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Abstract
An interesting and potentially useful vision/graphics task
is to render an input image in an enhanced form or also
in an unusual style; for example with increased sharpness
or with some artistic qualities. In previous work [10, 5],
researchers showed that by estimating the mapping from
an input image to a registered (aligned) image of the same
scene in a different style or resolution, the mapping could
be used to render a new input image in that style or res-
olution. Frequently a registered pair is not available, but
instead the user may have only a source image of an un-
related scene that contains the desired style. In this case,
the task of inferring the output image is much more diffi-
cult since the algorithm must both infer correspondences
between features in the input image and the source im-
age, and infer the unknown mapping between the images.
We describe a Bayesian technique for inferring the most
likely output image. The prior on the output image P (X )
is a patch-based Markov random field obtained from the
source image. The likelihood of the input P (Y|X ) is a
Bayesian network that can represent different rendering
styles. We describe a computationally efficient, probabilis-
tic inference and learning algorithm for inferring the most
likely output image and learning the rendering style. We
also show that current techniques for image restoration or
reconstruction proposed in the vision literature (e.g., im-
age super-resolution or de-noising) and image-based non-
photorealistic rendering could be seen as special cases of
our model. We demonstrate our technique using several
tasks, including rendering a photograph in the artistic style
of an unrelated scene, de-noising, and texture transfer.

1 Introduction and Related Work
We pursue a formal method for modifying image statistics
while maintaining image content. By appropriately manip-
ulating image statistics, one could for example, improve
image clarity or modify the image appearance into a more
convenient, preferable, or useful one. For instance, one ap-
plication of our approach is demonstrated in Fig. 1. We
use a known painting (top) to specify the attributes that we
would like to transfer to our input image (middle). Our
algorithm infers the latent image (bottom), which displays
the style specified by the painting.

Many fundamental problems in image processing are
specific cases of the above problem. In image de-noising
one seeks to remove unwanted noise from a given image to
achieve a visually clearer one. In image super-resolution,
given a low-resolution image, the goal is to estimate a high-
resolution version of that same image. More generally, in
image restoration we seek to discover what the original im-

Figure 1: Image µ, Starry Night by van Gogh, is used to specify
the source patches (top), input image Y (center), inferred latent
image X (bottom).
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age looked like before it underwent the effect of some un-
known (or partially known) process.

In this paper, we will maintain the scope of this prob-
lem general. Thus, we refer to our method as that of
image translation, suggesting a similar process to that of
language translation (despite their clear conceptual differ-
ences). Besides approaching the above restoration prob-
lems, our method allows, in general, to intervene in the
image properties. For example, one could try to increase
the image photorealism (e.g.,relative to an originally non-
photorealistic version) or change the artistic appearance of
images (e.g.,change a painting style into another).

A variety of recent and past research work have been
proposed to approach specific problems from those men-
tioned above, e.g.,[9, 26, 5, 10, 16, 23, 28, 24, 21]. From
these, our approach is most closely related to [5, 26, 9]
since the joint distribution of the latent image (i.e.,image
to be estimated) is represented as a Markov Random Field
(MRF) with pairwise potentials. However, there are signif-
icant differences, in our work (including the latent image
representation). The primary differences pertain to:

(1) the inclusion of unknown transformation functions
that relate (probabilistically) latent and observed image
patches. Thus, the joint distribution of the model is dif-
ferent from that of [5, 26, 9], where we can think of these
functions as known, as explained in Sec. 5. Moreover, here
we allow for multiple transformation functions. We also
show how these transformations can be estimated, instead
of assuming that they are given.

(2) the conditional probability distribution of a patch in
the latent image given a patch in the observed image can-
not be estimated directly. In our case this distribution is un-
known. In previous work, it was assumed that for training,
an original and modified version of the source or example
images were given (supervised learning). In our work we
drop this assumption, we only have patches from a source
image with different properties than the input image. This
difference is related to the first one, since knowledge of
the transformations would make this conditional probabil-
ity partially (or fully) known.

(3) the derivation of new algorithms for inference. The
estimation of new parameters, the use of different condi-
tional independence assumptions, and the incorporation of
new hidden random variables make estimation and infer-
ence a more complex task.

In the graphics literature, our approach is also related
to [10], in the area of non-photorealistic rendering (also
related to [3, 4]). In [10], a user presents two (source) im-
ages with the same content and aligned, but with two dif-
ferent styles. Given a new (input) image in one of the above
styles, the system then transforms it into a new image dis-
playing the other image style. A nearest neighbor algo-
rithm is then used to match image features/pixels locally
(similar to [3, 21]) and globally. Excellent results were
obtained using this method. However, full supervision is
required, since the user has to present two well aligned im-
ages displaying the desired relationship.

One common disadvantage of previous methods is that
frequently a registered image pair is not available, but in-
stead the user may only have the input image and also a
source image of an unrelated scene that contains the ap-
propriate style. In this case, the task of inferring the out-
put image is much more difficult, since the algorithm must
both infer correspondences between features in the input

image and the source image, and infer the unknown map-
ping between the images. We propose a novel approach to
solving this problem.

We formalize the problem and solution using a prob-
abilistic approach, in the context of graphical models
[20, 6]. The full joint distribution in our model is repre-
sented by a chain graph [15], a class of graph-represented
distributions that is a superset of Bayes networks and
Markov random fields [20]. In our chain graph, part of
the nodes are associated to image patches which are to be
inferred. Also, a set of patch transformations is used to en-
force consistency in the transformation used across the im-
age. These transformations are estimated by our algorithm,
thus enabling us to discover transformations that relate the
observed and estimated image.

We cast this problem into an approximate probabilistic
inference/learning problem and show how it can be ap-
proached using belief propagation and expectation maxi-
mization (EM). Our image translation method is also ap-
pealing because of its generality. Most of the above ap-
proaches for image reconstruction or transformation can
be seen as instances of the approach presented here, as will
be discussed later.

2 Image Translation as Probabilistic Infer-
ence

We will now introduce the image translation problem.
First, the problem is presented at an intuitive level. Despite
several simplifications, the simple description in this sec-
tion may become helpful later in the paper. We then make
these ideas more precise by introducing a formal mathe-
matical formulation.

2.1 Overview: Informal Problem Description
An intuitive way to summarize the image translation prob-
lem in the context proposed in this paper is to think of the
task of finding an image X that satisfies certain inter-patch
(e.g.,smoothness) and within-patch (e.g.,contrast) proper-
ties and that produces the observed image Y after every
patch undergoes one of several transformations.

In contrast with previous work, we do not want to as-
sume that we know in advance these patch transformations.
Also, we will most likely not be able to satisfy exactly all
the above properties for the new image X . Thus, we con-
sider a probabilistic approach where given an original im-
age Y , we try to construct a probable image X (1) which
is formed by taking sample patches from a patch data-set
(or dictionary), (2) whose patches are constrained to ap-
proximately satisfy certain local inter-patch properties, and
(3) whose patches are related to corresponding patches in
the original image Y by one or more unknown but lim-
ited patch transformations. We would also like to esti-
mate these patch transformations, the degree of certainty
we should have in these transformations for each patch,
and how probable a reconstructed image is with respect to
another, e.g.,a posterior marginal probability distribution
over X .

2.2 Definitions and Setup
We consider image representations based on a set of local,
possibly overlapping, patches defined simply as a set of
pixels. Let Y ∈ IY be an image formed by a set of patches
yp, with p ∈ P , P = {1, .., P} and yp ∈ �S . In this
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paper,S is the number of pixels in each patch (this assumes
one real value per pixel; however S could also account for
representations using multiple channels) 1. We will call Y
the input or observed image. Consider also a latent image
X ∈ IX , with patches xp ∈ �T ; X will be the image to be
estimated, and therefore it is unknown.

Let µ ∈ IX denote a known image (or concatenation of
images), here simply referred to as the source or dictionary
image. Assume that the set of patches in µ are a represen-
tative sample which possesses the patch statistics that we
wish X to display.

Consider a set of patch transformations (i.e.,patch trans-
lators) Λ = {Λl}l={1,...,L}, where Λl : �S → �T . In
our model, the task of a single Λl is to transform a latent
patch into an observed patch. These transformations are
initially unknown, and we will try to estimate them. Es-
timating them intuitively accounts for discovering the set
of ’painters’ (or styles) that were used to paint image Y
from an image X (note that we would like to achieve the
inverse process). There can be multiple painters, perhaps
each of them specializing in a particular image transfor-
mation. The finite random variable lp will represent the
index of the transformation employed to transform patch
xp; l = (l1, ..., lP ) is thus the vector with the indices of the
patch transformations for every patch in X .

We will consider another class of transformations, topo-
logical transformations, that can perform, for example,
horizontal and vertical patch translation. These will be
used as follows: a patch from µwill be moved horizontally
and vertically to be positioned at a new location in image
X . This class of 2D transformations (2D translations) are
defined to be the finite set of sparse permutation matrices
Γ, in a manner similar to [7]. In our case, each element is
a matrix Γk of dimensions S × |µ|, with |µ| the number of
pixels in the dictionary image µ. Thus, for simplicity, in
the future the dictionary image µ is represented as a long
1D vector formed by stacking all the patches. We then re-
strict Γk to be a binary sparse permutation matrix of the
form: [

0 ... 0 1 0 0 0 ... 0
0 ... 0 0 1 0 0 ... 0
0 ... 0 0 0 1 0 ... 0

]
, (1)

which only accounts for copying and translating a group
of neighboring pixels by an integer number of pixels hori-
zontally and vertically. This restriction is not necessary, it
is straightforward to consider other classes of transforma-
tions such as rotation or shearing, using the same represen-
tation. We use the random variable t to denote the t − th
element of the set Γ, and t = (t1, ..., tP ) to represent the
topological transformations for all patches in the image.

2.3 Probabilistic Model
We defined our model to have joint probability distribu-
tion represented by the chain graph of Fig. 2, which can
be factorized as the product of local conditional prob-
abilities associated with the directed edges and positive
potential functions associated with the undirected edges
[15, 20, 6, 14]:

p(Y,X , l, t|Γ,Θ, µ) =
∏
p∈P

p(yp|lp, tp,Γ,Θ, µ)

1In general, yp does not have to represent pixels, but for example,
filter responses
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Figure 2: Chain graph representing the model joint probability
distribution.

∏
p∈P

P (tp|xp)
∏
p∈P

P (lp)
1
Z

∏
c∈C

ψc(xp∈c), (2)

with {c ∈ C} denoting the set of latent image patches that
belong to clique c in the MRF at the upper layer in Fig. 2, C
the set of cliques in the MRF sub-graph, and ψc the clique
potential functions.

In this paper, every image patch yp follows a Gaussian
distribution given the patch transformation index lp and the
topological transformation tp, with the conditional inde-
pendence properties as shown in the graph in Fig. 3:

p(yp|lp, tp,Γ,Θ, µ) = N (yp; Λlp(Γtpµ),Ψp), (3)

where Θ = {Λ,Ψ} is used to succinctly denote the distri-
bution parameters and Ψ = {Ψp}p∈P . This is represented
in Fig. 3, a sub-graph taken from the full graph in Fig. 2,
representing local conditional independences for each ob-
served image patch. For this paper, we set Λi to be a linear
transformation2. This is not a restriction of our framework,
it may be advantageous to also allow non-linear transfor-
mations and they could also be incorporated. However,
even with linear transformations, the probabilistic model
as a whole is non-linear.

In our case, we consider p(x) to be a pairwise MRF, thus
every clique c only contains two patches c1 and c2. Thus
we simply have:

ψ(xc) ∝ ed(xc1 ,xc2)/2σ2
(4)

We will define d as a square distance function; thus ψ de-
fines a Gaussian MRF. However, d is computed only on
overlapping areas in the associated patches, in a way simi-
lar to [5].

In order to link our discrete transformation random vari-
able with the continuous latent random variable X , we use
the deterministic relationship:

p(tp|xp) =
{

1 if xp = Γtpµ
0 otherwise. (5)

2Since the inferred patches are not the result of a linear function of
the observed image patches, this is different than simply transforming the
image patches linearly. Instead, by this we are imposing a constraint on
the flexibility that each of the L transformations is allowed to have.
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Figure 3: Sub-graph representing local conditional indepen-
dences for each observed image patch. The variable µ is fixed
for all patches and it is usually given in the form of the source
image(s).

This is equivalent to saying that a transformation tp will
have conditional probability one, only if its patch xp is
equal to the patch taken from the dictionary µ using trans-
formation tp (here we assume that the set Γ is such that it
produces unique patches).

3 Algorithms for Learning/Inference
Let us analyze the system associated to the chain graph in
Fig. 2. First we can see that it contains an undirected sub-
graph with loops. Even if all the model parameters Θ were
known 3, inference (computing the conditional distribution
over the image X , given the image Y) is still computation-
ally intractable in general (in the same way as MAP esti-
mation is). More specifically, this problem has complexity
O(|K||P|), with |K| the number of possible states that each
patch xp can take.

Learning the model parameters is also intractable, as can
be seen from computing the derivatives of Eq. 2 with re-
spect to the variables of interest. However, there exist ap-
proximation algorithms; one of them, based on alternat-
ing optimizations [1], is Expectation Maximization (EM).
EM requires computing posterior distributions over l and t,
that in turn requires computing conditional marginal dis-
tributions for each node of the undirected portion of our
chain graph. As we have seen, this is computationally in-
tractable. Thus, it seems the key problem is to compute
the conditional marginal distribution over the latent patches
xp. In the following section we explain how this is done
using an approximation.

Even though learning can be seen as an instance of in-
ference, we divide this section into (1) inferring the latent
image (usually referred to as inference) and (2) estimating
the model parameters (usually referred to as learning).

3.1 Inference and Approximate E-step
We assume the reader have some familiarity with the EM
algorithm (see e.g.,[18, 2]). The intractability of computing
the E-step exactly can be seen as follows. In our model, the
E-step is equivalent to computing the posterior:

P (l, t|Y) ∝
∫
X

∏
p∈P

p(yp|lp, tp)P (tp|xp)p(X )dX , (6)

but we cannot solve this integral; thus we are forced to find
an approximate way to perform the E-step.

Approximating observed patch conditional distribu-
tions. Let us say that Λl and Ψp have some value ( we
could initialize Λl and Ψp to a random matrix for each l
and p). Then, for every p and l, we can select the set Klp

3more importantly, if the transformation indices tp were known.

ofK most likely topological transformations given the dic-
tionary µ. This can be easily done for each patch and each
Λl once P (tp, lp|yp) (see below) is computed for every
topological transformation tp by taking those with high-
est probability per patch. This takes O(TL) probability
evaluations per patch. The approximation is necessary for
computational reasons and can be made as exact as desired.
This approximation was also used in a similar way in [5];
it accounts for cutting off the long tails of the joint distri-
bution P (tp, lp|yp) by ignoring very unlikely topological
transformations.

Using this succinct representation, we can then compute
an approximate E-step. This is equivalent to inferring the
image patches xp given the parameters so far estimated and
the current posterior distributions over tp. Note that (1)X is
conditionally independent of the rest of the model variables
given t and (2) we can compute the marginal-conditional
distributions over tp alone by simply using P (tp|yp) =∑

lp
P (tp, lp|yp).

Inferring the latent image. We have reduced our prob-
lem to that of inferring a distribution over the states of X
given a distribution over tp for all p. One way to perform
this computation is by performing loopy belief propagation
in the MRF for X to compute the posterior marginals over
each p(xp). Loopy belief propagation accounts for approx-
imating p(xp) by using the belief propagation message
passing updates mi→j [20] for several iterations, which in
our model can be formally written as follows:

mi→j(xj) =
∑

xi=si

P (xi|ti)ψij(xi,xj)
∏

k∈N (i)\j

mk→i(xi)

bi(xi) = P (xi|ti)
∏

k∈N (i)

mk→i(xi),

with N (i) the neighbors and si the candidates for xi.
In the absence of loops, these updates guarantee that

upon convergence the marginal probabilities p(xi|Y), ob-
tained by simply normalizing bi(xi), would be at least at a
local minimum of the corresponding Bethe free energy [27]
of the (conditional) MRF. The domain of xp is in practice
discrete since the probability distribution is concentrated
only at the candidate patches given by Klp. Thus, every
full iteration has complexity O(K2). With knowledge of
the (approximate) conditional marginals, the E-step from
Eq. 6 is then given by:

P (tp, lp|yp) ∝ p(xp)P (tp|xp)P (lp)p(yp|lp, tp). (7)

Once this is done, we can then perform the M-step (as ex-
plained next) and iterate the EM algorithm as usual. Even
though loopy belief propagation is not exact (clearly, since
this problem cannot be solved exactly) and not guaranteed
to converge, some recent work supports this approximation
[8, 13, 17]. Other approximations have also been suggested
(e.g.,[25, 12, 9]). In our case loopy belief propagation seem
to provide accurate posterior marginals for the experiments
performed next.

3.2 Learning the Translation Parameters
Once we performed the E-step, the M-step optimizes
the expected value of the model joint distribution under
P (tp, lp|yp) with respect to the model parameters Λl and
Ψp. This can be done by computing first derivatives, as
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in a MAP estimate setting. For linear transformation func-
tions, we can obtain a closed-form solution for the optimal
values of the parameters:

Λl =

∑
p

∑
tp
P (tp, lp|yp)yp(Γtpµ)�∑

p

∑
tp
P (tp, lp|yp)(Γtpµ)(Γtpµ)�

(8)

Ψp =
1
Zp

∑
tp

∑
lp

P (tp, lp|yp) (9)

(yp − Λlp(Γltµ))(yp − Λlp(Γltµ))�, (10)

with Zp =
∑

tp

∑
lp
P (tp, lp|yp).

For non-linear transformation functions, we need to use
non-linear function optimization, such as gradient meth-
ods. In any case, the gradient can be computed efficiently.

In summary, learning/inference can be done exactly
only up to inferring the marginal distribution of the latent
patches (a problem which is in NP). One way around this
problem is to approximate these marginal distributions and
use them to update the model parameters.

4 Experimental Results
We illustrate the image translation method in diverse tasks.
Using our method, these tasks can all be seen as instances
of the same problem. In each task, between four and
seven transformations L were chosen. The dimension-
ality of the latent and observed image patches has been
reduced in dimensionality by 25% using Principal Com-
ponent Analysis. This is mainly of numerical concern
since even a 20 × 20 patch will generate a vector of di-
mensionality 400, for which it is hard to compute statis-
tics using finite precision computations and small datasets.
All the patches considered in these experiments are square
patches. The overlap between neighboring patches used in
Eq. 4 to compute the clique potentials is set to four pix-
els deep. We use the luminance value (from the YIQ color
space) as our representation for each pixel (instead of its
RGB values) [10]. For color images, the color compo-
nents (IQ) are then simply copied to the final estimated im-
age. Most images can be (much) better perceived directly
from the computer screen due to resolution / space limita-
tions (these and more tests are also available at http://
www.psi.toronto.edu).

4.1 De-blurring / De-noising
In our first experiment, we strongly down-sampled a pho-
tographic image as seen in Fig. 4(left). This will be our ob-
served image Y . We used four transformations and 15×15
patches for both observed and latent image. Our goal is to
obtain a higher-resolution version of the observed image.
Thus, as our dictionary, we used photographic patches with
the desired resolution (female face photos). The result is
shown in Fig. 4(right). The system was able to infer the
high-resolution patches significantly well given the infor-
mation present in the considerably degraded input image
(also, see video for MAP estimates at each iteration). In
previous work’s experimental evaluation, it is rare to see
tests performed with this level of degradation in the input
image. Note that our model is meant to solve the more gen-
eral task of learning arbitrary convolution kernels i.e.,not
just de-blurring kernel.

Figure 4: Input image (left) and inferred image (MAP)(right).

Figure 5: Source line art examples: engraving from Gus-
tave Doré’s illustrations of Don Quixote, stippling by Claudia
Nice[19], and Cupid [11].

4.2 Photo-to-Line-Art Translation
Now the goal is to make our input image acquire the line-
art attributes of an unrelated source image. For this task we
used patches of size 15 × 15 and L = 5. We chose three
source examples, shown in Fig. 5, and applied them to the
image in Fig. 6(left). The results show that our method is
suitable for performing this task also. On the positive side,
note that even larger scale properties are accurately dis-
played by the corresponding inferred images; this provides
excellent line consistency across the image. On the nega-
tive side, the algorithm has some difficulty in regions with
strong depth discontinuities, such as the outer face con-
tour, perhaps because it does not count with patches with
enough detail in the source image.

4.3 Photo-to-Paint Translation
We now apply renowned artistic styles to the input im-
ages. We use an image of a well-known painting by van
Gogh, shown in Fig. 1(top), as the image with the desired
attributes, and the photo in Fig. 1(center) as the input. We
used L=4 and a 30 × 30 patch size. The inferred image in
Fig. 1(bottom) inherited the local patch statistics and also
global features found in the source painting. We repeated
the experiment using the same painting but different input
image; results are shown in Fig. 7. This image also ac-
quired the source style. However, Lena’s eyes could not be
inferred with enough accuracy (or pleasing artistic detail),
perhaps also because of the lack of patches with the cor-
rect properties in the original painting. We also employed
paintings with different properties, on example is shown in
Fig. 8. In order to more carefully observe the details in the
image translation, zoomed-in areas of previous examples
are shown in Fig. 9.
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Figure 6: Input image Y (left) and inferred images using the three source line art example images in Fig. 5 (in same order)

Figure 8: Source image µ, Cistern in the Park at Chateau Noir by Cezanne (left), input image Y , shore photo by John Shaw[22] (center),
inferred image X (right).

5 Relation to Previous Methods

We now briefly compare our model with several relevant
approaches, proposed to solve more specific problems.
The model in [5], was proposed to perform image super-
resolution. Using our framework, this approach can be ob-
tained by (1) setting L = 1, i.e.,use only one transforma-
tion and (2) Λ1 equal to a fixed and known low-pass filter;
in [5] there is no need to estimate Λ because it is given. An-
other important difference is that the input to this algorithm
is different than the input to our algorithm. This model as-
sumes that there exist a set of image pairs for training. Each
pair consists of the high and the low resolution version of
an image (the low-res version can be simply generated us-
ing the low-pass filter transformation). Our algorithm does
not assume that we have access to these image pairs for
training, but that we only have access to one image with
the desired statistics. This a much more difficult computa-
tional and modeling task which also has important practi-
cal implications: it is more restrictive to have to find a pair
of perfectly aligned images, one with the desired statistics
(e.g.,style) and the other one obtained in the same mode as
the input image we hold.

The model presented in [10], proposed for non-
photorealistic rendering is also, like [5], a model where it
is assumed that there exist a set of image pairs for train-
ing, with the statistics of Y and X . Λ is not given, but in
the supervised approach taken in this work, Λ can be easily
found. More specifically, Λ is the equivalent of a nearest
neighbor algorithm, which is easy to compute (given the
training image pair). Large scale consistency was achieved

using also a nearest neighbor approach, which in our model
is equivalent to learning the distribution over X from our
sample images and using it to define the MRF energy func-
tion (i.e.,effectively replacing Eq. 4)

Inference in [9] can be seen as inference in our model
using only the MRF sub-graph, with observations yp di-
rectly linked to unobserved nodes xp. Also, instead of be-
lief propagation, in [9] Monte Carlo techniques were pro-
posed to infer the hidden state of the image patches xp.

6 Conclusions
The image translation approach proposed here provides a
general formalism for the analysis of a variety of problems
in image processing where the goal is to estimate an unob-
served image from another (observed) one. These include
a number of fundamental problems previously approached
using separate methods. In this sense, the image transla-
tion approach can be of practical and theoretical interest.
Several practical extensions are possible, for example in
the choice of a different approximate inference method, in
the choice of clique potential functions used in the MRF,
or in the form of the patch transformations. These changes
are likely to be application dependent, and can be easily
incorporated within the framework presented here.
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Figure 7: Input image Y (top), inferred latent image X (bottom).

Figure 9: Two zoomed-in translations from previous examples:
source image (real painting) (left) and inferred image (right); in-
put images (not shown here) were the example landscape photos.
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