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Abstract

Medical imaging often involves the injection of con-
trast agents and the subsequent analysis of tissue en-
hancement patterns. Many important types of tissue
have characteristic enhancement patterns; for exam-
ple, in magnetic resonance (MR) mammography, ma-
lignancies exhibit a characteristic “wash out” temporal
pattern, while in MR angiography, arteries, veins and
parenchyma each have their own distinctive temporal
signature. In such image sequences, there are substan-
tial changes in intensities; however, this change is due
primarily to the contrast agent rather than the motion
of scene elements. As a result, the task of segmenting
contrast-enhanced images poses interesting new chal-
lenges for computer vision.

In this paper, we propose a new image segmentation
algorithm for image sequences with contrast enhance-
ment, using a model-based time series analysis of in-
dividual pixels.We use energy minimization via graph
cuts to efficiently ensure spatial coherence. The en-
ergy is minimized in an expectation-maximization fash-
ion that alternates between segmenting the image into
a number of non-overlapping regions and finding the
temporal profile parameters which best describe the be-
havior of each region. Preliminary experiments on MR
mammography and MR angiography studies show the
algorithm’s ability to find an accurate segmentation.

1. Contrast-Enhanced Image Se-

quences

Many medical imaging studies involve the injection of
contrast agents in order to visualize structures that
cannot otherwise be distinguished. The choice of con-
trast medium depends upon the imaging modality; in
CT the contrast agents are iodine-based, while MR
contrast agents use gadolinium [13]. In the result-
ing contrast-enhanced image sequences the patient is
generally stationary, and the substantial changes in
intensities that occur are due primarily to the con-
trast agent. Moreover, different types of tissues of-
ten have characteristic enhancement patterns, which

(a)

(b)

Figure 1: (a) Snapshot from an MR angiography image
sequence (b) Intensity profile of selected pixels

form the basis for segmentation. This is especially true
in MR, where there is a wide variety of enhancement
patterns. For example, in MR mammography, malig-
nancies exhibit a characteristic “wash out” temporal
pattern, while in MR angiography, arteries, veins and
parenchyma have distinct temporal profiles.

Automatic segmentation of contrast-enhanced im-
age sequences poses novel challenges to computer vi-
sion. At first glance, motion segmentation techniques
such as [6, 21] seem to be applicable. However, these
methods are designed for situations where scene ele-
ments are moving with respect to a conventional cam-
era. In medical imaging applications, the imaging
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devices are quite different from traditional cameras.
Moreover, in contrast-enhanced image sequences it is
common for the patient to be stationary. This is espe-
cially common for MR imaging, due to the well-known
artifacts that motion produces in this imaging modality
[13]. However, it is also often true in CT (for exam-
ple, when imaging the brain) or lower abdomen. While
there is obviously motion present (for example, at the
cellular level) even in a stationary patient, the change
in intensities observed in contrast-enhanced images is
not due to the motion of scene elements.

In order to segment contrast-enhanced image se-
quences, it is vital to use the information in the se-
quence. There is simply not enough information in
a single image to reliably perform segmentation. This
can be easily seen from Figure 1, which shows an exam-
ple of contrast-enhanced MR angiography of the lower
extremities. Figure 1(a) shows a snapshot from the im-
age sequence (to make the arteries and veins visible, the
image shown is the difference between a post-contrast
image and a pre-contrast image). Figure 1(b) depicts
the temporal (intensity) profiles of the selected pixels
in Figure 1(a). The black dotted vertical line in Fig-
ure 1(b) indicates where the snapshot in Figure 1(a) is
taken.

The circled pixel is on an artery, and its temporal
profile shows a sharp increase when the contrast agent
arrives. By comparison, the temporal profile of the
vein pixel (indicated by the rectangle) shows a steady
increase after the contrast agent arrives, which indi-
cates that the pixel is on vein. However, the vein pixel
is brighter than the artery pixel in the snapshot shown
in Figure 1(a), which would mislead an image segmen-
tation method based on this snapshot image. An image
segmentation algorithm based on the temporal profile
of each pixel will have much higher chance to correctly
classify these pixels as either artery or vein.

1.1 Overview of our approach

Our approach is based on the application of time series
analysis to pixel temporal profiles. Time series analysis
[9] is a set of techniques for analyzing a temporal series
of observations. It has primarily been used in the fi-
nancial community, for example to analyze commodity
prices. However, the information contained in any in-
dividual pixel’s temporal profile is noisy. In addition, a
correct segmentation would be spatially coherent (i.e.,
the pixels that should be labelled artery are not dis-
tributed independently at random through the image).
This spatial coherence assumption allows us to over-
come the noise in a single pixel’s temporal profile.

We assume that for each type of tissue that is of

interest, there is a model available of that tissue’s tem-
poral profile. For example, in MR angiography the
model for an artery might be a peak formed by 4 line
segments, while the model for a vein might be a gradual
rise formed by 2 line segments (see Figure 3). Even-
tually it might be possible to learn such a model from
hand-labelled examples, but we currently assume that
such a model already exists. Each model will have a
number of parameters, which will need to be estimated.
The input to our algorithm will be a set of models, to-
gether with an image sequence. The output will be a
labelling of the pixels, such that each pixel is associ-
ated with a single model, together with an estimate for
each model’s parameters.

The algorithm itself is very similar in spirit to ex-
isting approaches to motion segmentation based on
expectation-maximization [11] (we will describe some
related work in the next section), and especially to [2].
We alternate between two steps. In the first step, given
a set of models, each of which has some parameters, we
must label each pixel with a model. In the second step,
we estimate the parameters for each model by analyz-
ing the set of pixels that have been labelled with the
model. Simple statistical techniques from time series
analysis are used in both of these steps.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes related work. In Section 3, we give
a formal definition of our problem. The two alternat-
ing steps of our algorithm are described in Section 4
and Section 5. Preliminary experimental results for
MR angiography and MR mammography are given in
Section 6. We conclude with some suggestions as to
how our work can be extended to contrast-enhanced
image sequences that also contain significant motion
in Section 7.

2. Related work

There is, of course, a great deal of prior work on image
segmentation, primarily focusing on the segmentation
of a single image. However, it does not appear that
contrast-enhanced images can be segmented by looking
at a single image; as a result, the most relevant related
work involves segmentation of image sequences.

Several vision researchers has used time series analy-
sis for various purposes [17, 5, 18, 4], although they in
general have not referred to these techniques by that
name. Kanade et al. [14] built a VLSI sensor array for
a rangefinder that gathers range data in parallel as a
scene is swept continuously by a moving stripe. Each
cell continuously records the time at which a peak is
observed at each sensor pixel, and detects the time at
which it observed the peak incident light intensity dur-
ing the sweep of the stripe. Curless and Levoy [10]
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Figure 2: An example of an MR angiography image
series: read from left to right and top to bottom.

proposed a ranging method based on analyzing the
time evolution of the structured light reflections. They
use this information to correct systematic distortions of
the range data that stem from curved surfaces, discon-
tinuous surfaces, and surfaces of varying reflectance,
thereby attaining significantly higher accuracy.

Seitz and Dyer [19] provide another example of mo-
tion pattern analysis, by determining if an image se-
quence could have been produced by an object whose
motion is periodic in some reference frame. Zhang et
al. developed accurate shape acquisition systems using
color structured light [23]. They solve the correspon-
dence problem by using a multi-pass dynamic program-
ming algorithm that eliminates the global smoothness
assumptions and strict ordering constraints present in
many formulations. Recently, they also proposed the
“spacetime stereo” that recovers shapes by observing
their appearance variations over time using a stereo
pair [24]. They define the mean shape over a stereo pair
of image sequences as the shape which has minimum
matching error over space and time, and the shape vari-
ation is modelled as a stochastic linear dynamic system.
The method is shown to generate better shape recon-
struction than traditional stereo pair.

Bobick and Davis [4] introduced the temporal tem-
plate representation, consisting of the motion-energy
image to represent where there is motion and the
motion-history image to indicate when there is motion.
Their algorithm and ours share the idea of indicating
when an important event occurs (motion in their case,
contrast arrival, etc, in our case) for each pixel. How-
ever, our algorithm differs from theirs in that (a) we
use a comprehensive model to describe the behavior of
each pixel, which is necessary for segmentation, and
(b) we use spatial coherence as well as the information
from each individual pixel.

The body of work that is most closely related to
ours is the research on expectation-maximization (EM)
based segmentation of image sequences. Most of these

methods deal with motion segmentation using layers
[1, 21, 22]. The problem we address, however, is not
motion segmentation, since there is no motion in the
images. Moreover, these methods do not use graph cuts
to efficiently label pixels with the appropriate model
while preserving spatial coherence. The closest work
to ours is the algorithm of Birchfield and Tomasi [2],
which is an EM-based method for stereo and motion
with slanted surfaces that uses the graph cuts algo-
rithm of [8] to label pixels. Their work, however, does
not analyze the temporal profile of individual pixels,
and is not straightforwardly applicable to the task of
segmenting contrast-enhanced image sequences.

3. Problem formulation

The input to our algorithm is a sequence of images
i : P × T → � for each pixel p ∈ P and each time
t ∈ T = {0, 1, 2, · · · , T − 1} (see Figure 2 for an exam-
ple). For convenience, ip ∈ �T denotes the temporal
profile of the pixel p. We represent the output as a
labelling f : P → L, where L is the set of labels, along
with temporal profile parameters θl for each label l.
For instance, L = {malignant tumor, benign tumor,
non-tumor} for a breast image sequence, while L =
{artery, vein/parenchyma} for an MR angiography im-
age sequence.1 θl = {al, bl} when the temporal profile
is modelled by a straight line ipt = alt+bl. θl will have
more elements when we use more sophisticated models.

Our goal is to find a labelling that matches pixels
of similar temporal profile while minimizing disconti-
nuities. More specifically, we minimize the following
energy functional:

E(f) =
∑
p∈P

∑
q∈Np

2u{p,q}T [fp �= fq] +
∑
p∈P

g(ip, p, θfp), (1)

where the indicator function T [·] is 1 if its argument
is true and 0 otherwise. Np is a subset of pixels in P
describing the neighbors of p. The first term enforces
smoothness by penalizing the discontinuities. u{p,q}
can be interpreted as a cost of a discontinuity between p
and q [8]. The second term is a data-dependent energy
term indicating the costs of assigning the labels to the
pixel. g(ip, p, θfp) is the cost of assigning the label fp

to the pixel p whose temporal profile is ip.
To minimize the energy functional, we alternate be-

tween segmenting the image into disjoint regions by
assigning a label to every pixel and finding the tempo-
ral profile parameters of each region. We will describe
these two steps in the next two sections.

1The label vein/parenchyma will be used for veins as well as
for parenchyma, which enhances similarly to veins. The portion
of the image outside the patient’s body can be easily detected
automatically and not considered for further processing.
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4. Assigning labels to pixels

Once the temporal profile parameters for each re-
gion are available, we calculate the residual for each
pixel/label assignment and then assign a label to each
pixel so as to minimize the overall residual. First, we
calculate the residuals for each pixel to each label:

rpl = r(ip, θl) (2)

The way we evaluate the residual depends on how we
model the temporal profile.

(a)

(b)

Figure 3: Parameters for MR angiography image series:
(a) Artery (b) Vein / Parenchyma

MR angiography: Figure 3 depicts the para-
meters for each label in an MR angiography image
series. Note that the number of parameters in θl can
be different depending on label l. The temporal profile
for artery pixels is modelled by 4 line segments. Thus
we have 8 parameters (aiA’s and biA’s) for the line
segments and 3 parameters (tiA’s) for the intersection
of consecutive line segments, which leads to θArtery =
{a1A, b1A, t1A, a2A, b2A, t2A, a3A, b3A, t3A, a4A, b4A}.
Similarly, we have θVein/Parenchyma =
{a1V , b1V , t1V , a2V , b2V }. The temporal profile of
the region whose label is l and whose model is
parameterized by n line segments is given by

jlt =




a1lt + b1l if t < t1
aklt + bkl if tk−1 ≤ t < tk, (k = 2, · · · , n − 1)
anlt + bnl if tn−1 ≤ t

MR mammography: According to recent find-
ings [20, 15], malignant lesions are characterized in MR
mammography by rapid wash-in and rapid wash-out of
a contrast agent. On the other hand, benign lesions

(a)

(b)

Figure 4: (a) A snapshot from an MR mammography
image sequence (b) Temporal profile of the selected pix-
els

are characterized by rapid wash-in and slow wash-out
of contrast agent (see Figure 4). To capture these prop-
erties, we model the temporal profile of lesion by two
line segments, one for wash-in and the other for wash-
out (θMalignant−lesion = {a1M , b1M , t1M , a2M , b2M},
θBenign−lesion = {a1B, b1B, t1B, a2B, b2B}). For non-
lesions, we use one line as a model of the temporal
profile (θNon−lesion = {a1N , b1N})(see Figure 5).

Once we have the model of the temporal profile, the
residual for assigning the label l to the pixel p is given
by

r(ip, θl) = min
βp,∆tp

1
N

∑
tMin≤t≤tMax

ρ(ipt, βpjp(t+∆tp)),

where tMin = max(0,−∆tp), tMax = min(T, T −∆tp)−
1, 1/N is a normalization constant, N = tMax−tMin+1,
and ∆tp, βp are the time displacement and intensity
scale of pixel p respectively. We introduce ∆tp and βp

to offset the variation in time displacement and inten-
sity scale between pixels. For the distance metric ρ,
we use ρ(x, y) = min(|x − y|, K) for some constant K
following [3]. Based on the residual, we calculate the
cost of assigning a label to each pixel:

g(ip, p, θfp) =
e−r2

pl/2σ2

∑
l′∈L e

−r2
pl′/2σ2 , (3)
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(a)

(b)

Figure 5: Parameters for MR mammography image
series: (a) Lesion (b) Non-Lesion

where σ corresponds to the amount of residual ex-
pected in the overall data. To find an approximate
solution of minimizing E(f), we use the graph cut al-
gorithm of [8]. Since minimizing Eq (1) has been shown
to be NP-hard [8], the algorithm is not guaranteed to
find the global minimum. Nevertheless, it finds a good
local minimum, in the sense that the final energy can-
not be lowered by exchanging any subset of pixels hav-
ing a common label with any other subset of pixels
having a common label. After the graph cut algorithm
has converged, we find the temporal profile parameter
for each label, as explained in the next section.

5. Estimating temporal profile

parameters

The temporal profile parameters of each label describe
how the pixel intensity of a pixel with the label will
vary over time. Once the assignment of labels to pixels
is known, we can find the average temporal profile of
all the pixels with each label. Simply put,

θl = ExtractParameters


 ∑

p∈P,fp=l

βpip(t+∆tp)


 , (4)

where ∆tp and βp are the time displacement and inten-
sity scale of pixel p. Again, ExtractParameters depends
upon our model of the temporal profile.

MR angiography: To estimate the parameters,
we first estimate the intersection times (til’s), then es-
timate the line segment coefficients (aiA’s and biA’s)

using least squares fitting. More specifically, for the
parameters for artery, t1A is the first time index such
that intensity at t1A is above µ+kσ, where µ and σ are
the mean and the standard deviation of the intensities
for the time index from 1 to t1A − 1. We set k = 2.5
in our experiments. t3A is estimated similarly except
that we examine whether the intensity is above µ + kσ
going backwards. t2A is set to be the time index that
has the maximum intensity between t1A and t3A. For
the parameters for veins/parenchyma, t1V is the time
index that has the minimum intensity in a predefined
time range. Since we have only two labels, we don’t ac-
tually have to use the multiway-cut algorithm, and can
instead use the 2-way cut algorithm from [12], which
gives the globally optimal labelling in polynomial time.

MR mammography: Similarly to the case of MR
angiography data, we use robust least squares fitting to
extract parameters for the non-lesion label. We set t1
to be the time index that has the maximum intensity in
a predefined range, namely 2 to 4, since it is known that
the transition between wash-in and wash-out phases
occurs between times 2 and 4 [20, 15].

6 Preliminary experiments

In this section, we give some experimental results for
our algorithm on MR angiography data and mammog-
raphy data. In each experiment, we describe how we
obtain the data, model temporal profiles, and extract
temporal profile parameters, then show the result of
our algorithm. An individual image in MR angiogra-
phy is 2D, while in MR mammography it is 3D. Our
approach can handle both 2D and 3D data; however,
to simplify matters we will confine our attention to 2D
data by looking at single slices in MR mammography.

6.1. Trifurcation

Contrast-enhanced MR angiography has become a rou-
tine clinical tool for pre-treatment mapping of vascu-
lature [16]. Figure 2 shows an example of MR angiog-
raphy imagery of the trifurcation. The data typically
consists of 30–45 2-dimensional images.

It is difficult to compare our results with previous
work, since to our knowledge no other methods have
been published for segmenting contrast-enhanced im-
age sequences. However, there is a comparison that
we find instructive, in that it shows the importance of
performing segmentation based on the temporal pixel
histories in the entire image sequence, rather than on a
single image. We obtained several series where an expe-
rienced radiologist hand-selected a pair of images (pre-
contrast and post-contrast), such that the difference
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Hand-selected difference image Our result Difference image segmentation

Figure 6: Comparison of our results on MR angiography image sequence with other methods: Left: Best difference
image manually selected by an experienced radiologist. Middle: Results from our algorithm. Right: Results from
segmentation of the manually selected difference image.
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Figure 7: Results of our algorithm. Malignant lesion
(in white) and benign lesion (in gray) are overlaid with
a darkened input image at time index = 2

image gave the clearest view of the arteries. This man-
ually selected difference image can then be compared to
the result of our algorithm. These results are shown in
the left and middle columns of Figure 6. Visual inspec-
tion by the authors clearly shows that our algorithm
gives far less false artery (i.e. a vein/parenchyma pixel
misclassified as an artery), which mainly results from
patient motion, and far less false vein/parenchyma (i.e.
an artery pixel misclassified as a vein/parenchyma),
which primarily comes from faint signal because of bad
timing. Both of these advantages derive from our al-
gorithm’s use of the entire image sequence.

In Figure 6 we have also included an additional seg-
mentation in the rightmost column for the sake of com-
parison. Here we have applied a binary segmentation
algorithm to the hand-generated image in the leftmost
column. Since spatial coherence is very important, in-
stead of a simple thresholding scheme we used a sim-
ple algorithm based on graph cuts that finds connected
groups of bright pixels. We believe that the poor re-
sults obtained by this method demonstrates the impor-
tance of using the entire image sequence, rather than
performing static segmentation on a single image.

6.2. Mammography

In MR mammography, a series of 9 images is acquired
at approximately 90 second intervals, with a contrast
agent injected immediately after the first image acqui-
sition. Figure 7 shows the result of image segmentation

overlaid with one input image at a specific time. Cur-
rently, we use the second image. Body parts other than
breast are removed manually to simplify the parame-
ter estimation process, although it should be relatively
easy to automate this removal process given that the
image orientation is fixed. The results show that our
algorithm avoids being distracted by very bright pixels
that occur mainly on arteries. Any image segmentation
algorithm based on one single image will have no way to
distinguish such pixels from lesion pixels. In these two
cases, an experienced radiologist who read the cases
without our system believed that the patient suffered
from breast cancer; this diagnosis was confirmed by
biopsy.

7. Extensions

The methods that we have described show promising
preliminary results for MR angiography and MR mam-
mography. The experimental results we have described
are quite preliminary, and a more careful compari-
son with the results of other segmentation algorithms
should be performed, ideally using some kind of (prob-
ably hand-segmented) data as a gold standard.

There are also a number of ways in which these re-
sults could probably be improved. For example, the
temporal models that we have used in our experiments
to date are fairly simple. It is important to note that
our algorithm does not require a particular temporal
model for pixel behavior, as long as there is some piece-
wise model where we can pre-specify the number of
pieces. There is no restriction that the pieces need to
be linear, although piecewise linear models like the ones
we have used are obviously the first class that should
be explored. It would be interesting to apply more so-
phisticated temporal models for these problems, such
as autoregressive models or pharmacologically derived
models.

Our preliminary experiments show promising results
for contrast-enhanced image sequences, such as MR an-
giography and MR mammography, where the patient
is usually stationary. However, it would be interest-
ing to extend our approach to image sequences with
both contrast and motion, e.g., coronary artery images
where the heart is clearly visible and beating as the
contrast flows in and out. Currently, our technique
is based on the assumption that there is no motion,
i.e., the time series for a single pixel corresponds to a
single location in the patient. Of course, if we know
exactly how each pixel moves, we still can obtain the
time series. It may be possible to handle unknown mo-
tions by performing the same calculation based on an
assumption about the motion of each pixel and then
re-estimating the motion. In other words, instead of
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iterating between pixel labelling and parameter esti-
mation, we can iterate between pixel labelling, para-
meter estimation, and motion estimation. Of course,
the more compactly we can represent the motion (i.e.,
the fewer motion parameters we have), the more likely
it is that this algorithm will converge to the desired
solution.
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