
Fast Vehicle Detection with Probabilistic Feature Grouping
and its Application to Vehicle Tracking

ZuWhan Kim and Jitendra Malik
Computer Science Division

University of Berkeley, CA, USA
{zuwhan,malik}@cs.berkeley.edu

Abstract

Generating vehicle trajectories from video data is an im-
portant application of ITS (Intelligent Transportation Sys-
tems). We introduce a new tracking approach which uses
model-based 3-D vehicle detection and description algo-
rithm. Our vehicle detection and description algorithm is
based on a probabilistic line feature grouping, and it is
faster (by up to an order of magnitude) and more flexible
than previous image-based algorithms. We present the sys-
tem implementation and the vehicle detection and tracking
results.

1. Introduction

Generating vehicle trajectories from video data is an im-
portant application of ITS (Intelligent Transportation Sys-
tems). Vehicle trajectories are used in analyzing traffic flow
parameters for ATMIS (Advanced Transportation Manage-
ment & Information Systems). In particular, we are in-
terested in the application to evaluating existing driver be-
havior models or finding a new one. Since the 1950s, re-
searchers from many different fields have proposed well
over a hundred traffic models, [13], [11], [1]. However, it
has been difficult to evaluate those models due to the lack
of real data (vehicle trajectories).

To model drivers behaviors well it is important to have
accurate information about inter-vehicle spacing and vehi-
cle trajectory. Previous video-based approaches, [9], [3],
were suitable enough for counting the number of vehicles
or finding general traffic flows. However, they were ei-
ther restricted to being used under favorable lighting and
traffic conditions [9] or did not give accurate location and
dimension of vehicles [3]. We present an approach which
works well under various lighting conditions and provides
high quality trajectories. These are critical ingredients in
developing good models of traffic flow.

Other ways of generating traffic flow parameters are to
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Figure 1. Example images from three cameras
taken at the same time.

use loop detectors or instrumented vehicles. Loop detectors
show very good detection performance, but they only give
limited information because they are point detectors (no
trajectories can be obtained). Instrumented vehicles gen-
erate long trajectories with detailed maneuvering parame-
ters. However, given a travel, we only get a single trajec-
tory of a single driver (and some additional information on
the leading or following vehicles). Therefore, only trajec-
tories from a small number of drivers (who are aware of
the experiments) are available, which may bring in a bias to
the result. On the contrary, a huge number of trajectories
(much less biased, but shorter) can be obtained from video
data. Also, the cost of the data collection is significantly
lower than those of other methods. We expect that our work
will provide good complementary data of other methods.

Example images from our video data are shown in Fig-
ure 1. The images were obtained from 3 cameras installed
on the roof of a 30-story building alongside a freeway.
There are small overlapping regions between the cameras
covering nearby regions. The nearest image, Figure 1c, is
close to a nadir (top) view while the farthest one, Figure 1a,
is very oblique.

It is difficult to generate reliable vehicle trajectories from
such video data because:

• The tracking targets (vehicles) vary in size, shape, and
color.

• The video data includes various times and weather
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conditions. Thus, the illumination conditions, such as
the direction of the shadows, vary.

• Vehicles can be occluded by other vehicles or struc-
tures.

• Traffic conditions vary, and many of the tracking al-
gorithms degrade with heavy traffic congestion, where
vehicle moves slowly, and the distances between vehi-
cles are small. In this case, motion-based vehicle de-
tection and background extraction are difficult and it is
also hard to separate nearby vehicles.

In this paper, we present a new vehicle tracking approach
which is based on a model-based vehicle detection algo-
rithm. Our vehicle detection algorithm is based on line fea-
tures, and it is faster than previous image-based algorithms.
It is also flexible (from scales and viewing angles) because
our model is based on the probabilistic density functions
(PDF’s) of the 3-D distances between lines. In addition, it
gives 3-D description of the vehicles which can possibly be
used for the vehicle classification in the future.

In Section 2, we present related work and overview our
approach. The vehicle detection and description algorithm
is shown in Section 3, and other implementation issues in-
cluding the tracking algorithm is presented in Section 4. In
Section 5, we show detection and tracking results. Finally,
we present the conclusion and future work in Section 6.

2. Related Work and Our Approach

2.1. Driver Behavior Models

Driver behavior models explain driver’s maneuvers, such
as accelerating, decelerating, and changing lanes, with re-
spect to the environmental variables, such as the current
speed, the distance to the leading vehicle, and the orien-
tation and destination. For example, car-following models
explain following vehicle’s (follower) speed change with re-
spect to follower’s speed, leading vehicle’s (leader) speed,
and the distance between two vehicles. Following equation
is an example car following model:

a(t) = vm(t)
∆ẋ(t − T )
∆xl(t − T )

where v(t) and a(t) are follower’s speed and acceleration at
time t, and ∆x(t− T ) is the distance between two vehicles
at time t − T (T is the reaction time). Many different pa-
rameters for m, l, and T have been suggested from various
experiments. Our goal is to generate useful trajectories to
assess or generate these parameters.

Note that we need trajectories in pairs. Therefore, in this
application, detection rate is less important than, for exam-
ple, the accuracy of the trajectories, because we only use

pairs of trajectories of two nearby detected vehicles. How-
ever, higher detection rate is still required because it pro-
vides more pairs of trajectories.

Another observation is that the distance between vehi-
cles, to be precise the distance between the rear end of
the leader and the front end of the follower, is an impor-
tant parameter. Therefore, good localization on the vehicle
positions and correct estimation of the vehicle dimensions
(lengths) are also required.

2.2. Previous Work

There are two well-known vehicle tracking approaches.
The first one, [9], [5], is the background subtraction al-
gorithm. In this approach, the background is dynamically
estimated from incoming images, and the difference be-
tween the current and the background images is thresholded
to form “blobs” corresponding to vehicles. This algorithm
gives reliable vehicle detection given a favorable illumina-
tion condition and a camera angle.

However, the performance of the background subtraction
algorithms significantly degrades in the presence of heavy
shadows. It is difficult to separate a shadow from the vehicle
because the shadow moves along with the vehicle. Also, of-
ten, an occlusion or a shadow cast on nearby vehicles makes
the separation between vehicles difficult. In addition, the
background estimation performance is degraded when the
traffic is heavy because the movements of the vehicles are
small and a significant part of the background is not observ-
able.

The other approach, [3], uses corner features. In this ap-
proach, individually extracted and tracked corner features
are grouped based on the proximity of their positions and
the similarity of the motion. This approach gives good
detection even with less favorable illumination conditions.
However, it still has several limitations:

• The location and the dimension of a detected vehi-
cle may not be accurate because they are estimated
from the corner features which do not cover the whole
vehicle (moreover, some of them may belong to the
shadow).

• The position error caused by missing features (track-
ing failures) may introduce a significant error in the
velocity estimation.

• The feature grouping is based on only the locations and
the motions of corner features. Thus, there are times
that features of nearby vehicles (of the same speed) are
grouped together, or the features of a large vehicle (for
example, trailer trucks) are not grouped together.
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2.3. Our Approach

We introduce a new approach based on a 3D vehicle de-
tection and description algorithm. We first detect vehicles
at the entrance area (where the viewing angle is favorable),
and track the detected vehicles based on their intensity pro-
files. Although our application does not require realtime
processing, fast computation is still important because we
need to process a huge volume of video data. Most of
the previous vehicle detection algorithms (whether they are
based on template matching or not) work on the intensity
image pixels directly, and requires significant processing
time. In the next section, we present a fast algorithm which
uses the line features. For robust detection, we apply proba-
bilistic reasoning. We also present a dynamic programming
algorithm for fast reasoning.

3. 3D Vehicle Detection and Description with
Probabilistic Feature Grouping

In this section, we introduce a model-based car detec-
tion and description algorithm. Vehicle detection, descrip-
tion, and/or recognition have been an active research area
[8], [16], [12], [14], [2], [7], [17]. Early model-based ap-
proaches, [8], [16], have been focused on generic pose esti-
mation with pre-defined shape. Our model is more flexible
because it is based on probability distributions.

Other approaches have been focused on high resolution
ground views, [14], [2], or uses the background subtraction
algorithm, [7]. Most of these approaches require a large
amount of computation, except the background subtraction
algorithms which suffer from shadow and traffic conges-
tion.

In [12], Rajagopalan et al. presented vehicle detection
algorithm based on higher order image statistics. How-
ever, it requires too much computation while the detection
rate (73% with 14% false alarm) was not satisfactory (al-
though the experiment was performed on relatively com-
plex scenes). In addition, they have focused on the detec-
tion algorithm and the localization performance may not
be as good. In [17], Zhao and Nevatia presented an al-
gorithm of detecting cars from aerial images by examin-
ing their rectangular shape, front and rear windshields, and
shadow. It showed good detection rate (about 90% with 5%
false alarm) with less computation (about 30 secs plus pre-
processing for 1000 × 870 image on a PII 400 MHZ), but
it still requires image-based comparison and the amount of
the computation is still large for our application. In addi-
tion, the detection is based on the rectangular boundaries,
which is only applied for aerial images.

In this section, we present a faster and more flexible al-
gorithm, which gives 3D structures (descriptions) of the de-
tected cars at the same time. Our algorithm uses line fea-

Figure 2. The horizontal and vertical line fea-
tures used in the algorithm.
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Figure 3. The car model. HL and HR are the left
and right lines, V0, . . . , V1 are the vertical lines,
B is the base line, and S is the shadow line.
The probability density functions of the config-
uration parameters (eg. w and di in the world
coordinates) are estimated from examples and
used for the detection and description.

tures. Example line features (horizontal and vertical) are
shown in Figure 2. Given the orientation of the cars (which
is known) the line feature extraction algorithm is as fol-
lows: 1) apply a 2-D oriented edge detectors (horizontal
and vertical, separately), 2) apply the non-maxima suppres-
sion algorithm [4] on the given orientation, and 3) perform
the connected-component analysis for line grouping.

Figure 3 shows our car model. Once line features are
extracted, we fit the car model to them. We assume that
the front line (V0), the rear line (V5), the left line (HL), and
the right line (HR) of a car are always detected. Our al-
gorithm is applied for each vertical line feature, v0, which
we assume to be V0. We then gather near-by horizontal line
features assuming maximum car width and length. For each
pair of horizontal line features, l, and r (which we assume to
be HL and HR), we gather vertical line features, v1, . . . , vn

(ordered from front to rear), and apply a dynamic program-
ming algorithm to find the configuration among them.

In the following equations, we will use wi,j as a short-
hand for Vi = vj , w0�=0 for V0 �= v0, and P (l, r) for
P (HL = l, HR = r). Our goals are:

Detection: for each v0, estimate P (w0,0|E) where E is all
the evidence we gather and use.

Description: find l, r, m0, . . ., m5 which maximize
P (l, r, w1,m1 , . . . , w5,m5 |w0,0,E).
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We estimate P (w0,0|E) by summing up all the possi-
ble configurations of HL, HR, and Vi because our model
requires evidence derived from an unknown assignment of
these variables, such as the width of the vehicle and the dis-
tances between the vertical lines.

P (w0,0|E) =
∑

P (w0,0, l, r,w1,m1 , . . . , w5,m5 |E)

where

P (w0,0, l, r, w1,m1 , . . . , w5,m5 |E)

=
P (w1,m1 , . . . , w5,m5 |w0,0, l, r, E)P (E|l, r, w0,0)P (l, r|w0,0)P (w0,0)

P (E)

We assume that P (w0,0) is uniform (over all the possi-
ble v0) as well as P (l, r|w0,0) (which is 1/|HL × HR|).
In the following subsections, we describe how we estimate
P (E|l, r, w0,0) and P (w1,m1 , . . . , w5,m5 |w0,0, l, r,E).

Unfortunately, P (E) is difficult to estimate. A
typical approach to handle this problem is to use
P (w0,0|E)/P (w0�=0|E) instead of P (w0,0|E). In this case,

P (w0,0|E)
P (w0�=0|E)

=
P (E|w0,0)P (w0,0)

P (E|w0�=0)P (w0�=0)
.

However, in most of the feature grouping problems,
P (E|w0�=0) is also difficult to estimate. Fergus et al. uses
this approach in [6], but it is not clear how they handle this
problem (or they use unrealistic assumptions). Therefore,
with limited choices, we use an assumption that P (E) is
uniform over v0. Then, P (w0,0|E) ∝ P (w0,0|E)P (E) =
P (w0,0,E).

3.1 P (E|l, r, w0,0)

We use the distance (in the world coordinates) between l
and r and the existence of the shadow and the base lines (S
and B of Figure 3) to estimate P (E|l, r, w0,0). In addition,
we use a gradient sign of l or r according to the shadow
location. For example, when the shadow is cast on the left
side of the vehicle, the left side of l will be darker than its
right side.

In principle, the sun angle can be estimated from the ap-
proximate position of the vehicle (on the earth) and the time
and the date. When such information is not available, we
can estimate the angle of the Sun from the direction and the
length of shadow cast. We have implemented the second ap-
proach which is good enough to analyze a video sequence
of 10 minutes or shorter.

3.2
∑

P (w1,m1 , . . . , w5,m5 |w0,0, l, r,E)

For simplicity, we define Φ ≡ {w0,0, l, r}∪E. It is much
harder to estimate

∑
P (w1,m1 , . . . , w5,m5 |Φ) because of

its complexity. Although there are only 5 lines that we need

to configure, we still have P5,n different assignments (mul-
tiplied by |HL| × |HR| × |V0|, altogether) when n is the
number of the vertical line features. In addition, we need to
deal with at least six dimensional joint probabilities which
is huge enough to result serious overfitting. In this section,
we present a dynamic programming algorithm to estimate
this value efficiently.

The evidence features we use are 1) the distances be-
tween lines, 2) the gradient changes at the lines, 3) the sam-
pled intensity levels between lines, and 4) the length (cov-
erage) of the lines, The distances are estimated in the world
coordinate. For this, we assume that the height of the car is
fixed (1.4 meter for the passenger cars) and the heights of
the front hood and the trunk of the car are 1 meters each.
Then we back-project the (center) positions of the line fea-
tures to 3-D coordinate.

The gradient changes on the edge of the windshields are
useful cues to detect cars [17]. As in [17], we assume
that, for most of the bright cars, the windshields are usu-
ally darker than the car frame, and for most of the dark cars,
the windshields are brighter than the car. In other words,
with a high probability p, the gradient directions of V1 and
V2 (or V3 and V4) are opposite to each other while those of
V1 and V3 (or V2 and V4) are the same.

To reduce the computational complexity of the problem,
we apply a dynamic programming algorithm based on fol-
lowing Markov-style assumptions:

P (wi,j |wi−1,k, vi−2, . . . , v1, Φ) = P (wi,j |wi−1,k, Φ),
P (wi,j |wi−1,φ, wi−2,k, vi−3, . . . , v1, Φ)
= P (wi,j |wi−1,φ, wi−2,k, Φ), and

P (wi,j |Φ) =
∑

P (wi,j , vi−1, . . . , v1|Φ),
(1)

where wi,φ is the probability of Vi being missing. The first
and the third assumptions are typical Markov assumptions,
and the second one extends them to a case of missing fea-
tures.

Then,

∑
P (wi,j , wi−1,mi−1 , . . . , w1,m1 |Φ)

=
∑

k<j

P (wi,j |wi−1,k, Φ)P (wi−1,k|Φ)

+
∑

k<j

P (wi,j |wi−1,φ, wi−2,k, Φ)P (wi−1,φ|wi−2,k, Φ)P (wi−2,k|Φ)

+ . . . ,

(2)
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where the parameters can be obtained as follows:

P (wi,j |wi−1,k, Φ) = P (wi,j |wi−1,k, l, r, E) =

P (E|wi,j , wi−1,k, l, r)(1 − P (wi,φ|wi−1,k, l, r, E))
∑

j′>k P (E|wi,j′ , wi−1,k, l, r)

P (wi,j |wi−1,φ, wi−2,k, l, r,E)

=
P (E|wi,j , wi−1,φ, wi−2,k, l, r)(1 − P (wi,φ|wi−1,φ, wi−2,k, E, l, r))

∑
j′>k P (E|wi,j′ , wi−1,φ, wi−2,k, l, r)

. . .

(3)

Our implementation allows at most two consecutive miss-
ing features (i.e. P (wi,j |wi−1,φ, wi−2,φ, wi−3,φ) = 0).

Assuming that the evidence features are independent to
each other given two vertical lines,

P (E|wi,j , wi−1,k, l, r)
= D(dj,k|i, i − 1)G(gj,k|i, i − 1)I(ij,k|i, i − 1)C(cj |i),

where D(dj,k|i, i − 1) is a PDF of distance between Vi

and Vi−1 being dj,k (the distance between vj and vk),
G(gj,k|i, i − 1) is a probability of the gradient differ-
ence between Vi and Vi−1 being that of vj and vk (gj,k),
I(ij,k|i, i − 1) is a probability of the intensity samples be-
tween Vi and Vi−1 being similar to that of vehicle frame in-
tensity, and C(cj |i) is a PDF of the length (coverage) of the
extracted line feature. The vehicle frame intensity is sam-
pled near the front line. We assume that D(dj,k|i, i − 1) is
Gaussian, and G(gj,k|i, i − 1) is binary (whether the signs
of the gradients are the same or the opposite). For exam-
ple, the sign of the gradient of V1 is opposite to that of the
V2 with the probability G(opposite|2, 1). The parameters of
D(d|i, i−1) and G(g|i, i−1) can be obtained by observing
learning examples.

Similarly, P (E|wi,j , wi−1,φ, wi−2,k, l, r) =
D(dj,k|i, i − 2)G(gj,k|i, i − 2)I(ij,k|i, i − 2)C(cj |i).
In fact, D(d|i, i − 2) can be obtained from D(d|i, i − 1)
and D(d|i − 1, i − 2) when we assume that they are all
Gaussian:

E[D(d|i, i − 2)] = E[D(d|i, i − 1)] + E[D(d|i − 1, i − 2)]

V [D(d|i, i − 2)] =
√

V [D(d|i, i − 1)]2 + V [D(d|i − 1, i − 2)]2.

We assume that P (wi,φ|wi−1,k, Φ) = P (wi,φ), where
P (wi,φ) can also be obtained from learning examples.

In summary, our dynamic programming algorithm fol-
lows the steps below:

1. Given v0, l, and r, gather n vertical line candidates (on
the right side of v0) for V1, . . . , V5.

2. Make a 6 × n table of P (wi,j |Φ).

3. P (w0,0|Φ) = 1 and P (w0,i|Φ) = 0 for all i �= 0.

4. Fill in the table using Eq. 2 and Eq. 3.

5. Sum up the last row of the table:
∑

P (w5,m5 |Φ) =∑
P (w5,m5 , . . . , w1,m1 |Φ) (Eq. 1).

Our algorithm is different from Hidden Markov Model
(HMM) because it allows to use relative features such as the
distances, the gradient differences, and the intensity similar-
ities. For example, we use the distances between the can-
didates of i and i − 1, not the near-by features (i.e. vj and
vj−1). It is hard to model such properties with HMM when
random insertion exists.

3.3. Description Algorithm

Finding P (w5,m5 |Φ) is sufficient for the detection pur-
pose but the description can also be given. The description
of the car can be obtained by applying our backtracking
algorithm: given that Vi = vj , find vk which maximizes
P (wi−1,k|wi,j , Φ). We find

P (wi−1,k|wi,j , Φ) =
P (wi,j |wi−1,k, Φ)P (wi−1,k|Φ)

P (wi,j |Φ)
.

Note that P (wi,j |wi−1,k, Φ) is calculated when we calcu-
late P (wi,j |Φ) (see the previous section). Therefore, when
we fill in the table of P (wi,j |Φ), we make another table,
argmaxk P (wi−1,k|wi,j , Φ), for the backtracking.

Where we regard the missing features, the algorithm is
slightly modified: given that Vi = lj , find lk and r which
maximize P (wi−1,φ, wi−2,φ, . . . , wi−r,k|wi,j , Φ). There-
fore, we calculate P (wi−1,φ, wi−2,φ, . . . , wi−r,k|wi,j , Φ)
for all the possible values of r (r ∈ {1, 2, 3}, in our im-
plementation). For example, when r = 2,

P (wi−1,φ, wi−2,k|wi,j , Φ)

=
P (wi,j |wi−1,φ, wi−2,k, Φ)P (wi−1,φ, wi−2,k|Φ)

P (wi,j |Φ)

=
P (wi,j |wi−1,φ, wi−2,k, Φ)P (wi−1,φ|wi−2,k, Φ)P (wi−2,k|Φ)

constant
.

3.4. Learning Data Collection

Parameters, such as D(d|i, i−1), G(g|i, i−1), I(i|i, i−
1), and P (wi,φ), can be learned from examples. We im-
plemented a user-interface to collect such learning exam-
ples. A learning example is made by clicking 8 points for
V0, . . . , V5, H0, and H1 (one point for each). We can in-
fer a car structure from given points. Once we have a car
model, we match models to the image line features, and es-
timate the parameters from those line features. Note that
we only need a relatively small number of learning exam-
ples because all of the above parameters are independent to
each other.
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Figure 4. Flow diagram of the system

4. Tracking and System Implementation

The flow diagram of our system is shown in Figure 4.
The cameras are installed on the roof of a tall building
and, because of the wind, we sometimes get unstable video
streams. Therefore, we first apply a stabilization algorithm
to all images. For each image, we manually assign sev-
eral “static” (background) areas for the stabilization. Then,
for each frame, we find corners from these areas, find their
matches in the previous frame, estimate camera transforma-
tion (affine), and generate new images using the transfor-
mation matrix.

Then, we apply the vehicle detection and description al-
gorithm on a small entrance area of the first image. Since
the algorithm is applied to each and every line feature, we
may have many overlapping hypotheses for a single car. We
choose the best hypothesis by comparing P (w0,0,E). The
overlap analysis also includes the vehicle hypotheses de-
tected in the past frames. It results redundant detection in
all the frames where the vehicle is visible, which increases
the detection rate.

The tracking is performed on the mosaic of all three im-
ages. We manually calibrated all three cameras. We rectify
images using the calibration parameters and attach them to
generate the mosaic image. Note that the brightness and
contrast levels of all three cameras are different from each
other (see Figure 1). Therefore, we adjust the brightness and
contrast levels by examining those of overlapping areas: we
estimate mean and standard deviation of the intensity pix-
els, and (linear) transform all the intensity levels of the im-
ages so that the brightness and contrast levels of all three
images be the same. We only allow small changes (w.r.t.
frames) on the parameters for modifying the brightness and
contrast levels because a radical change on such parame-
ters degrades the tracking performance. Figure 5 shows the
resulting mosaic image.

The tracking is performed based on the zero-mean cross-
correlation matching [15]. To reduce computation, we per-
form the search on a two-level image pyramid. For this, we
make two mosaic images of different resolution, where the

Figure 5. The mosaic image of Figure 1.

Figure 6. An example detection result. Vehicles
detected with higher confidence are shown in
red.

resolution is automatically determined with respect to the
resolution of the original images. The search is performed
with 9 × 9 RGB image patches (15 × 15 for the fine-level
image) on 11× 11 search windows (5× 5 for the fine-level
image).

The track may be lost for several consecutive frames due
to occlusions or other accidental alignments. For example,
in Figure 1c, a part of the first (lower, in the picture) two
lanes are occluded by the shadow of a traffic sign struc-
ture. To deal with such a case, when a search is failed in
one frame, the system continues to search in the following
frames based on the previously estimated vehicle speed. A
trajectory is discarded when it loses the track for more than
a certain number of frames (3 in our implementation). We
do not try to refine the tracking result, such as by applying
the Kalman filter, because it is better not introduce any bias
on the resulting trajectories than produce smooth ones.

5. Experimental Results

The detection algorithm works in realtime (faster than
10 frame/sec for the 200 × 200 entrance area). However,
the whole system does not because of the time required for
the image retrieval (from hard disk, 3 MB of uncompressed
images per frame) and tracking.

Figure 6 shows an example detection result in a single
frame. We see that the detection and description quality
is very good. The quality of the image is poor (smoothed
interlaced video) and one car was not detected because im-
portant lines were not detected including the front line. Cur-
rently, we are in a process of converting the data collection
procedure into digital, and we expect the detection rate be
significantly increased.

To evaluate our grouping performance, we applied An-
other detection result is shown in Figure 7. It is much
more difficult than the highway images. Shadows of the
trees generates distracting lines and vehicles are parked very
close from each other which makes the segmentation among
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Figure 7. Another detection result with a much
more complicated scene

.

vehicles very difficult (see line segments). Nevertheless,
our algorithm shows reasonable grouping performance. Out
of 21 cars (we do not count the van on the lower-left corner),
14 were correctly detected with 1 false alarm (or significant
location errors). Four of the detected vehicles had small lo-
cation errors which caused misdetection of several vehicles
(which were detected but removed in the overlap analysis).

An example tracking result is shown in Figure 8. We find
that most of the vehicles are correctly localized and tracked.
We observe slight location errors for the vehicles on the left
side. This is not the detection error but due to the image-
based tracking algorithm which does not handle perspective
changes. Our future work includes model-based tracking
(Section 6). Our detection algorithm does not handle large
trucks but a different algorithm will be applied for the truck
detection. In fact, it is an easier problem because it is just to
find a long rectangular structure. For example, techniques
from building detection and description ([10]) can easily be
applied.

A comparison with a manual count is shown in Table 1.
The detection rate was 85% (116 out of 137) and the false
alarm rate was less than 1% (only one). The localization
performance was very satisfactory, and only two vehicles
were detected with a significant position error (an error big-
ger than 1/3 of the size of the vehicle). The false alarm
was generated from a carpool lane mark combined by the
shadow of a dark vehicle (which was counted as misdetec-
tion). However, no valid trajectories were generated from
it.

Tracking failures occurred on several vehicles because
of 1) occlusion by a large truck (or their shadow casts) for
more than 10 frames, and 2) specular highlights. For exam-
ple, the specular highlight of vehicle on the top of Figure 6
(in the lower right corner) gradually disappeared after sev-
eral frames.

Table 1. A detection result on 137 vehicles.
Large trucks were not included.

total # of vehicles 137
# of correctly detected (passenger cars) 97
# of correctly detected (other vehicles) 19

detected with wrong position 2
# of missed detection 19

# of false alarms 1
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Figure 9. Resulting trajectories.

The resulting trajectories are shown in Figure 9 and Fig-
ure 10. We find that the quality of trajectories is superior
(less noisy) than that of other vision-based data. We ob-
serve a good quality of shockwaves (delayed deceleration)
on the second and the third lane, which will serve as useful
data to generate the parameters of car-following models.

6 Conclusion and Future Work

We presented a vehicle detection and tracking sys-
tem based on model-based vehicle detection. It provides
high quality vehicle trajectories with accurate localiza-
tion, which will bring a significant improvement in traf-
fic flow analysis. We also introduced a new 3-D vehicle
detection and description algorithm based on line features.
Our feature-based algorithm has significant advantages over
image-based algorithms (such as [17]). It is fast enough that
it can be applied to many other applications which requires
fast (or even realtime) processing. It is also flexible. It is
much more free from the scale problem, and allows detec-
tion from more oblique views. The performance does not
depend on the small change of the view points.

In addition, improving the description performance can
enable the vehicle classification. For example, we can dis-
criminate passenger cars from SUV’s and pick-up trucks
with the description results (line configuration). Thorough
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Figure 8. An example tracking result.
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Figure 10. Resulting trajectories plotted lane by
lane.

analysis with such level of classification is unprecedented
in transportation studies. Another possibility is to apply a
similar technique for tracking. The current tracking perfor-
mance is not satisfactory due to occlusions, specular high-
lights and the change of perspectives. We believe that intro-
ducing invariant features such as lines and 3-D structure of
the vehicle will improve the tracking performance signifi-
cantly.
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