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Abstract

Occlusions are commonplace in man-made and natu-
ral environments; they often result in photometric features
where a line terminates at an occluding boundary, resem-
bling a “T”. We show that the 2-D motion of such T-
junctions in multiple views carries non-trivial information
on the 3-D structure of the scene and its motion relative to
the camera. We show how the constraint among multiple
views of T-junctions can be used to reliably detect them and
differentiate them from ordinary point features. Finally, we
propose an integrated algorithm to recursively and causally
estimate structure and motion in the presence of T-junctions
along with other point-features.

1 Introduction

The term “T-junction” commonly refers to a point on the
image where a line segment terminates on another line, as
illustrated in Fig. 1. The significance of T-junctions is that

Figure 1. Examples of proper (left) and false (right)
T-junctions.

they often correspond to occlusions: the terminating seg-
ment lies on a surface in space that is occluded by another
surface, whose occluding boundary contributes to form the
“T” (Fig. 1 left). When this occurs we say that the T-
junction is proper. When this does not occur, and both line
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segments lie on the same surface in space, we have a false
T-junction, which is simply a radiance profile that happens
to resemble a “T” (Fig. 1 right).

In order to distinguish a proper T-junction from a false
one, one needs multiple views of the scene taken from dif-
ferent vantage points, as we describe in Sect. 1.2. Nev-
ertheless, most photometric feature detectors, for instance
the popular Harris’ corner detector [5], happily detect both
types because of the rich irradiance profile. While false T-
junctions do not cause any problem if fed to a multiple-view
geometry reconstruction algorithm (they are just ordinary
point features), proper T-junctions do not correspond to any
point physically attached to the (rigid) scene, and therefore
they adversely affect the estimate of the multiple-view ge-
ometry.

Traditionally, T-junctions are detected based on their
photometric signature and excised as outliers. This, how-
ever, presents two problems: first, detecting T-junctions
based on local photometry is unreliable, because true T-
junctions are defined based on their global geometric re-
lationship among multiple views. Second, discarding T-
junctions as outliers is tantamount to throwing away infor-
mation. In this paper, we show that T-junctions carry non-
trivial information on the structure of the scene and its mo-
tion relative to the camera, we propose algorithms to reli-
ably detect T-junctions based on their multiple-view geom-
etry, and we propose an integrated algorithm to recursively
and causally estimate structure and motion in the presence
of T-junctions along with other point-features.

1.1 Relation to prior work

Detection of T-junctions from one single image based
on local photometric information has been the subject of
numerous studies in the field of edge and contour detec-
tion. The interested reader can consult [13, 3, 14, 16] and
references therein. Our work, instead, addresses the role
of (proper) T-junction in multiple-view geometry: it is ex-
actly the difficulty in reliably detecting T-junctions in single
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images that motivates us to extend the analysis to multiple
images, where proper T-junctions can be detected and dif-
ferentiated from other features, including false T-junctions.

The analysis of binocular junction points was first in-
troduced by Malik [12]. More in general, detection of T-
junctions based on the local (instantaneous) motion was ad-
dressed in [2] based on a probabilistic model. We work in
a deterministic, wide-baseline, multiple-view scenario that
complements that of Black and Fleet [2]. Naturally, our
work relates on the expansive literature on multiple-view
geometry, which we cannot review in detail given the lim-
ited space. We refer the reader to the recent monographs
[4, 6] and references therein for an accurate account of re-
sults and credits. Recently, [1, 7] generalized the geometry
to points moving on lines. Matrix rank conditions have been
an effective tool to study the geometry of multiple views of
points and lines [17, 9, 15, 11]. This paper shows that the
same framework can be used to study T-junctions.

In this paper we first show that T-junctions carry non-
trivial information on the structure of the scene and its mo-
tion relative to the camera (Sect. 2). We then show how
the geometric constraints can be used to reliably detect T-
junctions based on their motion and geometry (Sect. 3).
Once we have unravelled the geometry of T-junctions, in
order to arrive at a robust, causal inference scheme to esti-
mate structure and motion, we implement a robust version
of the extended Kalman filter, as proposed by [10], in Sec-
tion 4.2, and document its performance in Section 5.

1.2 Notation and definition of T-junction

Consider two lines in space, {1 and /5, each represented
by a base point (a point on the line) X, X, € R3, and
a vector V1, Vo € TR?, such that £; = {X = X; +
pVi,p € R}, i = 1,2. In homogeneous coordinates, we
write X; = (X7 1]T e R*and V; = [V],0]T € R*, i =
1, 2. Note that points have a “1” appended, whereas vectors
have a “0”. We often forgo the bar in the homogeneous
coordinates when the dimension is clear from the context.

A “T-junction” is defined as a point on a plane that is
the intersection of the projection of two lines onto it (see
Figure 1). For perspective projection, a T-junction is repre-
sented by homogeneous coordinates = = [z,y,1]T € R3
that satisfy the following equation'

z ~I[X1 4 pVi] ~ [ X5 + V] (1)

for some p,v € R, where IT = [R,T] with®> T € R3 and
R € SO(3) for the case of calibrated geometry, otherwise
R € GL(3). In order to avoid trivial statements, we re-
quire that the two lines be non-intersecting (otherwise their

'We here use “~ to denote equality up to scale.
250(3) is the space of matrices that are orthogonal and with unit de-
terminant, i.e. SO(3) = {R|RRT = I,det(R) = 1}.
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intersection provides a trivial incidence relation), and non-
parallel (otherwise the T-junction degenerates to an entire
line). That is, we require that

GNl=0, VixVy#0] @)

where x denotes cross product between vectors.

Consider now a collection of m images of a scene taken
from different vantage points, and assume that one can es-
tablish the correspondence of a T-junction (represented by
the two lines ¢; and ¢5) among the different views. That is,
One can measure &1, s, . .., L,, € R? that satisfy

€Tr; ~ HZ[Xl + p,-Vl] ~ HZ[XQ + ’YiVQ], 1= 1, e, M
3)
where the structure of the scene, represented by
X1,X5,V1,Vy, and the motion of the camera II; =
[R;,T;] as well as the scales p;,~; are all unknown. The
first question that arises naturally is whether knowledge of
the T-junction measurements x; provide any useful infor-
mation on the unknown structure of the scene and its mo-
tion relative to the camera. This question is addressed in the
next section. In what follows % € R3*3 denotes the skew-
symmetric matrix defined by tv = u x v, Vu,v € R3.

2 Multiple-view geometry of T-junctions

In this section we show that the multiple-view con-
straints for a T-junction can be characterized by the rank
of a multiple-view matrix which has a special null space.
The rank of the matrix and its null space precisely distin-
guish a proper T-junction from regular point features (false
T-junction), either fixed or moving freely on a line.

2.1 Multiple-view rank conditionsfor T-junctions

The following claim unravels how the information on
scene structure and camera motion is related through multi-
ple images of T-junctions.

Lemmal Let x,...,x,, denote the position of a T-
junction in m distinct views, related by changes of coor-
dinates [R1,T1), ..., [Rm,Tm]. Let £1,¢5 be two lines
in space represented by {X;,V'1} and {X 1, V'2} respec-
tively, that satisfy the conditions (2). Define the following
matrix

iL‘{Rl iL‘{Tl R1

IR zITyR
w= | TP TR lerm. @
:chan wfnmem

Then we have that rank(1V) < 4.
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Proof: From equation (1) we have

T ~ RXl"‘pRVl—‘rT,
x ~ RXo+~yRVy+T.

Applying the hat operator on both sides, we get
# ~ RX:RT+pRV RT+T,
# ~ RX.RT +~RV,RT +T.

Multiply both sides of the equations by & on the left and
by R on the right

= wTij\l + ,owTR‘//\l + a:TfR,
= a:Tij\g + "Y:BTR‘//;\Q +2TTR.

Now multiplying V'; to the first equation and V5 to the
second we get

— 2TRX,V, +2TTRV,,
0 = 2TRX,V,+2TTRV,.

Obviously, since the following two vectors

o] -

are always in the null space of [z7 R, waR], then they
are in the null space of . Therefore, we have

rank(W) < 4.

If we choose the first camera frame to be the world frame,
[R1,T1] = [I,0], then the above matrix W simplifies to

xt 0
ngg ngQRQ
W = .
T T
TRy x, TR,

m

Multiplying on the right by the full rank matrix R%*"
x; x 0
[ 0 0 I } ©

we obtain the matrix W’/ € R™*7

xlx, 0 0
T T o Tm
, T Rgﬂfl Ty Rgml Ty T2R2
W' = . . (D
! Rz, I R,z1 xlT,R,

Note that the matrix ¥/’ has the same rank as W since we
multiplied it by a full rank matrix on the right. Therefore,

rank(W') < 4. (®)

Let us define the multiple-view matrix as the following sub-
matrix of W’

$§R2£1 $§T2R2

My = € Rm=Dx6" (g)

where the subscript “I"” indicates T-junction.

Theorem 2 Under the same conditions of Lemma 1, the m
images of a T-junction satisfy the following rank condition

rank(Mr) < 3. (10)

It is not difficult to see that
k2 MV
wonfi] o= [40),

for some A1, A2 € R are three linearly independent vectors
in the null space of M.

2.2 Redationsto other rank conditions

A T-junction can be viewed as the intermediate case be-
tween a fixed point as the intersection of two lines and a
point which can move freely on one straight line, as shown
in Figure 2. It is then reasonable to expect that the rank con-

V2 V2
V1 V1
X
X X1 Vi
X2

Figure 2. Left: A point X as the intersection of two
lines. Middle: A T-junction from two lines. Right: A
point that moves on oneline.

dition for the T-junction is related to those of the other two
cases. This is indeed true. Our derivation in the previous
section directly applies to the case when the point X moves
on only one line. In this case, we have

MV

Vi enull(Mr).  (12)

rank(Mr) < 4, with [

In the T-junction case, we have

MVl AV,
vy || Vs

rank(M7) < 3, with [ } € null(Mr).

13)

YF]',F.
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In the case when two lines intersect at a fixed point, we may
choose the base point for each line to be the intersection
X and then we have p = v = 0. This implies that the
derivation in the previous section holds for any vector V';
or V4 € R3. Therefore, in this case, we have

AV

rank(Mrp) < 2, with { [ v

} VYV € R?’} C null(Mr).

(14
This condition yields

Nl Ri@y + 2l TRV =0, VYV eR? (15)

fori =1,2,...,m. Note that R,z = R;x;R;, we obtain
the equation

Aol Rizy + 2l Ty =0, Vi (16)
This is equivalent to
)\@Rix1 + -’i\sz = 0, Vi. (17)

Therefore, the above condition (14) is equivalent to the
known rank condition for a fixed point

TRz xT;
x3Rzx,  x3T;

rank < 1. (18)

@Rmiﬁ :E'r\nTi

Notice that all the above constraints are non trivial. If we
take measurements of a point moving randomly in space,
the corresponding matrix M7 has in general® rank(Mr) <
5 (it cannot possibly have rank 6 because the vector U is
always in the kernel of Mr).

2.3 Constraints from the rank conditions for T-
junctions

What kind of constraints does the above rank condition
for a T-junction give rise to? The rank condition (10) re-
quires that any 4 x 4 minor of the matrix M has determi-
nant 0. It is easy to notice that any such a minor involves up
to 5 different images.

However, one should notice further that the nature of the
rank condition for a T-junction is different from the conven-
tional rank conditions studied in [11]. The rank conditions
themselves are only necessary but not sufficient for the m
images of a T-junction. The reason is because the null space
of the matrix Mr here needs to have the special structure
described in (11). From the equation

MpU, =0, 19)

3This is true up to a set (of measure zero) of degenerate camera mo-
tions.
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we obtain

nggilvl _ nggilvl _ _ w%RmﬁlVl
w2TT2R2V1 JingRng iL‘%TmRmvl
(20)

since the ratio is exactly ;. A similar set of equations can
be obtained from M7Us = 0. The above equations can
also be written in another way

forall 2 < i < j < m. Define*
Sij = §1R?$1$?ﬁRJ — R?ﬁ$1$?R]§1, S R3%3

the above equation is simplified to VITSile = 0. Simi-
larly, we have VgSij Vy=0.

In order to eliminate the two unknowns? in V'; and arrive
at expressions that do not depend on V';, we need three
independent equations of the form V{Sij V1 = 0 which
typically involve at least 5 images. This conforms to the
result that if a point is moving on a straight-line, 5 images
are needed in order to obtain effective constraints [1].

However, here a T-junction lies simultaneously on two
straight-lines and the equations

VI1S,;Vi=0, V385;Vy=0 (22)
usually are not totally unrelated. For instance, if we as-
sume® V’{VQ = (, there are only a total of three unknowns
in both V1 and V5. Then, we can use the following four
equations

VTSV, =0,
VISV, =0,

vIs,v,=o,
VIS Vy=0

to eliminate both V'; and V5. Obviously, the resulting con-
straint will only involve collections of 4 images.

2.4 Testingtherank constraints

In order to validate the analysis experimentally, we have
generated 6 views of T-junctions seen from a moving van-
tage point (Fig. 3). The plot on the right shows the numer-
ical value of the rank for each of the T-junctions, displayed
as a mean and standard deviation. As one can see, the nu-
merical rank - although not strictly equal to 3 due to noise in
feature localization - drops significantly beyond 3, and can
therefore be easily determined by thresholding techniques.
This experiment is shown only for illustrative purposes. We
do not propose using the rank condition “cold turkey” to es-
timate structure and motion, especially because real scenes

“Enforcing S;; = 0 leads to the well-known trilinear constraint.

S5Recall that the vector V1 is defined up to scale.

6In the case that a T-junction is caused by a pair of mutually orthogonal
lines.
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Figure 3. Verification of therank constraint. The plot
on the right shows the mean and standard deviation of
the 6 singular values. Notice that there is a drop after
the third singular value as expected from the multiple-
view matrix rank constraint. The last singular valueis
always zero by construction.

are rarely comprised entirely of T-junctions. Instead, we
wish to integrate the rank condition in a general multiple-
view inference scheme in order to exploit information com-
ing from the T-junctions rather than discarding them as out-
liers. We discuss this in the next sections.

3 T-junction detection

The results in section 2 can be used in a straightfor-
ward manner to classify point features into rigid points, T-
junctions and outliers. By using the filtering scheme de-
scribed below in the next sections, we assume that a suffi-
ciently large subset of the detected point features are ordi-
nary features or false T-junctions. Our procedure consists
in collecting measurements of features for 5 or more frames
with the corresponding estimated camera motions, and then
building the multiple-view matrix associated to each of the
features.

We classify a feature as outlier if the rank of the multiple-
view matrix is 5 or 4, as a T-junction if the rank is 3, and
as a rigid point if the rank is 2. Due to noise or degenerate
motions, the classification may be prone to errors. However,
this is not an issue in the proposed robust filtering scheme
(see section 4.2), since measurements that are not modeled
properly are detected as outliers and automatically weighted
accordingly.

Once T-junctions are detected, their structure can be re-
constructed from the constraints in eq. (21) by minimizing
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the following cost functionals:
- VTSMV1>2
Vi = argmin R Sl LS
' oW :Zm ( Ak

- 2
i . ( VJ&M)Q (vlTVQ

IVal? V2|l

1=2..m

(23)

where o € R is a tuning parameter. Notice that the sec-
ond minimization also forces the direction V5 to be transver-
sal to V1. We perform the minimization by using a simple
gradient descent technique. The estimated structure can be
used to initialize the structure and motion filter that we are

going to present in the next section.

4 Structureand motion estimation from mix-
turesof rigid featuresand T-junctions

We consider the (general) class of structure from motion
estimation algorithms that are divided into the following
two steps: (i) select and track feature points on the image
plane, and (ii) use the 2D trajectories of the tracked points
to infer both their structure and the camera motion. The ad-
vantage of splitting the task into these two steps resides in
considerably reducing the number of required computations
and in simplifying the design of each algorithm. However,
splitting the task into two steps has also some drawbacks.
In order to estimate camera motion, the second step needs
to have an a-priori model for structure. Therefore, when
we feed it with measurements that are not generated by the
same model, what we call outliers, the estimation process
can produce erratic results. Since a feature tracker is based
solely on matching the photometry of the features, and not
their 3D geometry, it has no way to detect these outliers.

As a solution to this problem, we propose to use a fil-
tering scheme that accounts for multiple structure models,
which will be introduced in section 4.1. To be able to select
the most appropriate model during the estimation process,
we work in the framework of robust Kalman filtering, which
will be presented in section 4.2.

4.1 Structure and motion representation

Camera motion is represented by a time-varying transla-
tion vector T'(t) € R3 and rotation matrix R(t) € SO(3).
Camera motions transform the coordinates of a point X
in space via R(t)X + T(t). Associated to each motion
there is a velocity, represented by a vector of linear velocity
V(t) and a skew-symmetric matrix &(t) of rotational ve-
locity. Under such a velocity, motion evolves according to
T+ 1) = *OT@) + V(t) ; Rt + 1) = “DR(t).
The exponential of a skew-symmetric matrix can be com-
puted using Rodrigues formula: e = I + “U:“j—” sin(||@]]) +

~2 ~ ~ . )
roz (1= cos([|&[]), ¥ [|&]] # 0, otherwise ¢” = 1.
As mentioned in previous sections, the measurements on

the image plane {x;};—1.,» may have been generated by

YF]',F.

COMPUTER
SOCIETY



points on a rigid structure, by T-junctions, or, more in gen-
eral, may be moving entirely independently of the scene.
We model a rigid point X € R? as the product of 2D
homogeneous coordinates * € R?® with a positive scalar
A E R+, i.e.
X =z (24)

This choice has the advantage that « can be measured di-
rectly on the image plane, and it leaves one with estimating
only the scalar \.

As the camera moves in time, the measurement equation
corresponding to a rigid point becomes:

2(t)A(t) = ()X (25)

where = «(0) and A = A\(0).
T-junctions are instead modeled by using the normalized
directions V; € R3 and V, € R3, and two points X; €
R3 and X, € R3 on the lines ¢; and /5 respectively. To
keep the representation minimal, instead of using any two
points on the lines, we take the ones that can be factorized as
the product of a measurement in homogeneous coordinates
x € R3 (the measurement at time 0) and two scalars 3; and
ﬂg, 1.€.
X1 = zh
X2 = zfs.

In this case we use the following measurement equation

(26)

(L) = ((R(t)Vl) x (R(t)xBy + T(1)) x

% (R()V) x (R(H)zfz +T(1)) ).
27
4.2 A robust Kalman filter implementation
We make the assumption that (both linear and rotational)
accelerations are a Brownian motion in time. This assump-
tion and the structure models in the previous section result
in the following state and measurements equations:

(28)
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)\i(t + 1) = )\l(t) Vi=1...Ng

Bri(t+1) = pii(t) Vi=1.Nr

Boi(t+1) = pai(t) Vi=1.Nr

Vii(t+1) = Vi,(t) Vi=1.Np

Voi(t+1) = Va,(t) Vi=1.Nr

T(t+1) = A7)+ V(t)

R(t+1) = “DR(1)

Vit+1l) = V() +ny

Wt+1) = wlt)+n

zot) = (ROZN+T()
Vi=1..Ng

2 = 7 ((ROV 1) x (RO 8L +T(0)) x

X (R(OV2) x (RO Bo +T(1)) )

Vi=1..Np

where 7 is the perspective projection defined as
(X1 X2 X3]T) = [§—; %]T Npg is the number of
rigid features and Np the number of T-junctions, so that
m = Ng+ Nr. (-)"9¢ denotes measurements of rigid point
features, while (-)7¢! denotes measurements of T-junctions.

To infer the state parameters, we implement a robust
EKF (extended Kalman filter) (see [10] for more details).
The main difference between the robust EKF and a tradi-
tional EKF is that the distribution of the state conditioned
over the measurements, usually modeled by a normal dis-
tribution, is considered contaminated by outliers. Thus, in-
stead of obtaining the MAP (maximum a posteriori) esti-
mate, we seek for the M-estimate of the state. Following
[8] (1981, p.71), we choose the “least informative” prob-
ability density and obtain that at each estimation step the
measurement covariance R,, = diag([r1 ...rap]) changes

as:
T o= n if led < ¢
{ _ el N Vi=1.2m (29)
r, = e 1 % >c

where e; is the innovation (i.e. the difference between the
actual measurement and the prediction of the measurement)
of the 7 — th measurement, m is the number of feature mea-
surements, n is the measurement noise variance (identical
for all points), and c is a constant threshold usually set to
1.5. In other words, the robust EKF detects an outlier by
testing the innovation. If the innovation is above a certain
threshold (which is tied to the maximum degree of contam-
ination of the normal distribution), the corresponding mea-
surement is weighted so that it does not affect the state esti-
mate.

The general structure and motion estimation scheme then
proceed as follows:

o Initialize the filter with N7 = 0 (i.e. no T-junctions
are modeled in the filter, but only rigid features)

e During motion estimation the robust scheme automat-
ically detects outliers and re-weights the measurement
covariance R,, accordingly, by using eq. (29)

e T-junctions are detected among the outliers as ex-
plained in section 3, and the corresponding state and
measurement equations are inserted in the filter.

5 Experiments

The purpose of this set of experiments is to show that
outliers need to be accounted for, as they have catastrophic
effects on the estimation process, and that T-junctions are
carriers of information, and rather than being discarded,
they should be exploited. To this aim, we implemented three
filters: one is the traditional EKF, where outliers are not ac-
counted for; the second is the robust EKF, where outliers are
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Translation (normalized with respect to structure)

o 50 100 150 250 300 350 400

200
Time instant

Rotation

1 L L L L L L
0 50 100 150 200 250 300 350 400
Time instant

Figure 4. Ground truth camera motion components
superimposed to the estimates of the three implementa-
tions. The evolution of the three components of tranda-
tion (normalized with respect to the structure) in time
is shown on the top figure, while the evolution of the
three components of the rotation are shown on the bot-
tom figure. Thetraditional EKF (dashed line) diverges
after 50 frames. The robust EKF (dotted) and the T-
junction EKF (dotted-dashed) are both very closetothe
ground truth as expected. To better appreciate the dif-
ference, we show their corresponding estimation error
in Figure5 and Figure6.

detected and re-weighted accordingly (i.e. “discarded”), but
where T-junctions are not explicitly modeled (i.e. Nt is al-
ways 0). The third is the T-junction EKF, which is as the
robust EKF, but where T-junctions are instead used in the
estimation process.

The synthetic scene is composed of 30 points of which
20 are rigid features, and 10 are T-junctions. The camera
rotates around the points, with center of rotation approxi-
mately on the center of mass of the structure (T-junctions
do not define a center of mass). We rescale both transla-
tion and structure by fixing the depth coordinate of one of
the rigid points to 1. In Figure 4 we show one instance of
the experiments performed for each of the implementations.
The true motion (translation and rotation) is superimposed
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Figure 5. Estimation error of camera translation for
arobust EKF (dotted) and the T-junction EKF (solid).
Weplot thenorm of theRM Serror for each timeinstant
and computethe RMSerror for the whole sequence. In
both caseswe can seethat the T-junctions EKF improves
the estimation of translation when compared to the ro-
bust EKF.

Forward Sideways Roto-
Translation | Translation | Translation
Translation 0.0082 0.0040 0.0039
error
Rotation 0.0042 0.0060 0.0045
error

Table 1. In the table we show the results for three ex-
periments: forward motion, sideways motion and roto-
trangdation motion. The trandation is normalized with
respect to the structure (we fixed the depth of a rigid
point to 1). The valuesin the table are the norm of the
repositioning error. The data set contains a mixture of
25 rigid points with 5 T-junctions, which leads a tradi-
tional EKF to divergence.

to the estimated motions of each of the filters. In particular,
the traditional EKF diverges almost immediately. Notice
that the camera motion estimated by both the robust EKF
and the T-junction EKF are very close to the ground truth
motion. To better appreciate the difference between these
two implementations, in Figure 5 we show in more detail
the estimation error on the translation for the robust EKF
(dotted) and the T-junction EKF (solid). Similarly, in Fig-
ure 6 we show in more detail the estimation error on the ro-
tation. We plot the norm of the error between the estimate
and the ground truth for each time instant. The RMS error
over the whole motion for the robust EKF is of 1.5 - 1073
for translation and of 1.5 - 10~2 for rotation, and for the T-
junctions EKF is of 6.2 - 1074 and 7.8 - 10~* respectively.
This shows that using T-junctions doubles the performance
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Robust EKF (RMS 1.49¢-003)
—— T-junction EKF (RMS 7.75¢-004)
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Figure 6. Estimation error of camera rotation for a
robust EKF (dotted) and the T-junction EKF (solid). We
plot the norm of the RMS error for each time instant
and computethe RMSerror for the whole sequence. In
both caseswe can seethat the T-junctionsEK F improves
the estimation of rotation when compared to the robust
EKF.

of the filter. Thus, we can conclude that measurements of
T-junctions are beneficial to the camera motion estimation
once they are properly modeled, and therefore should be
used rather than being discarded.

Unlike synthetic sequences, in real sequences we do not
have accurate ground truth available. In order to generate a
controlled experiment, we collect a sequence, and then play
it forward and backward in order to guarantee that through
the composite sequence the camera returns exactly at the
initial position. We then evaluate the repositioning error
(error in position and orientation of the camera relative to
T =0and R = I). We do so for 10 experiments with for-
ward translation, sideways translation, and roto-translation
about a fixed point in space. The results of these preliminary
experiments are summarized in Table 1 and show that our
algorithm is very promising for applications in uncontrolled
environments.
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6 Conclusions

T-junctions are commonplace in man-made and natural
environments, and cannot be distinguished from rigid fea-
tures only from their photometric information. On the one
hand, not accounting for T-junctions, may result in catas-
trophic consequences for camera motion estimation. As we
showed in this paper, T-junctions should not be discarded
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as outliers, as they carry non-trivial information on the 3-D
structure of the scene and its motion relative to the camera.
We analyzed T-junctions in the context of the multiple-view
geometry, defined the multiple-view matrix for T-junctions,
and derived the corresponding rank constraint. We showed
how the constraint among multiple views of T-junctions can
be used to reliably detect them and differentiate them from
ordinary point features. Finally, we proposed a scheme in
the framework of robust Kalman filtering to recursively and
causally estimate structure and motion in the presence of
T-junctions along with other point-features.
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