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Abstract

We present a common variational framework for dense
depth recovery and dense three-dimensional motion field
estimation from multiple video sequences, which is robust
to camera spectral sensitivity differences and illumination
changes. For this purpose, we first show that both problems
reduce to a generic image matching problem after backpro-
jecting the input images onto suitable surfaces. We then
solve this matching problem in the case of statistical sim-
ilarity criteria that can handle frequently occurring non-
affine image intensities dependencies. Our method leads to
an efficient and el egant implementati on based on fast recur-
sivefilters. WWe obtain good results on real images.

1. Introduction

The correspondence problem is the core problem of both
structure and motion estimation. To solve this highly am-
biguous problem, most methods compare image intensi-
ties by their difference, relying on very strong assumptions,
such as the lambertian assumption for the stereo problem or
the brightness constancy assumption for optical flow.

Correlation techniques can cope with affine changes of
image intensities. They have been successfully used both
for the stereo problem and in optical flow block matching
algorithms. However, these techniques often use a fixed
neighborhood, whereas a surface patch of the scene may
have different shapes in different cameras and over time.
In the stereo problem, the underlying hypothesis is that the
camera retinal planes are identical and that the scene is
made of fronto parallel planes. In some works, this limi-
tation is alleviated by taking into account the tangent plane
to the object [5] or by using adaptative windows [9, 17].

In this paper, in order to avoid projective distorsion, we
map depth recovery and three-dimensional motion estima-
tion from multiple calibrated video sequences to a generic

image matching problem by backprojecting the input im-
ages onto suitable surfaces. This way, no shape approxima-
tion such as the tangent plane approximation is needed. Our
matching window is not a hard window in the input images
as in standard correlation techniques, but a smooth Gaus-
sian window that operates along the objects’ surfaces inside
the backprojected volume images.

Moreover, in order to cope with non-affine intensity de-
pendencies we use statistical similarity criteria which have
already proven successful in multimodal image registration
[22, 10, 16, 7].

We have designed a theoretical and computational
framework for both problems: we minimize an energy func-
tional. Furthermore, we have proved the well-posedness of
the minimization process in both cases.

Three-dimensional structure and motion estimation from
multiple video sequences has long been limited to rigid
or piecewise-rigid scenes [23, 4, 19] or parametric models
[11, 24]. The problem of computing a dense non-rigid 3D
motion field, namely scene flow [20], from multiple video
sequences has been addressed only recently.

Some techniques [25, 3, 12] use the spatio-temporal
derivatives of the input images. As pointed out in [20], es-
timating scene flow from these derivatives without regular-
ization is an ill-posed problem. Indeed, the associated nor-
mal flow equations only constrain the scene flow vector to
lie on a line parallel to the iso-brightness contour on the ob-
ject. This is nothing but a 3D version of the aperture prob-
lem for optical flow [2]. In [3, 12], several samples of the
spatio-temporal derivatives are combined in order to over-
constrain scene flow, whereas in [25], the aperture problem
is solved by combining the normal flow constraint with a
Tikhonov smoothness term. However, due to the underlying
brightness constancy assumption, and to the local relevance
of spatio-temporal derivatives, differential methods apply
mainly to slowly-moving lambertian scenes under constant
illumination.

In [21], shape and scene flow are estimated simultane-
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ously using a plane-sweep carving algorithm in a 6D space.
However, this approach still relies on a brightness constancy
assumption, has a very high computational and memory
cost, and is unable to enforce the smoothness of the recov-
ered shape and motion.

Some other techniques [18, 20, 25, 6] rely on previous
optical flow computations. However, the latter may be noisy
and/or physically inconsistent through cameras. The heuris-
tic spatial smoothness constraints used in most optical flow
methods may also alter the recovered scene flow.

Our method for scene flow estimation neither needs pre-
vious optical flow computations nor makes use of ambigu-
ous spatio-temporal image derivatives. It proceeds by di-
rectly evolving a 3D vector field so as to fit to the intensity
changes in all cameras. It is robust to illumination changes
through the use of statistical similarity criteria. Moreover, it
can recover large displacements thanks to a multi-resolution
coarse-to-fine strategy.

In the sequel, we focus on the case of two cameras not
to overload notations. Our framework extends easily to the
N-camera case simply by summing the statistical criteria
over all pairs of cameras. The rest of this paper is organized
as follows. Section 2 defines the statistical similiarity cri-
teria to be used in subsequent sections. In Section 3, we
present our stereovision method. Section 4 describes our
novel method for scene flow estimation.

2. Statistical intensity similarity criteria

We consider two similarity criteria which assume differ-
ent relations between the image intensities. The cross cor-
relation (CC) is a measure of the affine dependency. The
mutual information (MI) [22, 10] measures how the inten-
sity distributions of two images fail to be independent. Our
two criteria can also take two different forms. A global form
computed for the entire image, and a local form computed
on corresponding regions. The latter can cope with non-
stationary joint probability distributions of the intensities.

The global criteria CC? and MIY are computed from
the global joint probability density function, estimated by
the Parzen window method [13], with a Gaussian window
with variance $ > 0 as the Parzen kernel. For two images
I, and I, defined over a bounded domain €2 of R?, the joint
probability density function is given by

P(il,i2> = ﬁAGﬁ (Il(X> —il,IQ(X) —i2) dX,

1
or more concisely: P(i) = ﬁ/ Gs (I(x) —1) dx.
Q

The local criteria use a space-dependant Gaussian-weighted
version of this estimator

=t x) —1i X — Xq) dx
Pali) = Gy | G160 =) G 0 = xa)

where G (x0) = [, G (x — Xg) dx. The variance v > 0
controls the neighborhood size. New local similarity mea-
sures CC' and MI' are obtained by integration over 2 of
the local estimations of the cross correlation and the mutual
information.

3. Variational stereovision with statistical mea-
sures

Our approach proceeds by deforming a surface so as to
match the backprojected images of the different cameras.
The matching criterion is one of the statistical measures de-
fined in Section 2. The surface deformation is driven by
the minimization of an energy functional through a gradient
descent method.

3.1. Notations

We model the objects of the scene as the graph, in a
cartesian setting, of an unknown function f defined over
a bounded domain © of R? with smooth boundary 02, and
belonging to a dense linear subspace F of the Hilbert space
Hy = L?*(Q,R).

We note [;, the image captured by camera k, and 7
the backprojection of I; onto the entire 3D space. That is,
Ti(x,y, z) is the intensity of the pixel obtained by project-
ing the 3D point (z,y, z) onto image k. Thus, the camera
geometry is encapsulated in function Z;,. The gradient of
T can be readily obtained from the gradient of image I},
and the coefficients of the perspective projection matrix of
camera k. We note Z the pair (Z1,7Z>). We denote by S
the parameterized surface (z,y) — (x,y, f(z,y)), so that
the backprojection of image k onto the surface is given by
i o S. We note M the 3D point (z,y, f(x,y)).

3.2. Variational formulation

We define the stereo problem as the minimization of a
cost functional & (f) = My (f) + R1(f) , where M (f)
measures the statistical dissimilarity of the backprojected
images Z;0S and Z,0S, while Ry ( f) defines regularizing
constraints on f.

Note that, thanks to the backprojecting step, our method
matches against intensities along the objects’ surfaces in
constrast with standard correlation techniques which rely
on an approximation of the objects’ shapes. Moreover, our
local similarity measures operate on smooth Gaussian win-
dows in the backprojected volume images, in contrast with
the popular rigid rectangular windows in the input images.

A classical choice for the regularization term R is

Ri(f) = a /Q 6(VF(x)) dx
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for some function ¢ : R? +— R, and some weighting pa-
rameter a. The choice of ¢ enforces different smoothness
assumptions on f. The classical Tikhonov regularization of-
ten used in ill-posed problems, correponds to ¢(.) = %||2
Several other ¢ functions have been designed in order to
preserve depth discontinuities [15]. In our implementation,
we have considered the Perona-Malik, the Rudin and the
Aubert functions. .

We seek a minimum f = argmingep, £1(f). One can
show that a necessary condition of optimality is the so-
called Euler equation Vg, & (f) = 0. Rather than trying
to solve directly the Euler equation, which is impossible in
most cases, we follow a gradient descent strategy starting
from a guess fy. That is, we solve the following evolution
problem for f, which becomes a function [0, +o00[ — H;:

{ f0) =foeH

4= Vg &(f(r) M

T>0.

We call a global classical solution of equation (1) a
function f € C°([0,+oc[, H1) N C1(]0, +oo[, Hy) N
C°(]0, +o0[, F1) which satisfies equation (1).

The explicit computation of the gradient of the statisti-
cal dissimilarity term M was carried out using the same
pattern as in [8, 7]. The gradient in Hy of M for the two
global criteria is given by

VM (f)(x) =

ﬁ > (Gﬂ*akEf)(I(M))%(M)v (2)

k=1,2

where « indicates a convolution with respect to the two in-
tensities and £y depends on the criterion:

Efccg(i> = (201 ,2(i102 — G112 — i2pi1)

V1 U2
-CCY (i2’U1 (1,2 — 2,&2) + i11]2 (1,1 — 2#1))]
MIY oy _ Py (i)
B =~ (L)
3)

where P; is the global joint probability distribution,
Wk, Uk, k = 1,2 are the averages and the variances and vy »
is the covariance of the backprojected images Z; o S and
IQ oS.

The gradient in H; of M; for the local criteria is given
by

VM (f)(x) =
> <G7 * <Gﬂ * %akEf>> (I(M),X)O;I; (M),

k=1,2

where the first convolution acts on the two spatial variables
while the second is still on the intensity variables. EfCCl

and E}VHI are space-dependent versions of equation (3).
The gradient in H; of R4 is given by

VRi(f) = —a div (Véo VF) . (5)

Self occlusions can be taken into account by restricting
the integration domain of the similarity criteria to the por-
tion of the surface visible from both cameras. If we carry
out the derivation of these modified criteria under the widely
accepted technical assumption that the visibility remains
constant, we get the same expressions as equations (2) and
(4), except that the gradients are now supported by the vis-
ible domain. This approach is not included in our current
implementation because it is of limited practical interest in
the case of depth maps.

The following theorem, detailed in [14], addresses the
well-posedness of the minimization process:

Theorem 1 If the following assumptions are satisfied:
e ¢ isa positive definite quadratic form,

e Vi, 7;, and VI, are bounded and Lipschitz continu-
ous,

then equation (1) has a unique global classical solution.

Consider the Tikhonov case, and suppose image itensities
are bounded. Let us enforce Zy(z,y,z) = 0, V|z| > C,
which simply states that we do not consider arbitrarily high
depth values. Let us substitute to Zj, its convolution with
a 3D Gaussian kernel of variance o > 0: I7 = G, x 1.
Then Theorem 1 applies. Moreover, the Gaussian smooth-
ing stage is compatible with a multi-resolution strategy. In-
deed, the energy functional £, may be nonconvex due to its
data term, so that the gradient descent may be trapped in
a local minimizer. As a consequence, its asymptotic state
depends on the initial guess fo.

In order to avoid convergence to physically irrelevant lo-
cal minima, we adopt a multi-resolution coarse-to-fine strat-
egy as in [1]. The flow equation (1) is applied to a set of
smoothed and subsampled volume images Z;. In our ex-
periments, the initial guess for the coarsest resolution is a
plane with a suitable constant depth zj.

3.3. Numerical experiments

The gradients of the statistical criteria described in Sec-
tion 2 can be implemented efficiently thanks to fast recur-
sive filtering . The computation time is of a few seconds per
frame for medium resolution reconstructions.

Figure 1 shows the stereo pair used in our first series of
experiments and compares the reconstructed surfaces ob-
tained for different statistical criteria. The poor results of
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global cross correlation local cross correlation
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local mutual information
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Figure 1. Stereo pair (top) and reconstructed
surface for different statistical criteria.

global cross correlation suggest that no global affine de-
pendency exists for the considered stereo pair. Local cross
correlation and global mutual information yield good re-
sults, whereas local mutual information performs worse. In-
deed, the amount of information used for matching images
is smaller in this case. Hence, local mutual information
should be reserved to extreme imaging conditions in which
all other criteria fail. Figure 2 shows a high resolution re-
construction obtained with local cross correlation and some
views with backprojected texture.

"‘ .

Figure 2. Some detailed views of the recon-
structed surface.

Figure 3 illustrates the robustness of our method to cam-
era spectral sensitivity differences. We have transformed
the intensities of the initial stereo pair to simulate differ-
ent sensors. While local cross correlation fails in this case,
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Figure 3. Modified stereo pair (top). Recon-
structed surface with local cross correlation
(middle left) and with global mutual informa-
tion (middle right). Joint probability distribu-
tion of backprojected images onto the initial
(bottom left) and the final (bottom right) sur-
face with global mutual information.

global mutual information yields good results. Figure 3 also
represents the evolution of the joint probability distribution
of backprojected images in this case: we can see that the
mutual information criterion tends to cluster the joint prob-
ability distribution, and that the non-affine dependency we
had imposed could be recovered correctly.

4. Variational sceneflow estimation with statis-
tical measures

We evolve a 3D vector field defined on an estimation of
the object surface so as to match the backprojected image
at time instant ¢ and the backprojected image onto the pre-
dicted surface at time instant ¢ + 1 in all cameras. This way,
we enforce the agreement between the estimated scene flow
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and the 2D displacements in all cameras, without an explicit
use of previous optical flow computations or of ambiguous
spatio-temporal image derivatives. As in Section 3, the vec-
tor field evolution is driven by the minimization of an en-
ergy functional through a gradient descent method.

4.1. Notations

We denote by St the estimated surface at time instant ¢,
modelled as the graph of a function f! € F;. We model the
3D scene flow between ¢ and ¢ + 1 as an unknown function
v! belonging to a dense linear subspace F of the Hilbert
space Hy = L? (€, R?). The predicted surface at time in-
tant £ + 1 is given by St + vt. We do not constrain the de-
formed surface S* + v* to agree with S**! in order to make
scene flow estimation robust to surface estimation errors.

In this section, we note I} the image captured by camera
k at time instant ¢, and we define Z} as in paragraph 3.1.
We note M the 3D point (z,y, f*(z,y)) and V the vector

vi(z,y).
4.2. Variational formulation

We consider the minimization of a cost functional
E(vh) = My(vh) + Ra(v"), where M2 (v") measures the
global or local statistical dissimilarity between the backpro-
jected images Zf o S' at time instant ¢ and the backpro-
jected images 7™ o (S +v?') onto the predicted surface at
time instant ¢ 4+ 1, while R defines regularizing constraints
and smoothness assumptions on v¢. In our experiments, we
consider a Tikhonov regularization, but any other physics-
based or application-specific smoothness term R, could be
considered.

The gradient in H, of M for global criteria is given by

VMu(v)) = 1 S
k
(G * 02EL) (TLM), TH (M V) VIE (M4 V),
(6)

where E¥ is defined from images Zf 0 S*and Z,*" o (S* +
vt) as in equation (3).
The gradient in Hy of M, for local criteria is given by

VMa(v)(x) =)
k
(6 (6o -ouEt) ) (@D, T M+ V)
VL M+ V). (D)

Under the same assumptions as those of Section 3, we
have proved (see [14]) the well-posedness of the minimiza-
tion process.

4.3. Numerical experiments

Figure 4 shows some frames of the input stereo sequence
and the computed scene flow between the first two frames.
We clearly see that the overall movement of the head and

Figure 4. Some frames of the left input se-
quence (top) and some views of the estimated
scene flow (bottom).

the closing of the mouth are recovered but it is somewhat
difficult to evaluate the details of the flow in this figure. In
order to show the precision of the computed scene flow, we
have synthetized a motion-compensated 3D sequence from
the initial surface and texture, and from the successive scene
flows. Note that this is a challenging experiment since po-
tential errors are accumulated over many frames. Figure 5
shows some previews of this sequence. The movement of
the jaw is successfully recovered.

«o * "‘
Figure 5. Preview of the motion-compensated
3D sequence.

5. Conclusion and future wor k

We have described a common variational framework for
depth recovery and scene flow estimation from multiple
calibrated video sequences. Our method avoids projective
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distorsion by backprojecting the input images onto suit-
able surfaces and uses statistical similarity criteria to han-
dle camera spectral sensitivity differences and illumination
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