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Abstract 
 
 Relevance feedback (RF) is an interactive process 
which refines the retrievals by utilizing user’s feedback 
history. Most researchers strive to develop new RF 
techniques and ignore the advantages of existing ones. 
In this paper, we propose an image relevance 
reinforcement learning (IRRL) model for integrating 
existing RF techniques. Various integration schemes 
are presented and a long-term shared memory is used 
to exploit the retrieval experience from multiple users. 
Also, a concept digesting method is proposed to 
reduce the complexity of storage demand. The 
experimental results manifest that the integration of 
multiple RF approaches gives better retrieval 
performance than using one RF technique alone, and 
that the sharing of relevance knowledge between 
multiple query sessions also provides significant 
contributions for improvement. Further, the storage 
demand is significantly reduced by the concept 
digesting technique. This shows the scalability of the 
proposed model against a growing-size database. 
 
 
1. Introduction 

 
 Since the users, in general, do not know the 
make-up of the image database and the techniques 
used for indexing, the query formulation process 
should be treated as a series of tentative trials until the 
target images are found. Relevance feedback (RF) is 
an automatic process which fulfills the query 
formulation. Let a user initialize a query session by 
submitting an image Q=(q1, q2, …, qt) where t is the 
number of selected features and qi is the calculated 
value of the ith feature. The retrieval system compares 
the query image with each database image D=(d1, 
d2, …, dt) and returns the top k similar database 
images. If the user is not satisfied, he/she can activate 
an RF process by identifying retrievals as relevant or 
nonrelevant. The system will adapt its internal 
parameters to involve more desirable images in the 
next retrievals. The process is repeated until the user is 
satisfied or the results cannot be further improved. 
 Most researchers strive to develop a new RF 

technique and ignore the possible synergism among 
existing ones. In this paper, we develop a new model 
named image relevance reinforcement learning (IRRL) 
that can integrate multiple RF techniques and make a 
full use of their advantages. 
 
2. Related Works and Our Contributions 
 
2.1 Existing relevance feedback techniques 
 
 The query vector modification (QVM) approach [1] 
repeatedly reformulates the query vector as the mean 
difference vector between relevant images and 
nonrelevant ones, in an attempt to redirect the query 
vector toward a more desired area. The feature 
relevance estimation (FRE) approach [2] assumes, for 
a given query, some specific features may be more 
important than others when computing the similarities 
between images and the query. The most natural way 
of estimating the individual feature relevance is to 
verify the retrieval ability using each feature alone. 
Finally the feature relevance is used as a weight 
incorporated into the dissimilarity metric. The 
Bayesian inference-based (BI) approach [3] estimates 
the posterior probability that a database image is 
relevant to the query given the prior feedback history. 
The probability distribution over all database images is 
updated after each feedback iteration, the system is 
therefore able to improve future retrieval performance. 
 These methods suffer their respective shortcomings. 
First, the QVM puts equal emphasis on every feature 
dimension, however, relevant images are not 
consistently relevant to the query on every feature 
dimension. Second, in FRE, the query vector is not 
reformulated and the query cannot be moved toward a 
more desired region. Third, both QVM and FRE 
assume that the distributions of relevant images in the 
feature space form an intrinsic cluster while no matter 
how sophisticated features are selected the relevant 
images usually do not form a single cluster. Fourth, 
the BI approach is theoretically the most flexible one 
since it does not rely on the nearest neighbor criterion, 
however, it is computationally intensive. 
 Moreover, all the three kinds of RF approaches deal 
with a single query based on the relevance knowledge 
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learned from the corresponding query session. The 
knowledge is erased after the user has terminated the 
feedback iterations, and it will not be used for the next 
query processing. Hence, they maintain a form of 
short-term memory that captures the user’s intention 
for only this specific query. 
 
2.2 Contribution of this paper 
 
 The original contribution of this paper includes the 
following aspects. (1) Two integration schemes, 
named combination and hybridization, are presented to 
attain the maximum synergism between different RF 
techniques. (2) Our system is the first one that can 
automatically choose the optimal RF approach for a 
given query at a particular feedback iteration. (3) A 
shared long-term memory is used to accumulate the 
relevance knowledge exploited from multiple users’ 
experiences. The long-term relevance knowledge 
significantly improves the retrieval performance. 
 
3. The Proposed Model 
 
 The system diagram for the proposed image 
relevance reinforcement learning (IRRL) model is 
illustrated in Fig. 1. When a user starts a new query 
session, the prior relevance information about the 
query formulation, feature weights, and prior 
probabilities of relevant and nonrelevant images is 
retrieved. When entering the session, the 
reinforcement learning will navigate the model to 
select the optimal RF technique for the query at every 
feedback iteration. When the user terminates the 
session, the latest relevance information is captured in 
the knowledge base for updating the entry. 
 
3.1 Integration of multiple RF approaches 
 
 Let the retrieval system be provided by the three 
RF techniques, namely the QVM, FRE, and BI, and 
also let the system improve the retrievals by executing 
several RF iterations. We define an RF strategy as a 
sequence of selected RF techniques to be applied at 
various feedback iterations. Since the retrieval 
improvement is mainly done at the first two iterations 
[4], we focus our discussion on this case. For those 
strategies that apply distinct RF techniques at different 
iterations, there are two means for integrating them. 
The first type of integration, called combination, 
simply applies one RF technique at the first iteration 
and applies the other RF technique at the second. 
However, the second type of integration, called 
hybridization, applies one RF technique at the first 
iteration and when the other RF technique is 

performed at the second iteration, the first RF 
technique is applied again simultaneously to 
strengthen the synergetic effect. 
 
z Integration between QVM and FRE: Without 

loss of generality, we assume QVM is applied at 
the first iteration and FRE at the second. Fig. 2 
gives an illustration. Let the original query be the 
ith database image and be denoted by )0(

iX . The 
system returns the closest images to )0(

iX  with 
feature weights w1 = w2 (see Fig. 2(a)), and 
requests for relevance feedback. The user identifies 
relevant and nonorelevant images from the 
retrievals. By performing QVM at the first RF 
iteration, the new query vector )1(

iX  is derived by 

∑∑
∈∈

−+=
NY

j
RY

jii
jj

NYRYXX γβα )0()1( , where R and N 

denote the sets of relevant and nonrelevant images, 
and α, β and γ are the parameters controlling the 
relative importance. Since FRE is not applied, the 
feature weights remain unchanged. The new query 
vector is moved to a location closer to the mass 
centroid of relevant images (see Fig. 2(b)). At the 
second RF iteration where FRE is applied, there 
are two integration schemes. For the combination 
scheme (see Fig. 2(c)), the query vector is not 
changed ( )2(

iX  = )1(
iX ) because the QVM is not 

applied, only the feature weights are updated (w1 > 
w2) according to FRE so as to stretch the boundary 
of the query’s neighborhood. On the other hand, 
for the hybridization scheme (see Fig. 2(d)), in 
addition to updating the feature weights (w1 > w2) 
based on FRE, the query vector )2(

iX  is 
reformulated by ∑∑

∈∈

−+=
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j
RY

jii
jj

NYRYXX γβα )1()2( . 

As such, the FRE is hybridized with the QVM. It is 
observed that both types of integration schemes 
preserve the advantages of each approach, and 
improve the retrieval performance than using the 
same approach at all feedback iterations. 

z Integration between QVM and BI: Here, for 
simplicity, we refer to BI as a simple Gaussian 
classifier instead of the sophisticated one 
introduced in [3]. Assume QVM is applied at the 
first iteration and BI at the second. The situations 
before the second RF iteration are as those in the 
previous case. At the second RF iteration where BI 
is applied, for the combination scheme the 
conditional probabilities of )( RYp  and )( NYp  
are estimated using the observed samples in R and 
N identified at the second RF iteration. If we 
assume the relevant images form a Gaussian 
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density, then )( RYp  ≡ ) ,( RRN σµ  with 

{ }( )RYYR ∈∀=  µµ  and { }( )RYYR ∈∀=  σσ  where 

)(⋅µ  and )(⋅σ  denote the mean and standard 
deviation. We also use a Gaussian density to model 
nonrelevant images and let )( NYp  ≡ ) ,( NNN σµ  
with { }( )NYYN ∈∀=  µµ  and { }( )NYYN ∈∀=  σσ . 
The most relevant images are then determined 
using the Bayesian classifier. For the hybridization 
scheme, the query vector )2(

iX  is reformulated, 

according to QVM. Since )2(
iX  is an estimate for 

the mass centroid of all possible relevant images, 
we let )2(

i
R X=µ . Similarly, the mean vector of 

nonrelevant images is determined by 
∑∑ ∈∈

−=
RY jNY j

N

jj
RYNY ηρµ , where ρ and η 

are relative weights. The standard deviation vectors 
are derived as in the combination scheme. As such, 
the BI is hybridized with the QVM by replacing 
the estimates for the mean vectors with those 
obtained by QVM. 

z Integration between FRE and BI: Assume FRE is 
applied at the first iteration and BI at the second. 
The system first retrieves the closest images to 

)0(
iX  with w1 = w2, and requests for relevance 

feedback. By performing FRE, the weights are 
updated as w1 > w2 and the query vector remains 
unchanged ( )0()1(

ii XX = ). At the second RF iteration 
where BI is applied. For the combination scheme, 
the conditional probabilities of p(Y|R) and p(Y|N) 
are simply estimated based on R and N. However, 
for the hybridization scheme, the weights are 
further updated due to FRE. Since a larger weight 
is resulted by a denser distribution on the feature 
component, the standard deviation of the Gaussian 
density is inversely proportional to the weight. Let 

∑∑
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−−=
d

k
k

d

k

R
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R
j ww
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)1()1( σσ , where R

jσ  denotes 

the standard deviation of the Gaussian density of 
relevant images on the jth feature component. Also, 
the standard deviation vector of nonrelevant 
images is derived as ∑∑
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kj
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)1()1( σσ . 

The mean vectors are computed as in the 
combination scheme. Hence, the BI is hybridized 
with FRE by replacing the estimates for the 
standard deviation vectors. 

 
3.2 Image relevance reinforcement learning 
 
 To learn the optimal strategy and the best 

within-session integration scheme, we propose an 
image relevance reinforcement learning (IRRL) model. 
A user initializes a query session by submitting a 
query image to an agent which is a CBIR system with 
multiple RF mechanisms, for example, the RF 
mechanism FRE/hybridization instructs the agent to 
apply FRE at the current feedback iteration and 
hybridize FRE with the RF technique that is applied at 
the preceding iteration, if it exists. The agent applies 
an action selection rule to perform an RF mechanism. 
The nearest t images to the query are computed by the 
selected RF mechanism, these images are then 
returned to the environment (the end user) for 
requesting a relevance feedback. The user identifies 
relevant and nonrelevant images from the retrieved 
result, and a precision rate about the retrievals can be 
computed. The state of the environment is, therefore, 
changed to another state. The precision rate is also 
provided to the agent as a reward that reveals the 
desirability about the state transition. The agent 
observes the new state and repeats the cycle again. 
This process produces a sequence of states si, actions 
ai, and rewards ri. The agent’s goal is to learn an 
optimal strategy for selecting an action in a given state 
that maximizes the expected sum of total rewards. 
 Let the image database contain a collection of n 
images, and let the agent is allowed to perform an RF 
process on a specific query for at most m iterations. 
Assume the agent is provided a set of u possible RF 
mechanisms to choose from. Some notations of the 
IRRL model are defined as follows. 
z A set of states, { }

ukmjnikjisS
≤≤≤≤≤≤

=
0 ,0 ,1,, . A state 

is characterized by three elements, namely the 
query image i, feedback iteration j, and the last RF 
mechanism k performed to this query.  

z A set of actions, { } uhhaA ≤≤= 1 . Performing an 
action corresponds to executing an existing RF 
mechanism to the query image. 

z Positive real-valued rewards, r ∈[0, 1]. The reward 
can be described by the precision rate regarding the 
user’s desirability about the current retrievals and it 
is given by ievalsTotal_RetretrievalsPositive_R=r . 

z A state transition function, SAS →× :δ . By the 
above definitions, we have hjihkji sas ,1,,, ),( +=δ . 

z A reward function, +→× RAS :τ . In particular, 
),( ,, hkji asτ  will return the precision rate that is 

calculated on the current retrievals obtained when 
the agent performs action ah in state kjis ,, . 

 The IRRL model learns the optimal strategy, 
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AS → : *π , that maximizes the cumulative rewards 
received over time, 

, maxarg} { maxarg
0

2
2

10
* ∑

∞

=

=⋅⋅⋅+++=
v

v
v rrrr γγγπ

ππ

 

where vr  is the reward received v steps into the 
future using strategy π  to select actions, and 

]1 ,0[∈γ  is the discounting factor that determines the 
relative value of immediate and delayed rewards. We 
apply the Q-learning algorithm [5] to learn the optimal 
RF strategy. Let ),( ,, hkji asQ  be the maximum 
cumulative reward which can be received by 
performing action ha  in state kjis ,,  and then 

proceeding optimally using *π . The Q-learning 
algorithm iteratively approximates the Q function by 
the following recursive definition, 

, ) ,(max

) ), ,((max) ,() ,(

,1,

,,,,,,

lhjia

lhkjiahkjihkji

asQr

aasQasasQ

l

l

++=

+=

γ

δγτ  

The precise Q-learning algorithm for the IRRL model 
is presented in Fig. 3 and is explained as follows. First, 
the algorithm initializes a table of estimate of the Q 
function. When a user starts a new query session by 
submitting a query, say, image i, if the image was 
never used as a query before, the algorithm computes 
the t nearest images according to the Euclidean 
distance; otherwise, the algorithm retrieves all 
relevance knowledge (involving query formulation, 
feature weights, and prior probabilities of relevant and 
nonrelevant images) about this query, and then 
computes the t nearest images according to the last 
performed action. Next, if the user is not satisfied with 
the retrieved results, he/she can perform an RF process 
to improve the retrievals. At each RF iteration, the user 
marks the retrievals as relevant or nonrelevant. The 
algorithm performs an action that is chosen according 
to a probabilistic action selection rule as  
 

∑
=

=
u

l
lkjihkjikjih asQasQsap

1
,,,,,, ),(ˆ),(ˆ)( .  

 
As such, the probability with which an action is 
chosen is linearly proportional to the corresponding 
Q̂  estimate. Then, the algorithm computes t nearest 
images according to the performed action, observes an 
immediate reward and a new state, then updates the 
corresponding Q̂  table entry. The algorithm 
iteratively approximates the optimal strategy and 
guides the agent to maximize the expected sum of total 
rewards (retrieval precisions obtained at all feedback 
iterations). 
 

3.3 Convergence analysis and storage reduction 
 
 Since the Q function estimate approximates the 
maximal expected sum of precision rates, a 
near-optimal selection for an RF strategy is learned if 
the estimate value is significantly larger than others. 
Let the agent in state kjis ,,  have u choices of actions, 
each of which is assigned a selection probability, 

)( ,, kjih sap , h = 1, 2, …, u. We compute the 

information entropy regarding to these probabilities as 

)( log )()( ,,
1

2,,,, kjih

u

h
kjihkji sapsapsE ∑

=

−= . The smaller 

the value of )( ,, kjisE , the more deterministic the 

action selection in state kjis ,, . Thus, the CBIR agent 

has learned a dominant strategy )( iXΦ  for query Xi 
if the entropy values in the initial state and those states 
sensed during all subsequent feedback iterations using 
this strategy are all less than a small threshold e. 

 To save the storage demand, we present a concept 
digesting method as follows. Assuming that two 
images determine the same dominant strategy, the 
relative entry values of the two Q̂  tables must be 
very similar. Accordingly, we let the IRRL agent 
merge, by averaging, the Q̂  tables of those images 
that determine the same dominant strategy. The Q̂  
entry update of these images is then operated on the 
same table. Nevertheless, for those images that have 
not determined their dominant strategy yet, each of 
them should still be prepared a separate Q̂  table for 
learning the optimal strategy. So there are two types of 
concepts: a determined concept consisting of those 
images that determine the same dominant strategy and 
a nondetermined concept containing an image that has 
not determined a dominant strategy. Since the storage 
demand is proportional to the number of concepts, the 
storage demand is reduced as the IRRL agent digests 
determined concepts by merging many nondetermined 
ones.  
 
4. Experimental Results 
 
 We have implemented the comparative approaches 
and made experiments with the UCR database [6] 
which contains 10,038 images covering a variety of 
real-world scenes (see Fig. 4). The images are 
manually labeled into 56 classes. The number of 
images in each class varies from 20 to 695. 
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z Experiment 1: Integration of reinforcement 
learning with relevance feedback: We 
experiment with 200,000 random queries using 
each RF technique and compute the average 
precision rates obtained at three different stages, 
namely the one before any relevance feedback 
(PR0), the one after the first feedback iteration 
(PR1), and the one after the second feedback 
iteration (PR2). It is seen from the first three rows 
of Table 1 that the three RF approaches have 
comparable performances. The fourth row gives 
the average retrieval precisions of the three 
methods and will be used for assessing the 
proposed model. The traditional short-term leaning 
scheme always starts a new query session with a 
null hypothesis about the query formulations, 
feature weights, or probability distributions. In 
contrast, the long-term learning scheme presented 
here keeps a global memory for each database 
image for storing the latest relevance information. 
We apply separately the short-term and long-term 
learning schemes in the proposed model and the 
results are shown at the bottom of Table 1. The 
improvement ratio is defined as the increment on 
the precision rate divided by the average precision 
of existing methods. It is seen that the proposed 
model using either learning schemes obtains 
substantially higher retrieval precisions than the 
average performances. Fig. 5(a) shows the first 
retrieval result of a particular query (in a 
decreasing order of similarity and the first 
retrieved image is also the query image itself) 
obtained by the short-term IRRL. With the human 
labeling, 3 images are identified as relevant (a 
precision rate of 30%), and the others as 
nonrelevant. Fig. 5(b) shows the retrievals using 
the short-term IRRL after the first feedback 
iteration, a retrieval precision of 50% is achieved. 
On the other hand, we also submit the same query 
image to the long-term IRRL agent, Fig. 5(c) 
shows the retrievals after the first feedback 
iteration, a higher retrieval precision of 80% is 
observed. 

z Experiment 2: Demonstration of concept 
digesting method: Fig. 6 shows the number of 
concepts (e is set to 1.0) with the number of 
processed queries. When the database is just 
created, the number of concepts is equivalent to the 
number of images (10038) since every image 
corresponds to a nondetermined concept. As the 
IRRL agent experiences more query sessions and 
digests determined concepts by merging many 
nondetermined concepts, the number of total 

concepts decreases. Finally, the number of 
concepts is reduced to 1480 which is about only 
15% of the original number, the storage demand is 
also reduced to 15% of its original complexity. 
Thus the IRRL agent is suited to work with a 
dynamic database and is able to perform relevance 
learning for newly added images. 

 
4. Conclusions 
 
 Most researchers strive to develop a new relevance 
feedback approach and ignore the possible synergetic 
contribution of existing ones. In this paper, we have 
proposed an image relevance reinforcement learning 
model that learns the optimal strategy for selecting the 
right relevance feedback technique, at the right 
iteration, for the right query image. A long-term 
learning scheme has been presented to derive the prior 
relevance knowledge, such that, the relevance learning 
can start from the preceding state instead of a null 
hypothesis. The average precision rates obtained using 
the proposed model are significantly higher than those 
obtained using the traditional methods. Experimental 
results manifest that the proposed concept digesting 
method can reduce the storage demand significantly. 
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1. Initialize 0.1),(ˆ
,, =hkji asQ  for each i, j, k, and h. 

2. While a user starts a query session Do 
 2.1. Identify query index i and set iteration index j = 0. 
 2.2. If there is no prior relevance information for current 
 query, set the last performed action k = 0, goto Step 2.4. 
 2.3. Identify the last performed action k for current query  
 and retrieve the corresponding relevance information. 
 2.4. Set the current state to 

kjis ,,
. 

 2.5. If k = 0 compute t nearest images according to the 
 Euclidean distance; otherwise, compute t nearest  
 images according to the last performed action ak. 
 2.6. While user is not satisfied with retrieved result Do 

(a) User marks the t images as relevant or nonrelevant 
(b) Perform an action ah, uh ≤≤1 , chosen with the  
   selection probability 

   ∑
=

=
u

l
lkjihkjikjih asQasQsap

1
,,,,,, ),(ˆ),(ˆ)(  

(c) Compute t nearest images according to the  
   performed action ah. 
(d) Observe an immediate reward, r = ),( ,, hkji asτ  

(e) Observe a new state, ),( ,,,1, hkjihji ass δ=+
. 

(f) Update the table entry by  
   ) ,(ˆmax) ,(ˆ

,1,,, lhjiahkji asQrasQ
l

++= γ  

(g) j = j + 1,  k = h. 
end 

end 
 

 Fig. 3 Q-learning algorithm for the IRRL model. 
 

Table 1. Comparative performances. 
Approaches PR0 PR1 PR2 

QVM 25.41% 40.40% 41.95% 
FRE 25.41% 40.40% 42.68% 
BI 25.41% 41.25% 41.67% 

Average 25.41% 40.68% 42.10% 
short-term IRRL 25.41% 51.34% 53.73% 

Improvement ratio 0% 26.17% 27.62% 
long-term IRRL 47.84% 58.03% 58.83% 

Improvement ratio 88.27% 42.61% 39.74% 
 

Fig. 5 Retrieval examples 

Fig. 1 The system diagram for the image relevance
reinforcement learning (IRRL) model. 

Fig. 2 Illustration of combination and hybridization
schemes of QVM and FRE. 

 

 
Fig. 4 Sample images from UCR database. 

 

 
(a) the initial retrievals (precision = 30%) using short-term 
IRRL, images 4-10 are identified as nonrelevant 

 

 
(b) the second retrievals (precision = 50%) after the first
feedback iteration using short-term IRRL, images 6-10 are
identified as nonrelevant

 

 
(c) the second retrievals (precision = 80%) after the first
feedback iteration using long-term IRRL, images 8 and 10
are identified as nonrelevant.

 
Fig. 6 Number of concepts vs. the number of processed queries.
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