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Abstract

It is widely known that, for the affine camera model, both
shape and motion can be factorized directly from the so-
called image measurement matrix constructed from image
point coordinates. The ability to extract both shape and
motion from this matrix by a single SVD operation makes
this shape-from-motion approach attractive; however, it can
not deal with missing feature points and, in the presence of
outliers, a direct SVD to the matrix would yield highly un-
reliable shape and motion components. In this paper, we
present an outlier correction scheme that iteratively updates
the elements of the image measurement matrix. The magni-
tude and sign of the update to each element is dependent
upon the residual robustly estimated in each iteration. The
result is that outliers are corrected and retained, giving im-
proved reconstruction and smaller reprojection errors. Our
iterative outlier correction scheme has been applied to both
synthesized and real video sequences. The results obtained
are remarkably good.

1. Introduction

The aim in the shape-from-motion problem is to recover
both structure and motion from a number of image mea-
surements, which can be in the form of point coordinates,
line coordinates, conics, etc. Many research papers about
different approaches to the problem have been reported in
the literature. The most general approach involves the use
of the perspective camera model. The affine camera model,
which was introduced in [15], became popular due to the
reduction in the number of unknown parameters involved.
When a large number of images, e.g. an image sequence, is
available, the use of the affine camera allows one to retrieve
both shape and motion directly from image measurements.
This procedure, first proposed by Tomasi and Kanade [20],
involves first stacking the image point coordinates to form
the so-called image measurement matrix and then factoriz-
ing the matrix into the shape and motion components via
the singular value decomposition.

The problem with missing image point data in the image
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measurement matrix is long recognized [20]. More recent
works on the treatment of missing image features include
those by Jacobs [12], Heyden and Kahl [8], and Hartley and
Schaffalitzky [6]. In [12], missing data are dealt with by
fitting a low rank matrix to an image measurement matrix
with missing elements. In [8], the closure constraints are
used. In [6], the power method is employed for the factor-
ization, and generalized to cover the cases where there are
missing data and where the projection is perspective.

The factorization problem becomes more complicated
when the perspective camera model is introduced into the
system, as the relative depth of each image point must also
be determined. Different approaches have been reported to
deal with this problem: Sturm and Triggs [19] solve for the
relative depths via the fundamental matrix; Heyden [7] and
Sparr [18] incorporate the subspace constraint into their it-
erative methods to estimate the relative depths. Their meth-
ods were later extended in [2] to the recursive case in which
more images can be incorporated when new tracked feature
points become available. Another iterative approach that is
similar to [2] but that leads to a different optimization prob-
lem is recently reported in [14].

The presence of outliers is inevitable when one has to
work on real image data. The RANSAC (Random Sample
Consensus) paradigm proposed by Fischler and Bolles [4]
detects outlying data by first randomly selecting samples
of the minimum number of data items required to estimate
a given entity and then looking for consensus of the esti-
mates among the samples. In the estimation of the fun-
damental matrix and trifocal tensor, this paradigm and the
Least Median Squares (LMedS) method have both been ap-
plied [21, 22]. The LMedS method can be naturally ex-
tended to outlier detection in image sequence data and has
been reported in [16, 3, 10]. In all these reported works
on outlier detection, the improvement of the estimates of
the entities involved, after the elimination of outliers, has
been significant, which indicates the importance of treat-
ments of outliers. Once the estimates of these entities have
been found, outliers can always be corrected in a postpro-
cess and reintroduced back into the system. In this paper,
we present an outlier correction scheme based on the fac-
torization approach reported in [6]. Our scheme is itera-
tive in nature and it handles the correction of outliers and
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the factorization into shape and motion components simul-
taneously. The correction of outlying data in a data set is
not new in the literature of computation of robust estima-
tion, as described in Section 3. However, to our knowl-
edge, the correction of outliers has not been attempted in the
structure-from-motion problem by many researchers. The
only piece of related work is that of Aanæs et al [1] who
employ weighting factors to reduce the influence of outliers.
In [1], each weighting factor is set to be inversely propor-
tional to the computed residual of each image feature point.
Our approach, on the other hand, is based on an estimator
proposed by Huber [9] (see also [5]) which bounds the in-
fluence of outliers by bringing them toward the majority yet
allows them to have maximum influence.

The paper is organized as follows. In Section 2, we give
a brief review of the affine factorization method and related
work. In Section 3, we first give a brief background on
computation of robust estimates, drawing upon a similar but
simpler problem, and then describe our iterative outlier cor-
rection scheme in detail. In Section 4, experiments on both
synthesized and real video image sequences are given. Is-
sues related to the proposed scheme are discussed in Sec-
tion 5, and conclusions are given in Section 6.

2. Background

2.1. Affine factorization

Given a scene point X� � ��� � � � � �� � ��� and its cor-
responding image point x� � ��� � ����, for some index �.
Under the affine projection onto the �th image, they are re-
lated by

x� � ��X
� � (1)

where �� � ����. With the availability of � images and 	
scene points, (1) becomes

�
��

x�� � � � x��
...

. . .
...

x�� � � � x��

�
�� �

�
��

��

...
��

�
�� � X� � � �X�

�

� � � �X� (2)

where matrix � � ����� is known as the motion matrix,
X����� the shape matrix, and ������� the image mea-
surement matrix.

Given a matrix � constructed from a number of feature
points tracked in a sequence of images, the first problem
to solve is factorization to retrieve the shape and motion
matrices. Note that most factorization techniques (e.g. [20,
1]) reduce � to ����� and X to ���� by setting the origin
of each image coordinate system at the centre of mass of
the image feature points. However, as these centres of mass
cannot be reliably computed due to the presence of outliers,
we retain both � and X to be rank-4 matrices.

2.2. Related work

In [6] an algorithm is given that takes a random initial
estimate of ���� or ���� and iteratively finds a solution to the
factorization problem

� � ��
��

where ������, ������, and ������. If the rank of � is
exactly 
 then the factorization converges in one iteration;
if the rank of � is greater than 
 then only a small number of
iterations is required. This iterative scheme involves simple
updates to the two factor matrices: At the �th iteration, given
that ������ is known,

1. compute ���� using

�
��� � �

�
�
�����

�
�
������

�
�����

	��
� (3)

2. compute ���� for the next iteration using

�
��� � ��

���
�
�
����

�
���
	��

� (4)

One advantage of this simple iterative scheme is that the
computation cost, which involves inversions of small matri-
ces (for the affine factorization problem, 
 � �) and some
matrix multiplications, is much smaller than with the SVD
approach. This advantage is significant when the given ma-
trix � is large, which is often the case for the shape-from-
motion problem.

In the tracking of image features, it often happens that
some features become missing in the tracking process due
to occlusion and/or change of lighting conditions. Another
advantage of this iterative scheme is that it can handle miss-
ing entries in the given matrix. Thus, instead of having a
separate post-processing step to fill in the missing entries,
the iterative scheme allows one to carry out the factoriza-
tion of a matrix that has holes.

For the affine factorization problem, since X has the form
that its last row is �s, by rewriting (2) as

� �
�
�� t

� 
 ��

1�

�
� (5)

where �� ������, t����, �������, and 1 is an 	-vector
that contains �s, it can be verified that the update given in
(3) becomes (see also [6])

������ �
�
�
� � 1t�



�������

�
���������������

	��
� (6)

In this paper, we modify this update scheme to our
affine factorization problem where outlying coordinates are
present in the image measurement matrix. In our iterative
outlier correction scheme, in addition to the update of the
two factor matrices, the matrix � itself is also refined so as
to correct the outlying coordinates.
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3. Correcting the outlying coordinates

3.1. Background on computation of robust esti-
mates

Many practical applications come in the form where the
method of least squares can be applied.

Given a linear system, with an unknown vector x �
���� � � � � ������� , of the form

y � �x� (7)

where � � ���� with 
 � �, and y � ���� � � � � ���� �
��. Suppose that our aim is to get a least squares fit on
the observations �� to yield the fitted values ��� and residuals

� � �� � ���, for � � �� � � � � 
. The setting of (7) to

�y� �x���y� �x�� ��	 (8)

obviously yields the estimate �� � ���������y and the
estimate �� � ����������y. Define

� � ����������� (9)

Then clearly �y � ��. Because of this mapping from y to ��,
� is often called the hat matrix. This matrix has the prop-
erty of being idempotent, i.e., �� � �, and tr��� � �. It
is also known to contain useful information about leverage
points. Indeed, many studies in the literature (see e.g. Hu-
ber [9]) report that leverage points show up with large ��
values, where ���� � � � � ���� � diag���. Unfortunately, if
we have a gross error in �� rather than in � then the gross
error may not show up in 
�. Instead, it may show up else-
where, say in 
� , if ��� happens to be large. Nevertheless, �
still plays a significant role in the estimation of the standard
error of each observation, as discussed below. An alterna-
tive scheme, which we found more suitable to our outlier
correction problem and which has been reported in the lit-
erature of robust estimation, is: If the observations �� are
noisy then the influence of outliers can in fact be deflated
by iteratively replacing the observations �� by some pseudo-
observations ��� , via the following criteria (see Huber [9])

��� �

���
��
�� if �
�� � ����

��� � ��� if 
� � ����
��� 
 ��� if 
� � ����

(10)

where the constant � regulates the amount of robustness.
Good values for � are in the interval ��� �
, e.g. � � ���.
In (10), the entity s � ���� � � � � ���� is the standard error
vector, in which each �� is some estimate of the standard
error of �� given by

�� �
�
�� �� ��� (11)

The entity ��� above is the classical estimate of the variance
of a single observation: ��� �

��

��� 

�
� ��
 � ��� with �

being the number of unknown parameters to be estimated.
In the example above, � � �.

The method described above treats both inliers and out-
liers uniformly in the data set. That is, there are no weight-
ing factors involved (c.f. [1]). Outlying observations, which
have large residual magnitudes �
��, would not fulfil the cri-
terion �
�� � ��� and would be updated in the iterations.
The idea here is to clean the data by iteratively pulling the
observations �� toward the fitted observations ��� until con-
vergence is achieved. As demonstrated in both synthesized
and real video sequences (see Sections 4 and 5), conver-
gence is guaranteed and the resultant, refined joint image
measurement matrix also gives a much smaller mean and
standard deviation of reconstruction error.

From the steps above, we see that only those elements of
�� that have large residuals are updated (see (10)) and that
the signs and magnitudes of the updates are, respectively,
dependent upon the signs of the residuals and the magni-
tudes of the standard errors given in (11). In the formula,

� � �� � ���, for estimating residuals, the magnitude of 
�
remains rather large even after a number of iterations. An
alternative formula (which appeared to give better results
for our problem) is to define 
� as


� � ��� � ��� (12)

However, this requires the estimation of ��� given above to
be replaced by ��� �

��

��� 

�
� �
�
�
� �����
��



� where �

is the number of unmodified observations.

3.2. Our iterative outlier correction scheme

By relating the above formulation with the iterative
scheme for affine factorization reported in [6], it is not
difficult to see that the two problems are similar and that
the above update criteria are applicable since outliers are
present in the image measurement matrix � rather than the
� (or X) matrix. Our problem of factorizing a noisy im-
age measurement matrix is an extension of the above least
squares problem in that

	 instead of having an unknown vector x we now have
an unknown matrix (either the motion matrix � or the
shape matrix X) to compute in each iteration;

	 instead of having a residual vector we now have a
residual matrix �; correspondingly, a matrix � is re-
quired to store the estimate of the standard error of
each element of �.

The combination of the above criteria for updating the
image measurement matrix � and the iterative estimation
of the motion and shape matrices produces the following
iterative outlier correction scheme:
Generate a random matrix ����������. Set ���� � �. Initial-
ize v � ���� � � � � ���� to ���� � � � � ����, where �� stores
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the number of unmodified elements for the � th column of �.
For iteration � � �� �� � � �

1. Construct X������ �
�
�������� 1

�
.

2. Compute ���� � �
�����X������

�
X�����X������


��
.

3. Let
�
����� t���

�
� �

��� and the rank-3 hat matrix

�������� be �����
�
�����������


�� ������. Then the es-
timate �� and residual matrix � are

�� � �

�
�
����� � t 1�

	

 t 1� (13)

� � �
����� � ��� (14)

4. Let ��� � ����� � � � � � ����� be the vector that stores the
estimates of variances of single observations. Each el-
ement of ��� is given by

���� �

���
��� �

�
��

���� ����������
� for � � �� � � � � 	� (15)

where �� is the number of unmodified � elements on
the � th column. The denominator in (15) above in-
volves the term ���� since, for each ���� , a column
vector of length � of ����� is estimated.

5. Let ������� be the matrix that stores the standard er-
rors of all the estimates in matrix ��. Then each element
of � is defined as ��� �



�� �� ��� �

6. Update each element, ��� , of � for the next iteration as
follows:

�
���
�� �

���
��
�
�����
�� if � ��� � � ����
���� � ���� if ��� � �����
���� 
 ���� if ��� � ���� �

(16)

where � was kept constant at ��� in all our experiments.
Update �� , for � � �� � � � � 	, and use them in the fol-
lowing iteration.

7. Compute X��� for the next iteration as follows:

�������
�
�
���� � 1 t����

	
�����

�
�����������

	��
�

(17)
8. Terminate the iteration when the largest update to the

elements of � is less than a given threshold, i.e. when,
for some small fixed � � �,

���
�� �

��������� � �
�����
��

��� � �� (18)

Otherwise, go to Step 1.
9. Set � � �

���, X � X���, and � � �
��� � �

���X���.

In our experiments, we found that (14) (c.f. (12)) gave
better results than the formula � � � � �� in that the re-
construction and reprojection errors were smaller while no
extra iterations are required. We have experimented with

various modified versions of the algorithm given above. For
instance, the update given in (16) can be deferred until af-
ter the first two iterations, since in our outlier correction
problem, � is also an unknown matrix to be estimated and
that the hat matrix may not be well defined in the first itera-
tion. For the same reason, if an update to � is desired in the
first iteration, one may set � to diag� �

�� � � � � � �
�� � so that

all columns of ���� would be equally weighted when the
estimate of �� is not entirely certain. In the experiments de-
scribed in the next section, we only update the image mea-
surement matrix from the second iteration onward. An al-
ternative scheme is to reverse the role of � and X and re-
fine �� instead. We have experimented with this alternative
scheme and found no advantages over the scheme described
above.

4. Experiments

We tested the iterative outlier correction scheme de-
scribed above on both synthesized and real image se-
quences. To closely monitor the updates in each itera-
tion, our synthesized image sequences contained � random,
affinely projected images and �� random scene points, giv-
ing a � matrix of dimensions �����. Small uniform random
noise (up to ���� pixels) was first added to each of the ele-
ments of �, outliers were then added to a percentage (varied
from � to ���) of columns of �. The errors were up to���
pixels. For each outlying column in �, up to � (correspond-
ing to � images or ��� of the number of image frames)
of the �� image coordinates could be contaminated by out-
liers. For each noisy image measurement matrix �, the it-
erative scheme described in Section 3.2 was carried out to
refine �, � and X; the true 3D points were used to upgrade
the structure stored in X to Euclidean and the reconstruc-
tion and reprojection errors were evaluated. The value of �
in (18) was set to ���� in all experiments.

Table 1 shows the results of 100 runs of the scheme for
each level of contamination. In each run, different noise
and outliers were added, so a different � matrix was used.
In the Table, the means (�x) and standard deviations (�x)
of reprojection errors (in pixels) and the means (�X) and
standard deviations (�X) of reconstruction errors obtained
from the original noisy � matrix and the refined � matrix
are compared. The improvement in both reconstruction and
reprojection errors is evident. The means (��) and standard
deviations (��) of the numbers of iterations are also given in
the Table. As the percentage of outliers increases, both the
reconstruction and reprojection errors increase accordingly,
and more iterations are required. For each level of noise, we
also ran our scheme 100 times on the same � matrix with
different X���s. It was confirmed from our experiments that
the performance of the scheme is immune from the initial
estimate of ��.

The images and output of our real experiments are shown

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



% out- using the original noisy � using the refined �

liers 	x 
x 	X 
X 	x 
x 	X 
X 	� 
�

5% 0.46 0.17 0.70 1.28 0.39 0.10 0.18 0.31 98.05 48.70
10% 0.62 0.33 1.34 1.87 0.45 0.18 0.26 0.48 128.08 58.05
15% 0.73 0.40 2.42 22.18 0.50 0.23 0.35 0.64 134.65 50.19
20% 0.89 0.51 4.01 41.31 0.56 0.30 0.47 0.79 152.47 66.63
25% 1.00 0.58 5.73 49.61 0.59 0.34 0.52 0.91 165.24 68.09
30% 1.13 0.67 10.44 186.13 0.67 0.42 0.65 0.99 161.73 51.18
35% 1.18 0.71 9.63 119.80 0.67 0.41 0.66 1.03 171.65 71.80
40% 1.30 0.79 8.94 161.57 0.74 0.47 0.79 1.10 183.87 63.71
45% 1.40 0.86 10.85 50.70 0.76 0.48 0.79 1.06 181.97 65.96

Table 1: Reprojection and reconstruction errors from the
synthesized image sequences.

in Figs. 1 and 2. To improve the visibility of the corrected
feature point coordinates, all the images have been signifi-
cantly brightened. In both experiments, we used the KLT
feature tracker [13, 17] to track feature points frame by
frame. In our first experiment, a sequence of 131 images of
a desk scene was taken and 162 feature points were tracked.
In order to compare the performances of our scheme with
our previous LMedS technique [10], 7 frames at 20 frames
apart were extracted from the sequence, giving a ���������

matrix. Because of the large separation of frame num-
bers, the accumulation of erroneous tracking gave outliers
(shown as red line segments in Fig. 1) as large as 45 pix-
els in frame 120 (see the tails of red line segments in frame
100). The output from our scheme is shown in Fig. 1(b).
A total of 135 iterations were required. This experiment
demonstrates that the scheme is capable of correcting large
outlying errors.

In our second experiment, we extracted frames 0 to 200
from a long video sequence of over a thousand images of a
wall and ceiling of a casino in Madrid. 252 feature points
were found in this shorter sequence, giving a ��������	�.
Our scheme was applied to this large � matrix and con-
verged after 106 iterations. Three images from this se-
quence are shown in Fig. 2(b), superimposed onto each im-
age are the corrected image coordinates. The same image
sequence was fed to our LMedS technique and the detected,
but uncorrected, outliers are shown in Fig. 2(a). The coordi-
nates of all clusters of outliers were successfully corrected
(see Fig. 2(b)), e.g. the rightmost cluster of outliers in frame
80 (see frame 60); the centred cluster of outliers in frame 60
(see frame 40).

5. Discussions
It is encouraging that outliers that are often found in fea-

ture tracking in video images can be corrected and retained
by this simple iterative scheme. One of our interests dur-
ing the implementation was to find the pathological cases
of the scheme. Since the scheme is immune from the initial
guess X���, this leaves the patterns of outliers that appear in
� as the only possible source of problems. In the search for
outlier patterns, we discovered the following two extreme

patterns from our synthesized data:

	 If more than 50% of the elements in a particular row,
say the �th row (or two consecutive rows that corre-
spond to the �th image), of � were outlying coordinates
then the scheme would give a large mean reprojection
error. The culprit here was the poor estimate of the
�� matrix, which inflated the mean reprojection error.
This situation may occur in image capturing in practice
using a hand-held video camera when a small number
of frames might become jerky due to the movement or
walking pace of the cameraman. Fortunately, good 3D
reconstruction was always guaranteed if the majority
of the affine projection matrices were good.

	 If more than 50% of the elements in a particular col-
umn, say the � th column, of � were outlying coordi-
nates then the scheme would not be able to correct
them, thus giving a wrong estimate of the � th scene
point and large reprojection errors for the � th column.
However, due to the independent treatment of columns
of � in the scheme (c.f. Sections 3.1 and 3.2), the 3D
reconstruction errors and reprojection errors for other
columns were not affected. While the proportion of
wrong coordinates in an outlying column is not an
issue in outlier removal schemes, more good coordi-
nates than bad ones are essential in outlier correction
schemes.

Being a least-squares based approach, the scheme works
only if there are both positive and negative outlying coor-
dinates (from their true values) in the data set. This al-
lows a reasonably good �� matrix to be attained in early
iterations. The subsequent iterations would then simply
involve pulling the outlying coordinates toward their true
ones. While the errors involved in outliers (especially if
they fall onto image edges) may exhibit some correlation
between their �- and �-coordinates, as discussed in [11], so
long as there are both positive and negative errors in the data
set, the scheme would give very good performance.

The number of iterations shown in our experiments may
be considered to be large. We found empirically that the
scheme converged quickly in early iterations to give good
estimates of the � matrix in all the synthesized and real ex-
periments and that in later iterations the scheme gave refine-
ment to digits on the third decimal place onward. One pos-
sibility for speeding up the convergence is to increase the
value of � slightly in later iterations. However, care must
be taken to ensure that such a change would not cause the
convergence to oscillate.

6. Conclusions

We have employed an existing well-founded statistical
technique to the problem of outlier correction in image
sequences for the affine camera. The outlier correction
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(a) Frame 0 Frame 80 Frame 100 (b) Frame 0 Frame 80 Frame 100

Figure 1: Three images of a video sequence of a desk scene. (a) The detected in- and outliers from our previous LMedS
technique. (b) The corrected image coordinates obtained from our iterative outlier correction scheme.

(a) Frame 20 Frame 40 Frame 60 (b) Frame 20 Frame 40 Frame 60

Figure 2: Three images of a video sequence of a casino scene. (a) The detected in- and outliers from our previous LMedS
technique. (b) The corrected image coordinates obtained from our iterative outlier correction scheme.

scheme corrects outliers and factorizes the image measure-
ment matrix simultaneously. The proposed method has
been successfully tested on both synthetic and real video
data. It would be interesting to compare our scheme with
other outlier detection/correction methods (e.g. [1]) and to
investigate the extension of this scheme to the problem of
shape reconstruction for the perspective camera and when
the image measurement matrix has missing elements. We
intend to do this in a future publication.
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