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Abstract

This paper describes a novel application of support vec-
tor machines and multiscale texture and color invariants
to a problem in biological oceanography: the identifica-
tion of 6 species of bivalve larvae. Our data consists of
polarized color images of scallop and other bivalve larvae
(between 2 and 17 days old) collected from the ocean by
a shipboard optical imaging system of our design. Lar-
vae of scallops, clams, and oysters are small (100 microns)
with few distinguishing features when observed under stan-
dard light microscopy. However, the use of polarized light
with a full wave retardation plate produces a vivid color,
bi-refringence pattern. The patterns display very subtle dif-
ferences between species, often not discernable to human
observers. We show that a soft-margin support vector ma-
chine with Gaussian RBF kernel is a good discriminator on
a feature set extracted from Gabor wavelet transforms and
color distribution angles of each image. By constraining
the Gabor center frequencies to be low, the resulting system
can attain classification accuracy in excess of 90% for ver-
tically oriented images, and in excess of 80% for randomly
oriented images.

1 Introduction

Identification of bivalve larvae such as clams, oysters, and
scallops is required to effectively manage these commer-
cially important shellfish resources. For years researchers
have searched for distinguishing, species-specific features
for identifying larvae. Although scanning electron mi-
croscopy (SEM) is regarded as the most reliable approach
for feature identification, the technique is very laborious re-
quiring days to process just a few larvae. The optical ap-
proach to larval identification described here lends itself to
non-destructive, rapid, flow-through optical systems where
hundreds of larvae could be identified in seconds. Our
imaging system has been put into use on research vessels,
where this approach facilitates our ability to map the abun-
dance and distribution of bivalve larvae in the world ocean

and allows us to make rapid predictions of where the ocean
currents will carry the larvae before settlement on the bot-
tom.

1.1 Biological background

Many bivalve mollusks produce planktonic larvae which
progress through a series of developmental stages before
settling to the bottom and taking up a benthic existence. The
larval shell is mineralized with aragonitic crystals which nu-
cleate and grow on an organic matrix. Crystal optical orien-
tation is controlled by protein organization within the ma-
trix. Under polarized light, the shell exhibits light extinction
where the optic axes of the two polarizing filters are normal
to one another demonstrating that crystal orientation is ar-
ranged radially around the location of nucleation.

With the addition of a full wave retardation plate, dis-
tinct colored patterns are produced as the polarized light
travels through the birefringent crystals, combines and can-
cels. Each color represents the degree of axial rotation of
the crystal at that location. Because the protein compli-
ment of the shell matrix is unique to given species, crys-
tal axial rotation and, therefore, the color pattern produced
under polarized light is also unique to that species. How-
ever, species-specificity in the color pattern is relatively sub-
tle thereby requiring sophisticated statistical approaches to
quantify differences.

1.2 The Approach

We characterize here bi-refringent spectral patterns for the
larvae of six species of bivalves: Argopecten irradians
(Bay Scallop) (Figure 1), Crassostrea Viginica (American
Oyster) (Figure 2), Mercenaria mercenaria (Hard-shelled
clam) (Figure 3), Mya arenaria (Sand gaper) (Figure 4),
Placopecten magellanicus (Sea Scallop) (Figure 5), and
Spisula solidissima (Atlantic surf Clam) (Figure 6). The in-
puts for our pattern recognition system are polarized color
images of the six species. Since the problem of species
recognition is complicated by the variation within a species,
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a good classifier has to have enough flexibility to accom-
modate this intra-species variation, while still working ef-
ficiently to capture inter-species variation. Our images are
so alike that trained marine biologists cannot identify them
with greater than 50% accuracy. In fact, since we cannot
independently identify larvae from the ocean with accu-
racy, specimens for the training set must be raised in mono-
cultures in the lab. Thus for us, an automated identification
system is not an aid (like in some bio-medical applications),
but an essential need. The performance of the classifier also
depends on how accurately the feature sets capture species-
related features. We show that a soft margin Support Vec-
tor Machine applied to feature sets constructed from Gabor
transforms and color angles of the images, performs this
task with classification accuracy of over 90% when the im-
ages are presented in a vertical orientation (as a result of
preprocessing) and over 80% when the images are presented
in random orientations. In the remainder of the paper, af-
ter reviewing related work in section 1.3, we describe Sup-
port Vector Machines (SVMs) in section 2. The texture fea-
tures, which are constructed from Gabor wavelet transforms
of different components of a color image, are described in
section 3 and the rotation-invariant features derived from
these follow in section 4. The color features, which use
the elegant construction of the color distribution angles, are
described in section 5. Finally, in section 6, we evaluate dif-
ferent SVM classifiers and different feature sets in the task
of discriminating the larval images by species.

1.3 Related Work

Support Vector Machines (SVMs) have a burgeoning liter-
ature: good introduction are [2], [19] and [8]. SVMs have
been successfully used in various visual pattern recognition
tasks, like object (specially, face) detection and recognition
and image retrieval: In [15] and [12] a trainable system for
object detection using SVMs is described. In [11] an appli-
cation to face detection is described; in [18] a view-based
object SVM recognition system is described; and in [1],
color and luminescence information is exploited for clas-
sifications with SVMs.

Gabor functions have a long history of work starting in
the 1940s. In [4], both this history and relations to areas of
mathematics (especially Weyl-Heisenberg Frames and the
Balian-Low Theorem) and applications are all explored. In
Texture segmentation, Gabor analysis has been in use since
the early 1980s: In [7], a polar, analytic form of a 2-D Gabor
wavelet is developed and a multiresolution family of these
wavelets is used to compute information-conserving micro
and macro features. In [10], the use of Gabor wavelet fea-
tures is proposed for content-based image retrieval. In [6],
a rotation-invariant texture classification is described using
Steerable Pyramids. In [16], another rotation-invariant tex-

ture classification method is described which is robust with
respect to noisy conditions. Various comparative analyses
between different multiscale texture segmentation schemes
have been made by: [13] and [17]. In [3], “IrisCode” is
constructed by demodulation of the iris pattern.

The color distribution angles are defined in [5] and
shown to capture important low-order statistical informa-
tion about color and edge distributions. The use of color-
angle based features in multiscale representation of natural
images has been further explored in [21]. The use of HSV
(Hue, Saturation, and Value) space to split an image into
chromatic and achromatic channels is explored in [9].

2 Support Vector Classification

Support Vector Machines (SVMs) create a function from a
set of labeled training data. The function can be a classifi-
cation function or a general regression function. SVMs are
capable of learning in high dimensional spaces with small
training set, which they accomplish by minimizing a bound
on the empirical error and the complexity of the classifier at
the same time [12]. For binary classification, given a pattern
space of inputs, SVMs operate by finding a hypersurface in
the space which attempts to split the positive examples from
the negative ones. The SVM algorithm formulates the train-
ing problem as one that finds, among all possible separating
hypersurfaces, the one that maximizes the distance between
the closest elements of the two classes (negative and posi-
tive). We give a more precise description below.

2.1 Binary Classification

For a given pattern space, �, suppose we are given labeled
training

� � ����� �������� � �� � �� �� � � � ��������
Suppose � � �

� , with the inherited inner product ��� ��.
Then, among all hyperplanes� (defined by: ����� � � �
�), separating the data, there exists a unique optimal hyper-
plane, distinguished by the maximum margin of separation
between any training point and the hyperplane. It is the so-
lution of:

������	

���� ���

���� �
�

�
����

(where ����� is the width of the margin) subject to the
inequality constraints:

��������� � �� 	 � 
 � � �� � � ��� (1)

In practice, a separating hyperplane may not exist (for
example, because of a high noise level). To allow for the
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possibility of examples violating (1), one introduces slack
variables:

�� 	 � 
 � � �� � � � ��� (2)

which relax the constraints to:

��������� � �� 	 �� �� 
 � � �� � � � ��� (3)

The soft margin classifier is obtained by minimizing the
objective function:

���� �� �
�

�
���� � 	

��
���

��

subject to the constraints (2) and (3). Next, when the
pattern space� is not a subset of �� , the SVM constructs a
maximal margin linear classifier in a high dimensional fea-
ture space, ����, for a map 
  � ���, where � is a
Hilbert Space with inner product ��� ���. This is equivalent
to the existence of a positive semi-definite kernel function,
�������, defined on���, such that:

������������ � ��������

The function defining the decision hypersurface is given by:

���� �

�
��

���

�����������

�
� �� (4)

By eliminating the primal variables,� and �, one obtains
the dual optimization problem for the soft margin classifier:
find optimal coefficients, �, which maximize the functional,

� ��� �
��

���

�� � �

�

��
�����

����������������� (5)

subject to the constraints:

�  ��  	� � � �� � � � � �� (6)

and
��

���

���� � �� (7)

	 is a regularization parameter, controlling a compromise
between maximizing the margin and minimizing the num-
ber of training set errors.

Let �� � � ���� ���� � � � � ����, maximize the objective func-
tion given by equation 5. In general only a limited number
of Lagrange multipliers, ��, will have non-zero values. The
decision surface therefore only depends on a small number
of data points with non-zero ���; these data points are called
support vectors. For our classification problem, we utilize
two kernel functions: The Gaussian Radial Basis Function
(RBF) Kernel and the (nonhomogeneous) Polynomial Ker-
nel. The Gaussian RBF kernel is defined by:

������� � ��������
���� �

and the polynomial kernel is defined by:

������� � ������� � ����

2.2 Multi-class Classification and Training

The above theory is for binary classification problems. We
extend this to multi-class classification in the following
manner: Our multi-class scheme uses pairwise classifica-
tion, i.e. a 6-class classifier is constructed from � �
�� ��� � �� two-class classifiers. An input pattern is clas-
sified as belonging to the class receiving the largest number
of votes.

There are various ways to train SVMs. We use a simple
and fast method, the Sequential Minimal Optimization Al-
gorithm (or SMO). Training an SVM requires the solution
of a very large quadratic programming optimization prob-
lem. SMO breaks this large problem into a series of smallest
possible quadratic programming problems i.e. optimizing a
minimal subset of just two points at each iteration, which
can be solved analytically. We refer to [14] for details.

3 The Texture Feature Set

The texture feature set is constructed using the Gabor
wavelet transforms of the image calculated for a num-
ber of scales and orientations. We now describe this in
greater detail: A two-dimensional Gabor elementary func-
tion, ���� ��, is given by:

���� �� �
�

�����	

��

�����
�
������ � �����	

�
� �����

�
Its Fourier transform���� �� is given by:

���� �� � 
��
�����

�
��� ������
 � ������

��
where �
 � ������ and �� � �����	. Gabor func-
tions form a complete but nonorthogonal basis of �����,
the space of square-integrable functions. Gabor wavelets,
a class of self-similar functions, are obtained by appropri-
ate dilations and rotations of the mother wavelet ���� ��
through the generating function:

������ �� � �������� ���� � � �� �� �� �� �
�
�

�� � ����� ��� ��� ��� �� ��� �� � ������ ��� ��� ��� ��

where � � ���� and � is the total number of ori-
entations and ��� the scale factor. Since Gabor wavelets
are non-orthogonal, the redundancy is reduced by ensuring
that the half-peak magnitude support of the filter responses
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in the frequency distribution touch each other (in a non-
overlapping fashion). This condition gives an explicit for-
mula for the filter parameters in terms of the highest and
lowest center frequencies, and the total number of scales
and orientations (see [10]), in the manner described below.

Let   and � denote the highest and lowest center
frequencies. For scale parameter �, the lowest center fre-
quency, � is defined to be �

�� cycles per pixel. This value
is chosen so that the Gaussian smoothing window size cov-
ers at least one cycle of the lowest spatial frequency. In our
application the highest center frequency,   is set to �����
cycles per pixel. Let� be the number of orientations and !
be the number of scales in the multiresolution decomposi-
tion, then the optimal filter parameters �
 and �� (and thus
�� and �	) are given by:

� � � �� �
� �

��� � �
 �
��� �� 

��� ��
�

� ��� �

�� � ���
� �

��

�	
  � � ���

	
��

 



�
�� ����


 �

�����

�

where, � � � ��� �. Next, given a gray scale image
"��� �� its Gabor wavelet transform is then defined to be:

������ �� �


"���� ��������� ��� � � ���#��#��

The mean $�� and the standard deviation ��� of the
magnitude of the transform coefficients are used to repre-
sent the image.

$�� �

 
���������#�#� ���

��� �

� 
�������� ��� � $����#�#�

For a color image, one can define similar quantities in
both RGB space and HSV (Hue, Saturation, and Value)
space. In other words, one can define quantities: $���, $���,
$���, ����, ����, and ���� for each of the three RGB color
bands and similarly in HSV (Hue, Saturation, and Value)
space. We will refer to the first set as RGB Gabor Features
and the second as HSV Gabor Features. In the experiments,
we found four scales ! � � and eight orientations � � �,
to be optimal, resulting in (�� � � � �� features for each
color channel) a 192 dimensional feature space.

4. Rotation Invariance
Let ! be the number of scales and � the number of ori-
entations. Let $�� and ��� for � � �� � � � � ! and for

� � �� � � � ��, be the features defined above. We compute
the magnitudes of the Discrete Fourier Transforms of these
features to make them rotation invariant. In other words,
define rotation-invariant features, $����� for � � �� � � � � !
and for � � �� � � � � � � � where, � � ��

�
 � the greatest

integer less than ���, as follows:

$����� �
��� ��
���

$�� 
���� �����
�

�
���

Since circular translation or rotation does not affect the
magnitude of the Fourier Transform (but only the phase),
these features are rotation-invariant. Similarly one defines,
������ . As above, one defines these features for each of the
RGB (or HSV) color channels. The accuracy of these fea-
tures is dependent on the number of orientations, �. The
higher the �, the better the feature set. In section 6, we de-
scribe results obtained by chosing � � !�, (which makes
� � ��). Then for ! � �, we get � � �� � ��� values
each for $�� and ��� (for each color channel), producing
a ���� �� � � ���� dimensional feature space.

5 The Color Feature Set

The color features are constructed from the color distribu-
tion angles and the color edge distribution angles of [5],
which are defined as follows: Let the color image " be rep-
resented as an % � � matrix, " � �"�� "�� "� , where % is
the total number of pixels in the image and "�, "�, "�, the
three color channels. Let & be the column normalization
function. In other words,

&�"� � "'�

where the �th diagonal entry of the ��� diagonal matrix
'� is equal to the reciprocal of the length of the �th column
of " . For the RGB color space, the color distribution angles

��	�"� � �
��� 
��� 
��� � � � � � �, are defined by:


���"� � ()*����&�"��� &�"���� (8)

where,&�"�� denotes the �th column of&�"�. By construc-
tion, these angles are rotation-invariant.

The color edge map ([5]) is defined to be the image con-
volved with the Laplacian of Gaussian, ��� � " , in which
the usual two-dimensional filter is replicated for each of the
three color channels, and where, as before, ��� � " is rep-
resented as an % � � matrix. The color edge angles are
defined to be:


��	�����"� � �
�������"�� 
�������"�� 
�������"���
(9)
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The color edge angles encode second order moment in-
formation about the color edge distribution and, by con-
struction, are rotation-invariant. In addition to the color an-
gles, we also use three more (rotation-invariant) numbers
"��	�"� � �"���"��"���"��"���"�� defined as follows:

"���"� � ��"�� � "�� (10)

where �� denoted term by term multiplication of vectors and
� is the standard deviation. For the HSV (Hue, Saturation
and Value) color space, one can similarly define 9 invari-
ants: 

���"�, 

������ � "� and "
���"�.

We should add that a color histogram (used for example
in [1]) does not work very well on our images. In addition
to much increased computation time, the histogram features
never resulted in a classification accuracy of over 70%.

6 Implementation

Recall that the Leave-One-Out (LOO) Cross-Validation is
obtained by training a classifier � times (where � is the sam-
ple size of the feature vectors), each time leaving out one of
the feature vectors from training and using only that omitted
vector for classification. The various LOO cross-validation
error rates for different sets of features are described below.
The feature sets were first calculated for 60 vertically ori-
ented images (see first image in Figures 1– 6) of each of six
bivalve species described in Section 1.2

Although a number of choices were available for the
number of scales, !, and orientations, �, and the settings
for the highest center frequency,   , and lowest center fre-
quency, � , we found that ! � �, � � �,   � �����
cycles/pixel and � � ������ cycles/pixel were the best
settings; we found that if we chose the center frequencies of
our Gabor wavelets to be low, we obtained better features
for classifying all six species. The table 1 describes various
choices of � ,   , !, and �, and the resulting LOO per-
centage errors. (The SVM used the Gaussian RBF Kernel
with + � � and the regularization parameter 	 � ���.)
The parameter, +, we use is fairly large; in other words the
resulting model is sensitive to small changes in inputs (i.e.
a very non-linear mapping).

The complete Gabor feature set for vertically oriented
images has length 192 (see section 3). With the above op-
timal settings for the center frequencies we experimented
with various parameters for both the Gaussian RBF ker-
nel, ��	������ � ��������

���� , and the Polynomial ker-
nel, ����� ������ � ������� � ���. In general, the RBF
kernel performed a little better, but not by much. Table 2
gives the leave-one-out percentage error rates for various
settings of +, 	, and #.

The 9 color angles of the image by themselves did not
prove to be good features (see last two rows of Table 3),

Table 1: The L-O-Out % error rates for different values
of the lowest center frequency, � (cycles/pixel); highest
center frequency,   (cycles/pixel); number of scales, !;
and number of orientations, �. Gaussian RBF Kernel with
+ � � and 	 � ���.

All six species
�   ! � LOO % Error

0.0065 0.045 4 8 16.71
0.006 0.045 8 12 21.79
0.0065 0.045 5 8 24.36
0.005 0.1 4 6 33.33
0.005 0.3 4 6 52.14

Table 2: A Comparison of Gaussian RBF and Polynomial
Kernels for different values of +, 	, and #. Feature set is
RGB Gabor (no color angles)

Gaussian RBF Kernel Polynomial Kernel
+ � LOO % Error � LOO % Error

2.5 100.0 15.32 3 16.99
3.0 100.0 14.2061 4.5 15.60

3.25 100.0 14.4847 5 15.04
4.0 100.0 15.0418 6 15.04
5.0 100.0 15.5989 7 15.88
7.0 100.0 15.8774 10 16.43
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Table 3: The L-O-O % errors for different values of + and	
for the feature set of RGB Gabor Features and RGB Color
Angles. Kernel = Gaussian RBF

Gabor and Color Angles
+ C LOO % Error

3.0 100.0 15.04
4.0 100.0 13.93
5.0 100.0 13.09
6.0 100.0 13.93

Color Angles Only
3.0 100.0 28.41
6.0 100.0 28.41

Table 4: The leave-one-out percentage errors for different
values of + and 	 for the feature set comprising of HSV
Gabor Features and HSV Color Angles. The lowest error
rate of 7.52% is for settings + � � and 	 � #�. Kernel =
Gaussian RBF

HSV Gabor and HSV Color Angles
+ C LOO % Error
1 70.0 10.03
1 80.0 9.47
2 60 7.79
2 70 7.52
2 80 8.36
3 60 8.91
3 70 9.47
3 80 9.749

however when added to the Gabor features set (thereby cre-
ating a feature space of dimension 201), they improved the
classification accuracy, as the Table 3 indicates. The table
is for the RBF kernel (and Gabor settings of ! � �,� � �,
  � ����� cycles/pixel, and � � ������ cycles/pixel).

We next considered both Gabor features and Color An-
gles in HSV space and this proved to be our best feature set
for vertically oriented images, giving the lowest error rate
of 7.52%. Table 5 describes the confusion matrix for these
features. Finally, we calculated the rotation-invariant fea-
tures (of dimension ����, see section 4) in HSV space for
images in random orientations. For the same choices, + � �
and	 � #�, we obtained a L-O-O accuracy of 82.26%. Ta-
ble 6 describes that confusion matrix.

7 Summary and Conclusion

We have shown how support vector machines, polarization
microscopy, multiscale texture and color invariants can be

Table 5: The confusion matrix for classification of 6 species
(60 images each), with each image in standard (vertical) ori-
entation. Gaussian RBF Kernel, + � ���, 	 � #�. 	 �
Argopecten, 
 � Crassostrea, � � Mercenaria, � � Mya,
 � Placopecten, and � � Spisula. The columns are the
actual values and the rows the predicted values.

Images in Vertical Orientation
	 
 � �  �

	 54 0 0 3 3 0

 2 58 0 0 0 0
� 0 0 57 0 0 1
� 6 0 0 53 1 0
 4 0 0 1 55 0
� 0 0 4 0 0 56

Table 6: The confusion matrix for classification of 6 species
(78 images each), with images in random orientations.
Gaussian RBF Kernel, + � ���, 	 � #�. 	 � Argopecten,

 � Crassostrea, � � Mercenaria, � � Mya,  � Pla-
copecten, and � � Spisula. The columns are the actual
values and the rows the predicted values. Classification ac-
curacy = 82.26%

Images in Random Orientation
	 
 � �  �

	 56 0 0 10 4 0

 0 76 0 1 0 0
� 0 0 70 0 2 8
� 14 1 0 59 13 0
 5 0 0 7 55 1
� 0 0 7 0 1 89

Figure 1: Argopecten (Bay Scallop) days 3, 5, 7 and 12. The
first image in this set and below is in the standard (vertical)
orientation; the remaining three are in random orientations.
Note: all images have been resized to the same size in order
that age (size) not influence the classification.

Figure 2: Crassostrea (American Oyster) days 6, 9, 12 and
16
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Figure 3: Mercenaria (Hard-shelled clam) days 6, 9, 10 and
10

Figure 4: Mya (Sand gaper) days 2, 6, 6 and 7

Figure 5: Placopecten (Sea scallop) days 4, 6, 11 and 21

Figure 6: Spisula (Atlantic surf Clam) day 4, 10, 13 and 16

used to efficiently identify larvae of bivalve mollusks. We
show further that our pattern recognition system can be op-
timized to achieve an accuracy of over 90% in the identifi-
cation of vertically oriented images of six species of bivalve
larvae, and an accuracy of over 80% in the identification of
randomly oriented images. Rapid and accurate identifica-
tion of larvae from the plankton will provide the basis for
research into how larvae are transported by ocean currents
as well as research into the population dynamics of com-
mercially important shellfish stocks.
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