10 are reported in Fig. 3. From the figure we
notice that the running time of the direct evaluation grows
quadratically with the size of points. The running time of
the IFGT grows linearly with the size of the points. In 4,
6, 8, 10 dimensions, the IFGT takes 56ms, 406ms, 619 ms,
1568ms to evaluate the sums on 10000 points. The maxi-
mum relative absolute error as defined in [15] increases with
the dimensionality but not with the number of points. The
worst error occurs in dimension 10, and is below 10−3. We
can see that for a 10-D problem involving more than 700
Gaussians, the IFGT is faster than direct evaluation, while
for a 4-D problem the IFGT is faster from almost the outset.

The third experiment is to apply the improved fast Gauss
transform to the mean shift algorithm. We first transform
the images to L*u*v* color space and normalize to a unit
cube. Then we apply the mean shift algorithm with h = 0.1
to all the points in the 3D color space. After 5 iterations, the
convergence points are grouped by a simple k-means algo-
rithm [7]. We do not perform any postprocessing procedure
as in [5]. The code is written in C++ with Matlab interfaces

Table 3: Image sizes v.s. the running time of the mean shift.
House Cooking Base Dive Zebra

Size 255x192 204x153 432x294 481x321
Time (s) 3.343 2.204 7.984 12.359

Figure 4: Segmentation results: (Right Column) The original im-
ages. (Left Column) Segmented images labelled with different
colors. (Top Row) House image. (Second Row) Cooking image.
(Third Row) Base Dive image. (Bottom Row) Zebra image.

and run on a 900MHz PIII PC. The results are shown in
Fig. 4. The running time of the mean shift in seconds and
the sizes of the images are shown in Table 3. The speed of
our implementation is at least as fast as any reported. We
find that the mean shift algorithm with the improved fast
Gauss transform already achieves clear boundaries without
any postprocessing. This is partly because that we apply
the mean shift algorithm to all feature points without sub-
sampling the feature space as in [5]. This leads to easily
distinguishable valleys in our estimated densities. Another
reason is that in our method the density evaluation at each
target point has contributions from a much larger neigh-
borhood because of the Gaussian kernel, which generates
a smoother and better density estimate.
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6 Conclusions
In this paper we present an improved fast Gauss trans-

form to speed up the summations of Gaussians in higher
dimensions. The success in acceleration of the FGT comes
from two innovations: the use of the farthest-point algo-
rithm to adaptively subdivide the high dimensional space,
and the use of a new multivariate Taylor expansion we de-
veloped to dramatically reduce the computational and stor-
age cost of the fast Gauss transform. The recursive compu-
tation of the multivariate Taylor expansion further reduces
the computational cost and necessary storage.

The improved fast Gauss transform is applied to speed
up the kernel density estimation which is the keystone for
many applications in computer vision and pattern recogni-
tion. The general and powerful feature space analysis tool
– the mean shift algorithm is chosen as a case study for the
IFGT. Using the IFGT, we achieved a linear running time
mean shift algorithm. Without using any heuristic vicinity
information between the points, the mean shift based image
segmentation achieve satisfactory results. In future work,
we will study the capability of the IFGT in applications such
as learning kernel classifiers (SVM), object tracking. We
also plan to combine the IFGT with other techniques [27] to
further improve the performance of mean shift algorithm.

Appendix: Error Bound of Improved FGT
The error due to the truncation of series (19) after order

p and the cutoff error the satisfies the bound

|E(y)| ≤ Q

(
2p

p!
ρp

xρp
y + e−ρ2

y

)
. (24)

where Q =
∑ |qj |.
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