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Abstract

Several techniques have been developed for recovering
reflectance properties of real surfaces under unknown illu-
mination conditions. However, in most cases, those tech-
niques assume that the light sources are located at inifin-
ity, which cannot be applied to, for example, photometric
modeling of indoor environments. In this paper, we pro-
pose two methods to estimate the surface reflectance prop-
erty of an object, as well as the position of a light source
from a single image without the distant illumination as-
sumption. Given a color image of an object with specular
reflection as an input, the first method estimates the light
source position by fitting to the Lambertian diffuse compo-
nent, while separating the specular and diffuse components
by using an iterative relaxation scheme. Moreover, we ex-
tend the above method by using a single specular image
as an input, thus removing its constraints on the diffuse re-
flectance property and the number of light sources. This
method simultaneously recovers the reflectance properties
and the light source positions by optimizing the linearity of
a log-transformed Torrance-Sparrow model. By estimating
the object’s reflectance property and the light source posi-
tion, we can freely generate synthetic images of the target
object under arbitrary source directions and source-surface
distances.

1. Introduction

Several methods have been developed to simultaneously
recover image surface reflectance properties and the light-
ing. These techniques can be divided into two categories:
techniques using a set of images [2, 3, 4] and a single im-
age [1, 5, 6] as inputs with the exception of 3D geometric
models of the object. In the latter category, for example,
Ikeuchi et al. [1] developed an algorithm to determine both
the surface reflectance properties and the light source di-

(a) (b)

Figure 1. An example of photometric modeling of indoor
environment: (a)real image; (b)synthesized image.

rection from a single image based on analysis of a simpli-
fied Torrance-Sparrow reflection model (called T-S model)
[12]. I. Sato et al. [6] proposed a method for estimating
the complex illumination distribution of a real scene by us-
ing a radiance distribution of inside shadows cast by a real
object. Tominaga et al. [5] adopted the Phong model to
determine the surface reflectance properties and the direc-
tion of illumination from a single color image. However,
all of these methods assume that the light and viewing po-
sitions are distant, and thus follow parallel illumination and
orthogonal projection; therefore, they do not offer a solu-
tion for real scenes under light and viewing positions at fi-
nite distances. In general, the distant illumination assump-
tion is not correct if the light source-surface distance is not
very large compared with that of the surface area, e.g., re-
flectance modeling of indoor environments (Fig.1). One of
the drawbacks of using the distant illumination assumption
is when the input is a single image of a planar surface. In
this case surface normals, light directions and viewing di-
rections at all surface points produce the same angle. As a
result, no fitting process can be applied.

Recently, a method similar to the method proposed in
this paper has been introduced to recover the reflectance
properties of multiple objects from a single image [7].
While we take a similar approach to separate the image into
regions according to their type of reflection and fit reflec-
tion models to each regions, our method also recovers the
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light source position and the reflectance properties of tex-
tured surfaces with specular reflection.

Our goal is to recover the light source position and sur-
face reflectance properties from a single object image cap-
tured under a single light source at a finite distance; and then
to create a new photo-realistic synthetic image under novel
light source conditions with not only source direction mod-
ification but also light source-surface distance modification.
Given a single color image that has specular regions, our
first method consists of two main aspects. First, we deter-
mine rough diffuse regions, and the peak pixels of the whole
image, which is usually located at the specular region. From
these peak pixels and rough diffuse region, we initialize the
values of the light source direction and source-surface dis-
tance, respectively, as well as Lambertian diffuse param-
eters. Then, based on these initial values, we simultane-
ously estimate the actual values of the light source position
and reflectance properties using an iterative separating-and-
fitting relaxation technique. However, this recovery method
is largely limited to the following: (1) the diffuse reflection
property is homogeneous Lambertian, (2) the specular peak
must be visible somewhere on the surface of the target ob-
ject while avoiding saturation.

We attempt to extend the above method by removing
these restrictions, and presenting an improved method for
recovering the reflectance property and the light source po-
sition, assuming only that the target object has a homoge-
neous specular reflection property. First, polarization filters
are used for separating the specular and diffuse reflection
components [13]. Given the obtained single specular im-
age and 3D geometric model of an object as an input, the
second method initially estimates the light source position
and the specular reflection parameters based on a linearized
T-S reflection model. These parameters are then refined by
using the original T-S reflection model.

The main advantages of our methods are: (1) the inputs
are only a single image and a 3D geometric model of the
scene, (2) unlike past methods, we estimate the three di-
mensional light source positions as well. In particular, even
under multiple light sources, our second method allows the
recovery of the position of each light source and the re-
flectance properties of textured surfaces.

2. Reflection Model

In this section, we give a brief overview of the reflection
model used in our method. Generally, reflection models are
described by linear combinations of two reflection compo-
nents: the diffuse and the specular reflections. This model
was formally introduced by Shafer [8] as the dichromatic
reflection model. The diffuse reflection component repre-
sents reflected rays arising from internal scattering inside
the surface medium. The specular reflection component, on

the other hand, represents light rays immediately reflected
on the object surface.

Specifically, we use the T-S reflection model [12] by as-
suming that the Fresnel reflectance coefficient is constant
and the geometric attenuation factor is 1. Using this re-
flection model, the specular reflection of an object’s surface
point is given as

Ic =

[
kd,c cos θi +

ks,c

cos θr
exp

[
− α2

2σ2

]]
Lc, c = R,G, B (1)

where index c represents R, G and B component, Ic is the
image pixel value, θi is the angle between the light source
direction and the surface normal, θr is the angle between
the viewing direction and the surface normal, α is the angle
between the surface normal and the bisector of the viewing
direction and the light source direction. Lc is given by:

Lc =
Lq,c

r2
, c = R,G, B (2)

where Lq,c is the radiance of the point light source in each
color band and r is the distance between the point light
source and the object surface point.

kd,c and ks,c are coefficients for the diffuse and specu-
lar reflection components respectively, and σ is the surface
roughness measured as the standard deviation of microfacet
orientations. Using a 3D geometric model and by accom-
plishing camera calibration, the angle θr can be obtained for
each image pixel. Angles α and θi are unknown, since these
angles require the light source direction, which is unknown
at this moment.

In (1) we can observe that the values of (kd,c, ks,c) and Lc

cannot be separated by only knowing the value of Ic. Thus,
we redefine the reflection parameters as:

Kd,c = kd,c Lq,c, Ks,c = ks,c Lq,c, c = R, G, B (3)

With these definitions, we can rewrite (1) as

Ic =
Kd,c cos θi

r2
+

Ks,c

r2 cos θr
exp

[
− α2

2σ2

]
, c = R,G, B (4)

In this paper, we refer to K̃s = (Ks,R, Ks,G, Ks,B)

and σ as the specular reflection parameters, and K̃d =

(Kd,R, Kd,G, Kd,B) as the diffuse reflection parameters.
Note that K̃d and K̃s contain the light source intensity
L̃q = (Lq,R, Lq,G, Lq,B). In Section 3 and 4, we remove
the subscript c, as the same computation is executed inde-
pendently for each color band. If the estimated roughness
parameters do not have the same value from the three color
channels, we determine the final roughness parameter by
calculating an average of those values.

3. Inverse Rendering from a Single Color Im-
age

We now describe the algorithm for estimating the posi-
tion of the light source, and the reflectance parameters from
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a single color image and a 3D geometric model of the ob-
ject. In this method, we assume that: (1) the camera param-
eter is known, (2) interreflection, shadows, and saturated
pixel values are avoided, (3) the scene is illuminated by a
single point light source, (4) at least one specular peak is
visible on the surface of the target object, (5) the surface
reflection can be modelled as a linear combination of the
Lambertian diffuse model and the T-S specular model.

3.1. Light Source Distance

The light source direction at the object’s surface point P
satisfying α = 0 can be written as

�p = �p + (�p,� p)�p − � p (5)

where �p is a unit vector with a light source direction and a
starting point P , � p is a unit vector with a viewing direction
and a starting point P , and �p is a unit normal vector at
P . Then, the location vector � of the light source can be
expressed as

� = � + t�p (6)

where � is the location vector of P and t is the distance
between � and �.

We can regard the specular peak (ip, jp) as the pixel lo-
cation of P 1. As a consequence, once we obtain (ip, jp),
� can be calculated using the camera projection matrix,
which makes �p directly computable from (5). However,
to estimate the light source position, we also need the value
of t (the light source distance), which is unknown. In the
next subsection, we describe how to estimate t and the re-
flectance parameters in (4) simultaneously.

3.2. Model Fitting to Lambertian Component

To obtain the initial estimates of the light source distance
and reflectance parameters, we need to perform the follow-
ing two steps: First, we extract the diffuse region Ωd

Ωd =
{
(i, j) ∈ Ω | (i − ip)2 + (j − jp)2 > T 2

}
(7)

where Ω is the set of 2D points of object’s surface points and
T is a positive integer concerning the radius of the specular
region. Then, we determine the light source distance t, by
fitting the diffuse term of (4) to the diffuse region, which
means

t∗ = argmin
t

∑
(i,j)∈Ωd

[
u(i, j, t) − 1

Nd

∑
(i,j)∈Ωd

u(i, j, t)
]2

(8)

where Ωd and Nd are the set and the number of the 2D points
in the diffuse region image, u(i, j, t) is defined as

u(i, j, t) =
I(i, j)r(i, j, t)2

cos θi(i, j, t)
, (i, j) ∈ Ωd (9)

1Because of the off-specular peak, the point P will not be the specular
peak. However, it will be sufficiently close for practical purposes except at
the grazing angles.

where I(i, j) is the pixel value observed at 2D point (i, j) in
the original image, r(i, j, t) is the distance between the light
source and the surface point of 2D point (i, j) under the light
source distance t, and θi(i, j, t) is the incident angle at this
surface point.

Since (8) is difficult to solve analytically, we search the
optimal source distance t∗ in the finite, discrete solution
space Ωt = {tmin, tmin + ∆t, . . . , tmax − ∆t, tmax}, where
tmin,tmax and ∆t are the user-defined lower bound, upper
bound and steplength with respect to t, respectively.

Second, we estimate the diffuse reflection parameters Kd

using t∗ by minimizing the squared error as

K∗
d = argmin

Kd

∑
(i,j)∈Ωd

[
I(i, j) − Kd cos θi(i, j, t

∗)
r(i, j, t∗)2

]2

(10)

The solution K∗
d can be expressed as

K∗
d =

∑
(i,j)∈Ωd

I(i, j)
/ ∑

(i,j)∈Ωd

cos θi(i, j, t
∗)

r(i, j, t∗)2
(11)

3.3. Separating-and-Fitting Relaxation

The specular component of the input image can be ob-
tained by subtracting the aforementioned diffuse estimate
from the input image. The pixel value at point (i, j) in the
specular image can be computed as

I∗
s (i, j) = I(i, j) − K∗

d cos θi(i, j, t
∗)

r(i, j, t∗)2
, (i, j) ∈ Ω (12)

To accomplish fitting of the specular reflection model to the
residual image I∗

s , we need to solve a nonlinear optimization
problem as

argmin
Ks,σ

∑
(i,j)∈Ω

(
I∗

s (i, j) − Ks

r(i, j, t∗)2 cos θr(i, j)

× exp
[
−α(i, j, t∗)2

2σ2

])2
(13)

To obtain desirable solutions, we use a two-step algorithm.
The details are as follows.

1) Initial estimation of (Ks, σ): we rewrite the specular
reflection model as

Is(i, j, t) =
Ks

r(i, j, t)2 cos θr(i, j)
exp

[
−α(i, j, t)2

2σ2

]
(14)

In order to solve (13), the following equation can be derived
by the logarithmic transformation of (14):

y(i, j) = − 1

σ2
x(i, j) + ln Ks, (i, j) ∈ Ω (15)

where

x(i, j) =
α(i, j, t∗)2

2

y(i, j) = ln
[
I∗

s (i, j)r(i, j, t∗)2 cos θr(i, j)
]

(16)
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by which we can plot a set of data pairs (x(i, j), y(i, j)),
(i, j) ∈ Ω. By line fitting on these 2D points based on
the least-squares method, and then by comparing the coeffi-
cients of the regression line with (15), we obtain the initial
estimates K∗

s and σ∗ of the specular parameters as

K∗
s = exp(b), σ∗ =

√
−1

a
(17)

where a < 0 and b are, respectively, the slope and Y-
intercept of the least-squares regression line.

2) Refinement of (Ks, σ): The estimated specular re-
flection parameters in the first step are based on the loga-
rithm fitting; thus, the synthesized image based on the ini-
tial estimates (K∗

s , σ∗) is still quite different from the input
image. In this step, we search for the solution of (13) lo-
cally around the initial guesses (K∗

s , σ∗) through a two-fold
iteration algorithm as follows.

Algorithm updating rule for (Ks,σ)

1. Set iteration count k ← 0. Set K(0)
s ← K∗

s . Set σ(0) ← σ∗ . Set I∗
s (i, j) ←

I(i, j) − K∗
d

cos θi(i,j,t∗)

r(i,j,t∗)2
. Repeat step 2∼step 4 until convergence.

2.

K(k+1)
s ←

∑
(i,j)∈Ω

I∗
s (i, j)∑

(i,j)∈Ω
1

r(i,j,t∗)2 cos θr(i,j)
exp

[
−α(i,j,t∗)2

2(σ(k))2

]
3. Set iteration count l ← 0. Set µ(0) ← 1

σ(k) . Repeat step 3a∼step 3b until
convergence.

3a. µ(l+1) ← µ(l)−γ
∑

(i,j)∈Ω

[(
I∗

s (i, j)− K
(k+1)
s

r(i,j,t∗)2 cos θr(i,j)
·

exp

[
−α(i,j,t∗)2(µ(l))2

2

])2
K

(k+1)
s α(i,j,t∗)2µ(l)

r(i,j,t∗)2 cos θr(i,j)
exp

[
−α(i,j,t∗)2(µ(l))2

2

]]
3b. l ← (l + 1)

4. σ(k+1) ← 1

µ(l)
, k ← (k + 1)

5. K∗
s ← K(k)

s , σ∗ ← σ(k)

Note that the step size γ needs to be set to a sufficiently
small value (we used γ = 1.0×10−7). Using the above algo-
rithm, we can obtain the estimates (K∗

s , σ∗) of the specular
reflection parameters. However, (K∗

d , K∗
s , σ∗, t∗) are still in-

accurate, since they are computed based only on the rough
diffuse regions. Therefore, we have to update the diffuse
reflection component, as described in the following equa-
tions:

I∗
d (i, j) = I(i, j) − K∗

s

r(i, j, t∗)2 cos θr(i, j)
exp

[
−α(i, j, t∗)2

2(σ∗)2

]
(18)

After that, we re-estimate the light source distance and dif-
fuse reflection parameters as:

argmin
Kd,t∈Ωt

∑
(i,j)∈Ω

[
I∗

d (i, j) − Kd cos θi(i, j, t)

r(i, j, t)2

]2

(19)

We can solve (19) through an iteration algorithm as follows.

Algorithm updating rule for (Kd, t)

1. Set iteration count k ← 0. Set K
(0)
d
← K∗

d . Set t(0) ← t∗ . Set I∗
d (i, j) ←

I(i, j) − K∗
s

r(i,j,t∗)2 cos θr(i,j)
exp

[
−α(i,j,t∗)2

2(σ∗)2

]
. Repeat step 2∼

step 3 until convergence.

2.

K
(k+1)
d

←
∑

(i,j)∈Ω
I∗

d (i, j)∑
(i,j)∈Ω

cos θi(i,j,t(k))

r(i,j,t(k))23.

t(k+1) ← argmin
t∈Ωt

∑
(i,j)∈Ω

[
I∗

d (i, j) − K
(k+1)
d

cos θi(i, j, t)

r(i, j, t)2

]2

,

k ← (k + 1)

4. K∗
d ← K

(k)
d

, t∗ ← t(k)

Finally, the above two algorithms are repeated alter-
nately until the reflectance parameters and light source posi-
tion become no longer changed in values or until they reach
the maximum number of iterations. Using t∗, we can obtain
the light source position �∗ by using (6).

4. Inverse Rendering from a Single Specular
Image

A major limitation of the algorithm of the last section
is its homogeneous Lambertian approximation of the dif-
fuse reflection. In order to avoid this restriction, our second
method takes as input a single specular image instead of a
single color one, except for a 3D geometric model of an
object. Also, the first technique assumed that the specular
peak could be identified, although invisible specular peaks
or saturated pixels are not uncommon. We also remove this
constraint in the second method.

The important thing to note here is that higher t, as well
as higher σ, generate a more blurred specular reflection (t is
the light source distance and σ is the surface roughness) and
hence, (t,σ) seems not to be determined uniquely from only
a single specular image, which makes this inverse problem
ill-conditioned or ill-posed. However, in practice, (t,σ) can
be determined uniquely from a given specular image, how-
ever, due to space limitations the proof is omitted.

In this paper, we describe how polarization filters are
used for separating the diffuse and specular reflection com-
ponents. One is placed in front of a point light source in
order to polarize the light source linearly, and the other
is placed in front of a camera to capture images through
the linear polarization filter. For separating the diffuse and
specular reflection components, images of a target object
are taken at every certain degrees of filter rotation. Then,
the maximum intensity Imax and the minimum intensity
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Imin are determined for every image pixel. If Imax − Imin

for a certain pixel is less than the threshold, we consider
the pixel to contain only the diffuse component. We deter-
mine that the pixel contains the specular component and the
specular component intensity is obtained from Imax − Imin.
Imin is used for determining the diffuse component inten-
sity. (Technical details are omitted in order to keep this pa-
per within a reasonable length. Interested readers can refer
to [13].)

In this method, we assume, (1) camera parameter is
known, (2) interreflection and shadows are avoided, (3) the
specular reflectance property can be uniformly modeled ac-
cording to the T-S model (e.g., dielectric material).

4.1. Log-Linearized T-S Model-Based Recovery

In this section, we explain how to estimate the specular
reflectance parameters as well as the source position from a
single specular image Is = Imax−Imin. As stated in Section
3.1, a three dimensional source position is represented here
by a twofold set 〈p, t〉, where p = (ip, jp) is the image pixel
location of the specular peak satisfying α = 0, and t is the
source distance. The source position is discretized in the
solution space 〈p, t〉 with a Cartesian product Ωp×Ωt, where
Ωp and Ωt are the user-defined finite, discrete search spaces
with regard to p and t, respectively. At this stage, we search
for the optimal values of 〈p, t〉 by a discrete optimization
technique, whereas the method of Section 3 does only the
source distance t for a fixed p

Assuming that 〈p, t〉 is unknown, the linearized reflection
model can be obtained based on the logarithmic transforma-
tion described in Section 3.3 as:

Y (i, j, p, t) = − 1

σ2
X(i, j, p, t) + ln Ks, (i, j) ∈ Ω (20)

where

X(i, j, p, t) =
α(i, j, p, t)2

2
(21)

Y (i, j, p, t) = ln
[
Is(i, j)r(i, j, p, t)2 cos θr(i, j)

]
(22)

Based on (20), our basic idea is to find 〈p+, t+〉 that
yields the strongest negative linear relationship between
X(i, j, p, t) and Y (i, j, p, t) by minimizing a correlation co-
efficient as

argmin
(p,t)∈Ωp×Ωt

[
∑

(i,j)∈Ω

(
X(i, j, p, t) − X(p, t)

)(
Y (i, j, p, t) − Y (p, t)

)
√ ∑

(i,j)∈Ω

(
X(i, j, p, t) − X(p, t)

)2
√ ∑

(i,j)∈Ω

(
Y (i, j, p, t) − Y (p, t)

)2

]

(23)

where X(p, t) and Y (p, t) are sample means:

X(p, t) =
1

N

∑
(i,j)∈Ω

X(i, j, p, t), Y (p, t) =
1

N

∑
(i,j)∈Ω

Y (i, j, p, t)

where N is the number of the 2D points belonging to Ω.
To solve (23), we apply a similar discretization ap-

proach to the one mentioned in 3.2. Once the optimal solu-
tion (p+, t+) is obtained, the specular reflection parameter
(K+

s , σ+) can be calculated from (17).

4.2. Three-Step Numerical Optimization

Since the specular reflection parameter estimation in the
last section is based on the logarithmic fitting, the image
resulting using the estimates (K+

s , σ+, p+, t+) is still too de-
viated. In this stage, we formulate a nonlinear optimization
problem with respect to Ks, σ, p and t as:

argmin
Ks,σ,(p,t)∈Ωp×Ωt

∑
(i,j)∈Ω

(
Is(i, j) − Ks

r(i, j, p, t)2 cos θr(i, j)

× exp
[
−α(i, j, p, t)2

2σ2

])2

(24)

Note that r and α are also redefined as functions of (i, j, p, t).
To solve (24), we apply a 3-step iterative algorithm using
(K+

s , σ+, p+, t+) as the initial guess. The procedure is de-
scribed in the following.

Algorithm updating rule for (Ks,σ, p, t)

1. Set iteration count k← 0. Set K(0)
s ← K+

s . Set σ(0) ← σ+.
Set p(0) ← p+. Set t(0) ← t+. Repeat step 2∼step 5 until convergence.

2.

K
(k+1)
s ←

∑
(i,j)∈Ω

Is(i, j)

∑
(i,j)∈Ω

1

r(i, j, p(k), t(k))2 cos θr(i, j)
exp

[
−α(i, j, p(k), t(k))2

2(σ(k))2

]

3. Set iteration count l ← 0. Set µ(0) ← 1
σ(k) . Repeat step 3a∼step 3b until

convergence.

3a. µ(l+1) ← µ(l) − γ

∑
(i,j)∈Ω

[(
Is(i, j)−

K
(k+1)
s

r(i,j,p(k),t(k))2 cos θr(i,j)
exp

[
−α(i,j,p(k),t(k))2(µ(l))2

2

])2

×K
(k+1)
s α(i,j,p(k),t(k))2µ(l)

r(i,j,p(k),t(k))2 cos θr(i,j)
exp

[
−α(i,j,p(k),t(k))2(µ(l))2

2

]]
3b. l← (l + 1)

4. σ(k+1) ← 1

µ(l)

5. (p(k+1), t(k+1))← argmin
(p,t)∈Ωp×Ωt

∑
(i,j)∈Ω

(
Is(i, j)

− K
(k+1)
s

r(i,j,p,t)2 cos θr(i,j)
× exp

[
− α(i,j,p,t)2

2(σ(k+1))2

])2

, k← (k + 1)

6. K+
s ← K(k)

s , σ+ ← σ(k) , p+ ← p(k) , t+ ← t(k)
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4.3. Diffuse Parameter Estimation

Unlike the method of Section 3, the method of this sec-
tion does not directly estimate the diffuse reflection param-
eters. However, to synthesize new images under novel illu-
mination conditions, we need to determine those values ac-
cording to some appropriate diffuse reflection model. In the
case of textured surfaces with specular reflection, we deter-
mine the Lambertian parameters for each pixel, i.e., texture,
as

K+
d (i, j) =

r(i, j, p+, t+)2Id(i, j)

cos θi(i, j, p+, t+)
, (i, j) ∈ Ω (25)

where Id is the separated diffuse image and θi is the incident
angle. p+ and t+ are, respectively, the estimated specular
peak and light source distance in the last subsection. Note
that shadowing is not considered in our method.

4.4. Multiple Light Sources

Until now, the illumination was assumeded to consist of
a single point light source. Taking as input a single image
taken under multiple light sources, the solution space be-
comes too large to be searched robustly within our frame-
work. However, if we can obtain the specular image gen-
erated only under a point light source of the set, we can
estimate the specular reflection parameters, as well as the
three dimensional position of this light source by using the
method of this section. In the following, we explain briefly
how to separate this specular image.

We use two linear polarization filters: one is placed in
front of the camera, and the other is placed in front of the
target light source. Now, we rotate the polarization filter of
this light source. Note that we must fix the rotation angle
of the polarization filter of the camera. Then it is clear that
we can obtain the specular image only under the target light
source by calculating Imax − Imin, assuming that incident
light from any other source does not pass through the plar-
ization filter of this light source and that the interference
between rays becomes negligible.

5. Experiments

In this section, we present results of several experiments
using real images. In these experiments, color images are
captured using a color CCD video camera and 3D geometric
models are obtained using a light-stripe range finder with a
liquid crystal shutter. A halogen lamp is used as a light
source. The lamp is small enough for us to assume that it is
a point light source.

5.1. Recovery from Real Color Images

1) Curved surface:

Fig.2(a) shows the input real image of � =

(−40.88,−49.36, 80.48) (cm). We obtain � =

(−40.04,−48.83, 79.77) (cm), K̃s = (0.123, 0.0258, 0.249),
σ = 0.0702, and K̃d = (0.494, 0.840, 0.576). Fig.2(b) shows
the synthetic image obtained using these light source and
reflectance parameters.

(a) (b)

Figure 2. Input and synthesized image: (a)input color
image; (b)synthesized image.
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Figure 3. Stability and error analysis: (a)reflectance pa-
rameter estimation; (b)light source position estimation.

We illustrate the variation of the estimates of reflection
parameters (Fig.3(a)) and light source position (Fig.3(b))
with respect to variations of the diffuse region. The region
is manually extracted at the initial stage as explained in Sec-
tion 3.2. The horizontal axes in Fig.3(a) and (b) represent
the selected threshold value th for the diffuse region extrac-
tion. The left and right vertical axes in Fig.3(a) represent
Kd,R and (Ks,R, σ), respectively. The left and right verti-
cal axes in Fig.3(b) represent the z-coordinate and error of
the estimates of �, respectively. As can be seen in Fig.3(a)
and (b), the estimates of reflection parameters and the light
source position are almost constant with respect to varia-
tions of the diffuse region, meaning that the manual initial
estimation of diffuse regions does not affect the final esti-
mate.

2) Planar surface:
Fig.4(a) shows an image of a real bookend. By apply-

ing our method described in Section 3 to this color image,
we obtain the synthetic image (Fig.4(a)). Fig.5(a)-(b) show
the synthesized images under shorter and longer distances
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(a) (b)

Figure 4. Input and synthesized images: (a)input color
image; (b)synthesized image.

of light source position than that of the above, respectively.
Fig.5(c) shows the synthesized image under a different light
source direction. Fig.5(d) shows the synthesized image un-
der a different distance and a different color (we used an
illuminant color estimation method [14]) of the light source.

(a) (b)

(c) (d)

Figure 5. Synthesized images under novel illumi-
nation conditions: (a)shorter source-surface distance;
(b)longer source-surface distance; (c)different source direc-
tion; (d)longer source-surface distance and different source
color.

5.2. Recovery from Real Specular Images

In this section, we describe how we use as input the sep-
arated specular image using polarization filters.

1) Textured surface (specular peak is invisible):
Fig.6(a) shows a textured object: a poly-coated board.

We apply our method of Section 4 to this object un-
der the assumption of a perfectly uniform specular re-
flectance. Fig.6(b) and Fig.6(c) show, respectively, the dif-
fuse and specular reflection image separated using polariza-
tion. Fig.7(a) shows the recovered image. Fig.7(b) shows
the synthesized image under a different light position. Note

that the diffuse reflection components are recovered by us-
ing (25). Fig.8 shows a plot with the light source distance
on the horizontal axis and the correlation coefficient (23) on
the vertical axis, for a (ip, jp) value, in the initial estimation
stage. Each graph in this figure shows 2D plot with X-axis
and Y -axis defined in (21) and (22), respectively.

In the second-stage final estimation, we obtain � =

(3.31,−111.51, 106.0) (cm), K̃s = (0.246, 0.297, 0.216), σ =

0.115, where the ground truth for the source position is
� = (0.0,−108.9, 99.0) (cm). The reasons why the esti-
mated source position is slightly erroneous are considered
to be as follows: 1) the target object has a transparent coat
and thus reflection also occurs under the transparent coat,
2) the specular peak is invisible in the input image and the
image pixel location of the specular peak is erroneous.

(a) (b) (c)

Figure 6. Input specular image: (a)original image;
(b)specular image; (c)diffuse image.

(a) (b)

Figure 7. Synthesized image: (a)original light position;
(b)new light position.
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Figure 8. Relationship between light source distance and
correlation coefficient.
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2) Multiple light sources:
Fig.9(a) shows the original image of a real object un-

der multiple light sources. We separate the specular image
under a target light source (specular highlight in the upper
part of the original image) of illumination using polariza-
tion filters, as shown in Fig.9(b). Fig.9(c) shows the resid-
ual image (original image - specular image). We obtain
� = (4.37,−74.1, 17.3) (cm), K̃s = (0.137, 0.163, 0.169),
σ = 0.0731. Fig.9(d) shows the synthesized image.

(a) (b)

(c) (d)

Figure 9. Real and synthesized images: (a)original im-
age; (b)specular image under target light source; (c)residual
image; (d)synthesized image.

6. Conclusions

In this paper, we have presented two new methods for
recovering the surface reflectance properties of an object
and the light source position from a single image without
the distant illumination assumption; hence, those methods
allow the image synthesis of the target object under arbi-
trary light source positions. In particular, the second method
can also deal with textured objects with specular reflection.
The first method assumes that the object has a homogeneous
Lambertian diffuse reflection property. The second method
does not Make these assumptions, and thus can handle dif-
fuse textured objects; however, it is less robust than the first
method because no information about diffuse reflection is
available. We intend to extend the current method to the
cases of erroneous geometric models in future work.
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