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Abstract

Automatically understanding events happening at a site is
the ultimate goal of visual surveillance system. This pa-
per investigates the challenges faced by automated surveil-
lance systems operating in hostile conditions and demon-
strates the developed algorithms via a system that de-
tects water crises within highly dynamic aquatic environ-
ments. An efficient segmentation algorithm based on robust
block-based background modeling and threshol ding-with-
hysteresis methodol ogy enables swimmers to be reliably de-
tected amid reflections, ripples, splashes and rapid lighting
changes. Partial occlusions are resolved using a Markov
Random Field framework that enhances the tracking capa-
bility of the system. Visual indicators of water crises are
identified based on professional knowledge of water crises
detection, based on which a set of swimmer descriptors
has been defined. Through seamlessly fusing the extracted
swimmer descriptors based on a novel functional link net-
work, the system achieves promising results for water crises
detection. The developed algorithms have been incorpo-
rated into a live system with robust performance for dif-
ferent hostile environments faced by an outdoor swimming
pool.

1. Introduction

Automated video-based surveillance for real-time human
behavior analysis provides an efficient way of detecting the
occurrence of any abnormal events amid our surroundings.
The technical challenges faced encompass the need to reli-
ably detect and track moving targets within a possibly dy-
namic background and an inference module that interprets
targets’ behavioral patterns as events with semantic mean-
ing. The recent increase in demand for such technology
in real applications, e.g., for homeland security, motivates
research into systems that extend beyond indoor and con-
trolled outdoor environments [1]-[3] to more realistic hos-
tile environments typically encountered in real applications
[4],[5]. Major difficulties however continued to be faced by
most state-of-the-art systems due to rapidly changing envi-

ronmental lighting, highly dynamic backgrounds and poor
visibility of targets.

In this paper, an outdoor surveillance problem, which in-
volves human behavior monitoring within hostile aquatic
environment, is considered. On top of some new in-
sights into problems faced for common outdoor environ-
ments, problems unique to human detection within dy-
namic aquatic environment are also detailed. Such system
is highly useful for lifeguard and potentially be applied at
unattended pool to enhance the safety at swimming pool.

Previous work on automated aquatic surveillance system
for drowning detection is limited to a few patented systems
given in [6]-[8]. The reliance on underwater cameras in
these systems inherit weaknesses: 1) expensive installation
costs, and 2) drowning detection being constrained to vic-
tims who have sunk to the bottom of the pool. To circum-
vent these drawbacks, the proposed system is based on a
network of highly mounted overhead cameras. This allows
the detection of early drowning behavior from the onset of
water crisis situation. Hence, any rescue effort could be ini-
tiated much earlier than those in [6]-[8].

In the considered problem, one major technical chal-
lenge faced is to accurately detect and track swimmers
within the noisy outdoor aquatic environments. The con-
ventional methods [1],[2], where single or mixture of Gaus-
sian distribution was used to model the temporal variation
of background pixels, have been found to be inadequate
for this highly non-stationary environments. To effectively
detect and segment swimmers, a novel block-based back-
ground modeling and a thresholding-with-hysteresis meth-
ods are developed. The block-based background modeling
captures well the spatial dependencies and dynamic nature
of the aquatic environment. Whereas, the thresholding-
with-hysteresis method addresses the problem of select-
ing thresholds within a background subtraction framework,
which is to yield a high sensitivity in detecting swimmers
while suppressing the background noise.

The ability to handle partial occlusion is also incorpo-
rated into the system with the development of a novel occlu-
sion handling scheme. In contrast to previous work based
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on spatial Mahalanobis distance [9] and geometrical fea-
tures [10], the proposed method captures the spatial and
temporal correlation of swimmers in addition to color in-
formation based on a Markov Random Field (MRF) frame-
work to yield better performance. Promising results for wa-
ter crises detection have been achieved using a unique func-
tional link network which fuses extracted swimmer descrip-
tors in an optimal way. This has been proven to be a supe-
rior descriptor fusion method compared to the hierarchical
method proposed in [15],[16].

This paper is organized as follows: Section 2 de-
scribes technical challenges faced in human detection
within aquatic environments. Section 3 details the pro-
posed block-based background model and thresholding-
with-hysteresis method for swimmer extraction. Section 4
explains the proposed Markov Random Field (MRF) frame-
work for partial occlusion handling. Section 5 describes the
proposed functional link network for water crises inference.
Experimental results and some concluding remarks are pre-
sented in Sections 6 and 7, respectively.

2 The challenges at an outdoor
aquatic environment

Due to continual disturbances caused by water ripples and
splashes, the aquatic environment is relatively more hostile
than most indoor and outdoor environments typically con-
sidered in the literature. Figure 1 shows two consecutive
frames taken from a typical pool scene. The background
movements at the reflective regions, lane dividers and shad-
ows could be easily mis-identified as foreground objects’
movements. In addition, poor visibility of swimmers in wa-
ter due to reflections (from sunlight and nighttime lighting)
and the problem of occlusion makes accurate segmentation
a very challenging problem.
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Figure 1: Background movements at reflective areas, lane
dividers and shadows. From left to right: Two consecutive
frames from a typical scene captured and the corresponding
absolute difference image between both frames.

Apart from the above issues unique to aquatic environ-
ments, there are common problems faced in outdoor surveil-
lance, i.e., continual illumination changes due to ambient
lighting, auto-gain effects of the cameras, and etc. Fast
background updating is important to adapt to such illumi-
nation changes. This however will exacerbate the problem
of foreground objects blending into the background model
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due to segmentation errors. Corruption of the background
model will in turn lead to more segmentation errors on the
subsequent frames.

Other technical challenges include the need to have an
algorithm that runs real-time and is suitable for implementa-
tion at low cost, low power and using common-off-the-shelf
hardware platforms.

3 Swimmer detection

The proposed methodology for swimmer extraction con-
sists of a learning phase which builds the initial background
model and a detection phase which segments out swimmers
from the non-stationary pool background as presented in
Figure 2.

Learning phase:

Background
scene generation

Acquisition of

A sequence of
. block-based model

video frames

Detection phase:
Block-based model |  Acquisition of
Currentframe  for packground block-based model

| | 1

Block-based model Block-based differencing Buffering background
for swimmer | and pixels for updating
T thresholding-with-hysteresis
¥

Object formation
(connected component labeling)

Object association
and tracking

Acquisition of
block-based model

Figure 2: Architecture of the proposed segmentation algo-
rithm.

3.1 Initial block-based background modeling
Video frames captured during the learning phase possibly
contain both moving and stationary foreground swimmers.
Removing foreground swimmers to establish a “clean”
empty scene is crucially needed to yield an accurate back-
ground model for good segmentation of swimmers. To build
a clean background scene, a skin color model is first applied
as a pre-processing step to isolate swimmer pixels from the
background formation process. Residue swimmer pixels,
which could be regarded as impulsive noise among the col-
lected background pixels when analyzed over time, are then
effectively removed using a temporal vector median filter as
follows.

Let V(i, ) be an array of color vectors collected over
T frames, i.e. V(i,5) = {V:(i,j) |t = 1,...,T}, where
V.(i,j) is the color vector of the ¢th image at position-
(Z,7). The sampling rate that determines the temporal in-
terval between two consecutive V¢(7, j) was decided em-
pirically after considering a tradeoff between the duration
needed for the learning phase and the efficiency to remove
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Figure 3: Generation of a background scene using a tempo-
ral vector median filter. (a) A sequence of frames containing
foreground swimmers; (b) Background scene obtained.

swimmer pixels. Performing vector median filtering on
V.(i,j) for all i and j produces Y (i, j) such that

Y(ir) = {Va(i.d) € V()| min STV, )= Va(ii )l

M
A composition of Y(i,j) forms the initial background
scene

B:{Y(i,j)|i:1,...,Nandj:1,...,M}, )

where N and M are the height and width of the video frame
respectively. Figure 3 shows the generation of a “clean”
background scene from a sequence of “training” frames
containing moving and stationary swimmers.

Instead of modeling each background pixel indepen-
dently, the background model is defined to be cluster cen-
troids of homogeneous color regions within blocks forming
the background scene B. This captures the strong spatial
correlation among the pixels. From our experiments, we
found CIELa*b* to produce better swimmer segmentation
results compared to other color spaces. The background
scene is thus first converted into the CIELa*b* space, form-
ing matrix B’. To form the background model, two steps are
then taken as follows: (i) dividing B’ into m X n number
of non-overlapping s x s square blocks, and (ii) applying
a hierarchical k-means [12] on each square block to obtain
cluster centroids of homogeneous regions. The clustering
process is initiated by assuming each square block to be one
dominant data cluster. In the subsequent iterations, smaller
and more compact data clusters are formed through split-
ting until the distance of the two closest cluster centers is
smaller than a threshold or the number of clusters reaches
three, whichever is achieved first. The initial background
model is thus defined to be

C={CG,j)|i=1,...,m;j=1,...,n}, (3)

where C(i,j) = {C(i,7)} is the set of cluster centroids
of homogeneous regions formed in block-(¢, 7).

3.2 Foreground object detection

Swimmers are detected within a modified background sub-
traction framework. Color discrepancy is defined to be the
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Figure 4: Comparison of segmentation results between
cases (b) without and (c) with the eight-neighboring back-
ground blocks when computing D for the sample frame in

(a).

minimum [y -norm between the pixel of the incoming image
and cluster centroids C (i, j) within the corresponding back-
ground block. Additionally, distances from the surround-
ing eight-connected background blocks are also computed
to account for background motions.

Let dpyin(i,7) be the minimum color discrepancy mea-
sure between a pixel color at location-(7, j) and the clus-
ter centroids of its surrounding eight-connected background
blocks. Obtaining d,,;x (i, ) for all i and j yields a differ-
ence image D to be thresholded for swimmer detection:

D = {din(ij) [i=1,...M;j=1,....,N}. &

With the consideration of the eight-neighborhood structure,
this reduces significant mis-classification errors at lane di-
viders and shadows due to the background movements. Fig-
ure 4 depicts a typical example obtained for cases with and
without the eight-neighborhood structure.

The choice of a suitable threshold has always been
a tricky problem for foreground detection.  Single-
thresholding method commonly applied for deciding what
a significant change is often leads to a tradeoff between the
detection rate and mis-classification rate. An elegant so-
lution based on the thresholding-with-hysteresis principle
[11] is proposed where a high and a low threshold, denoted
T}y and Tj respectively, are used. A swimmer is detected
only if a region of connected pixels above T; contains also a
given fraction of pixels above T},. We first produce a binary
thresholded map marking pixels with d;,,;,,(i,5) > T} us-
ing “1”s. A low resolution image of the binary map, called
the parent map is then constructed. Elements in this parent
map are labelled “1” if the number of original binary pixels
within it with d;,(i,7) > T} is above a pre-determined
value. A connected region of pixels with d,,;, above T}
is classified as foreground if its corresponding area in the
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parent map also forms a connected blob. This hierarchi-
cal thresholding approach produces high detection sensitiv-
ity while minimizing the mis-classification of small moving
background as foreground.

In the same way as forming the background model, once
a swimmer is detected, a block-based swimmer model is de-
fined and updated every frame to improve the segmentation
accuracy. Let C/(i,5) = {C{(z,])} be the set of cluster
centroids of £ homogeneous regions formed based on fore-
ground pixels within block-(%, j). The foreground model is
defined as

c/={ClG,j)li=1,....om;ji=1,...,n}. (5

The color discrepancy measure defined as the minimum
l1-norm between the pixel color of the incoming image
and swimmer cluster centroids C7 (i, j) within the corre-
sponding and also the surrounding eight connected swim-
mer blocks are computed for all pixels, giving

D = {df

'min

i) |i=1,....,M;j= 1,...,N}. (6)
Pixels with df;m (,7) < dmin(%, j) are classified as the high-
est confidence swimmer pixels. The remaining swimmers
pixels are detected using the thresholding-with-hysteresis
scheme detailed earlier.

3.3 Background model updating

There is a need to recursively update the background model
to adapt to dynamic environmental changes. If the back-
ground is not updated fast enough, rapid lighting change for
example will cause accumulative errors between updates.
These errors adversely affect the background updating pro-
cess itself, thus generating a negative performance spiral.
Thus, this rule out any gradual updating scheme based on
“learning” parameters.

For our system, background model (defined in (3)) is up-
dated by operating on the mean of background pixels accu-
mulated for 10 consecutive samples. Although the median
is probably a more robust operator compared to the mean,
it could not be implemented within the real-time operation
constraint imposed. Besides, our segmentation algorithm is
sufficiently robust in ensuring the mean operation does not
introduce perceptible degradation to the background updat-
ing process.

4 Partial occlusion handling

Detected foreground regions are resolved to be individual
swimmers using conventional connected component analy-
sis. These swimmers are then tracked based on minimum
spatial Mahalanobis distances between consecutive frames.
When occlusions occur, the merging of a few swimmers

into one single blob introduces challenging problems for the
tracking process. We developed a unique MRF framework
for resolving partial occlusion while relying on a linear pre-
diction scheme to determine centroids of individual swim-
mers when full occlusion happens.

The partial occlusion handling algorithm involves two
stages: 1) over-segmenting the single detected blob into ho-
mogeneous regions based on a hierarchical k-means clus-
tering algorithm [12], and 2) labeling each segmented small
regions to the corresponding swimmers involved in the oc-
clusion based on a MRF framework. In oversegmenting
the single blob, a hierarchical k-means clustering algorithm
groups pixels within the single blob into & different clus-
ters based on pixel intensity. In spatial domain, this forms
small homogeneous regions, where each small region has
intensity different from its neighboring regions. To elim-
inate spurious noise, any region with size smaller than T’
(typically, Ts < 20) is merged with other neighboring re-
gions.

Let X be the set of all possible labels for the homoge-
neous regions, X = {X, =z, |p € Q, z, € ®}, where
Q ={1, ..., K} represents the set of region index and ® is
the set of swimmers involved in the occlusion. Let Y be the
set of all observed gray values of all homogeneous regions.
The labeling process in the second stage is to identify an
optimal labeling z* for a given Y = y, by maximizing

¥ =argmax[n P(Y =y | X =2)+m P(X =2z)]. (7)
Assuming the gray level distribution of each region to be
independent, the likelihood function P(Y | X) is thus given
by

P(Y=y|X=2)=[[Pyp|z),  ®
ped

where the P(y, | z,) is the conditional probability that the
region would be labeled x;, based on an observed gray level
distribution y,. Let #H be the normalized color histogram
with respect to the peak in the intensity space. Let also
and H;, be the normalized histogram for swimmer before
occlusion and segmented region-p, respectively. The condi-
tional probability that correlates region z,, to the swimmers
involved in the partial occlusion is defined as

Pyl o) = (w2s) ©)
Yp 1 Zp) =\ )
p p qucp -Dq
where D, and D, are the summation of the absolute corre-
sponding bin differences between H* and H;, and H* and
Hy,, respectively.

To provide spatial and temporal smoothness constraint,
P(X = z) of (7) is given by

P(X=1)= %exp( Z Ve, (x) + Z Ve, (m)) , (10)

ceCs c€Ct
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Figure 5: Partial occlusion handling scheme. 1% row: Sample frames of a video sequence containing instances of partial
swimmer occlusion; 2% row: Detected swimmer blobs, which gives only one single blob (with only one colour) when

L et

occlusion happens; 3"¢ row: The proposed scheme resolves the partial occlusion.

where Cs(x) and C;(x) are the set of all possible cliques as-
sociated with the neighborhood system, and Z is a normal-
izing constant. To ensure smoothness in the spatial domain,
the spatial clique potential function is defined to be

Ve, (2) = {ﬂ’

—fB, otherwise.

ifz, =2,and p,q € Cs, (11)

Temporal smoothness is meanwhile handled by assigning

A
o =" A, >0
Ve, (CU) = { 2vea Ao Zv€<1> v

(12)
0, otherwise,

where A, and A, are the overlapping areas between the
region-p and the projected segmentation maps of swimmers
u and v from previous frame respectively using a linear pre-
diction scheme. Values of 5 and « of 0.5 and 5 respectively
are found to be robust for almost all partial occlusion cases
encountered by our system.

It is computational expensive to search through the com-
plete configuration space of (7) in real time. An iterative
deterministic label updating method [13] is adopted to ob-
tain a suboptimal but acceptable solution. Figure 5 shows a
typical case of partial occlusion observed at the swimming
pool. As shown, the devised scheme is quite effective in
resolving these cases with robust results.

5 Water crisesinference

Our methodology for water crises inference is to first iden-
tify the visual indicators used by the professional lifeguard-
ing community [14]. We then model these established vi-
sual indicators by designing special swimmer descriptors
that could be extracted from the temporal history of the cor-
responding swimmer’s segmentation map. These descrip-
tors are then optimally fused by using our developed gen-
eralized reduced multivariate polynomials network (GRM)
for water crises inference.

5.1 Swimmer descriptor extraction
A set of five swimmer descriptors is used to model water

crises visual indicators. The following provides a summary
of swimmer descriptors that has been defined in our previ-
ous work [9]:

1. Speed (v;): A swimmer’s translational speed is defined
as the difference in average centroid positions computed
over a one second period. A compensation coefficient is
incorporated to account for camera perspective effects.

2. Posture(p;): Posture defines a swimmer’s dominant po-
sition over a short temporal duration, typically 3 sec-
onds, based on the angle of the principle axis of the best-
fit ellipse enclosing the swimmer.

3. Submersion index (s;): A sinking swimmer usually ex-
hibits a higher colour saturation as the reflected light
passes through a certain depth of water. Submersion in-
dex is defined as difference between a swimmer’s current
average saturation and the lowest value for it since being
tracked.

4. Activity index (Ae;): A swimmer’s activity index is de-
fined as the ratio between the cumulative area of pixels
covered by the swimmer and the average area of the best-
fit ellipse enclosing him over the same duration.

5. Splash index (Sp;): A swimmer’s splash index mea-
sures the number of splash pixels within a bounding box
containing the swimmer.

5.2 Drowning detection using a functional
link networ k

This section details a modified functional link network
(FLN) [15],[16] to seamlessly fuse the five swimmer de-
scriptors defined in the previous section for better water
crises inference compared to the rule-based technique in our
previous work.

Certain FLN algorithms have been known to be a uni-
versal approximator and reported to have a faster learning
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rate than the conventional feedforward/recurrent neural net-
works [17]. However, the substantial number of parameters
to be estimated in the conventional FLN makes the approach
less attractive. Instead, a new algorithm, named general-
ized reduced multivariate polynomials network (GRM), is
proposed with the number of parameters to be estimated in-
creases almost linearly with the model orders and the num-
ber of inputs. In contrast to the usual neural network train-
ing, our GRM requires only a single training step. The pro-
posed drowning inference involves two stages: 1) an off-
line stage to obtain an optimal set of weights based on a set
of training data, and 2) an on-line stage to incorporate the
algorithm into a live system for real time event inference.

Let Strain = {x; € RP,y; € R} fori = 1,...,m be the
training set and Seest = {@; € RP,y; € R} fori =1,...,n
be the test set, where @; = [v;, pi, 8i, Aci, Spi]T € RP (p =
5) is the extracted swimmer descriptors and the swimming
event is given by y;. The problem of training is to find the
best approximation of y, denoted by ¢ which is a function
of  and the weights o = [, ... , o], that minimizes the
least square error

m m . 5
s(z,y, @) =) el(a)+bllall =) (y—i@i, @) +bllal,
i=1 i=1
(13)
where || - || denotes the [>-norm and the regularization con-

stant is empirically set to be b = 1072, Minimizing (13)
gives the weight parameters to be estimated as follows
a=XT"X+b)VXTY (14)
where I'is a (p x p) identity matrix, Y = [y1,...,¥ym]” and
X = [x1,...,T,]7T foralinear system [18].
Instead of adopting a linear combination, i.e., ) ;O Tij
given in [18], we consider a r**-order multinomial model

which describes better the nonlinear input-output relation-
ship as follows

JMN = ao + Z(aﬂm + ajore + - + Osza:p)j . (15
i=1

Through a linearization and generalization process detailed
in Appendix A, (15) is extended and generalized including
high order terms, forming the GRM model given by

.
(GRM): JGRM = 040+Zaj+1($1+fz+"'+mp)j
j=1
+3° S (@] @)@t aa o zp) Y, (16)

w=1 j=w

where 2 2 [z{ 2y, -,z ]andp,r > 2. X in (14) for
this model is the Jacobian of g ry (a, ).

The GRM classifier is evaluated on the test set Syt
which is not used in training.
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6 Experimental results

A real-time aquatic surveillance system, consisting of a net-
work of overhead cameras feeding video signals into a com-
puter cluster, has been set up on trial at a public swimming
pool for a wide range of testing since past six months. Fig-
ure 6 presents a typical scene at the pool with highly dy-
namic background, making accurate swimmer segmenta-
tion, tracking and water crises inference a very challenging
task.

6.1 Swimmer detection and tracking

The proposed system runs real-time at 4 frames/second
throughout the day and night, under various hostile environ-
ments as shown in Figures 6 and 7. Generally, consistently
good swimmer detection and tracking results have been ob-
tained, illustrating the robustness of the algorithm operating
under numerous real situations amid strong glares, rain and
night-time reflections.

Compared to the W4 system [3], our algorithm consis-
tently achieves better segmentation (as shown in Figure 6)
in terms of the capability to detect small swimmers and
suppressing errors due to the dynamic background. Objec-
tively, a lower segmentation error rate, i.e.:

Error pixel count

Error rate (ER) = 100 x (%), A7)

Frame size

is also consistently obtained as tabulated in Table 1 for seg-
mentation results shown in Figure 6.

ER (%)
Proposed algorithm | 2.64 | 2.10 | 2.51 | 1.85
W4 [3] 541 | 3.36 | 3.63 | 3.00

Table 1: Error rate for segmentation presented in Figure 6.
The ground truth for segmentation was obtained manually.

6.2 Water crisisinference
Three sets of thirty minutes video sequences (= 7200

frames) for the respective events, i.e., drowning, nor-
mal swimming and treading, were collected with repre-
sentative examples depicted in Figure 8. From these se-
quences, a total number of 1000, 1300 and 2000 sets
of swimmer descriptors were extracted for the respective
drowning, normal swimming and treading events. Real-
istic water distress was simulated and verified by profes-
sional lifeguard. A 10-fold validation process was per-
formed with 90% of each class being selected as Sirain,
while the remaining being assigned as St.st, and such pro-
cess was repeated 10 times with different combinations
of {Strain s Stest}- The ground truth for the classifica-
tion was obtained manually by assigning the three events
{drowning, treading, normal swimming} to be {0,0.5,1},
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Figure 6: Comparison of segmentation on sample frames
captured from different scenarios. 1% column: Samples of
scene captured; 2"¢ column: Segmented swimmers using
our proposed algorithm; 3¢ column: Segmented swimmers
using the well-known W4.

respectively. Figure 9 depicts one of the 10-fold validation
in classifying the input data to appropriate classes. Due to
significant overlapping of the swimmer attributes between
drowning and treading, there are relatively more false clas-
sifications between these classes.

As compared to other well known data fusion algo-
rithms, e.g., optimal weighting method (OWM) [18] and
feedforward neural network (FNN) (see e.g., [19]), better
classification results have been obtained by our GRM with
much smaller error rates for both the training and test data
sets as presented in Table 2. GRM has attained an average
test error rate of about 5.5% compared with approximate
12% and 13% given by OWM and FNN, respectively. The
reason that FNN has large classification error is due to its
convergence to local error solution such that the treading
case has been mis-classified in some instances. Further-
more, at different threshold selections, our algorithm con-
sistently attains a higher receiving operating characteristic
(ROC) curve for water crises detection as compared to those
of OWM and FNN shown in Figure 10. When plotting the
ROC curve, both the normal swimming and treading events
were considered as non-drowning case. With about 5% of
false acceptance rate, the system achieves at about 90% of
correct drowning incident detection.

For practical implementation, it is essential to have a
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Figure 7: Swimmer detection obtained using our segmen-
tation algorithm at different hostile pool environments: a
morning scene with sunlight reflection, a rainy day and a
nighttime scene.

Figure 8: (From left to right) A sample of three different
swimming events: distress, treading and normal swimming.

very high authentic acceptance rate so that a genuine water
crisis could always be detected. The corresponding increase
in false acceptances can always be ignored after visual ver-
ification by the professional lifeguard on duty.

G Errorirain (Otrain) | ETTO et (Otest)
GRM 4.625 (0.131) 5.494 (0.171)
OWM 9.736 (0.167) 11.941 (0.174)
FNN 11.732 (0.161) 12.673 (0.170)

Table 2: Comparison on the average error rate based on a
10-fold validation process.

7 Conclusion and futurework

This paper provides insights into automated surveillance
within dynamic conditions as demonstrated by a drown-
ing detection system for outdoor public swimming pools.
Promising results were shown on all fronts, from novel al-
gorithms that effectively track swimmers amid very hostile
conditions, a robust partial occlusion handling scheme to
a novel water crises inference module that models profes-
sional knowledge of water crises recognition. We believe
that our work provides a valuable frame of reference for
handling the unresolved technical challenges of practical
automated surveillance. Future work for us includes de-
veloping a coherent framework and practical algorithms for
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Figure 9: Comparison between the estimated y (dashed
line) and the truth y (solid line) for training and test data,
respectively.

inferring semantic events involving a group of people, for
example drowning occurring within a very crowded pool or
beach where it is virtually impossible to track everyone in-
dividually.
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Appendix A
Given two points a and a; on the multinomial function (15)
which is differentiable. By the Mean Value Theorem, the multi-

nomial function f(a) = (ajiz1 + ajezs + -+ + ajpTp),
j = 2,...,r about the point &1 can be written as:
f(@) = fleu) + (@ — 1) "V f (@), (18)

where @ = (1 — B)ar + fafor 0 < B < 1. Letx =
[€1,...,x,]T. With appropriate choice of terms based on (18),
omitting the coefficients within f(c1) and V f(@), and includ-
ing the summation of weighted input terms gives the following
multivariate model:

P r
frur = ao+Zaja:j +Zap+j(a:1 + x4 xp)

j=1 Jj=1
+3 @ @)@t ra o)l (19)
=2

where p,r > 2. Including more individual high-order terms for
(19) yields the following (RM) model

r P r
frv = ao + Zzakﬂvf +Zarp+j($1 +x+ -+ xp)
j=1

k=1j=1

+> (o] )@t aa 42y T (20)
j=2

Generalizing (20) by including higher order term of (aJT - x) up
to w™-order gives (16).
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