
Fast Stereo Matching Using Reliability-Based Dynamic Programming and 
Consistency Constraints 

Minglun Gong and Yee-Hong Yang 
Dept. of Computing Science, Univ. of Alberta, Edmonton, AB, Canada 

{minglun,yang}@cs.ualberta.ca 

Abstract 
A method for solving binocular and multi-view stereo 

matching problems is presented in this paper. A weak 
consistency constraint is proposed, which expresses the 
visibility constraint in the image space. It can be proved 
that the weak consistency constraint holds for scenes that 
can be represented by a set of 3D points. As well, also 
proposed is a new reliability measure for dynamic 
programming techniques, which evaluates the reliability of 
a given match. A novel reliability-based dynamic 
programming algorithm is derived accordingly, which can 
selectively assign disparity values to pixels when the 
reliabilities of the corresponding matches exceed a given 
threshold. Consistency constraints and the new reliability-
based dynamic programming algorithm can be combined 
in an iterative approach. The experimental results show 
that the iterative approach can produce dense (60~90%) 
and reliable (total error rate of 0.1~1.1%) matching for 
binocular stereo datasets. It can also generate promising 
disparity maps for trinocular and multi-view stereo 
datasets. 

1 Introduction 
An intensity-based stereo vision algorithm takes two or 

more images as inputs and produces a dense disparity map 
for one of the images. Previous works in this area are 
nicely surveyed by Scharstein and Szeliski [9]. (Due to 
space limits, only the most recent or relevant references 
are cited in this paper.) As pointed out in their taxonomy, 
different stereo algorithms generally perform the following 
four steps: matching cost computation, cost aggregation, 
disparity computation, and disparity refinement. 

1.1 Motivations 
There are mainly two motivations in our work. First of 

all, we would like to compute consistent disparity maps for 
multiple source images simultaneously and efficiently. 
Recent image-based rendering techniques use multiple 
images and their disparity maps to synthesize novel views. 
If disparity maps are generated for these images separately 
using traditional stereo vision algorithms, they may not be 
consistent with each other. That is, if we calculate a 
disparity map Ds for view s and then warp Ds to view t, the 
disparity value at a given pixel p may be different from 
that of the disparity map Dt, which is calculated directly 
for view t. Our experiments show that the inconsistency 
problems will cause artifacts in generating novel views. 

For binocular stereos, the consistency check can be used 
to detect some of the inconsistency problems. Previous 
works show that it helps to reduce mismatches [7]. 
However, the consistency check can only be used for 
pixels that are visible in both images, and therefore, cannot 
be applied in occluded areas. To address this problem, we 
propose two constraints. The strong consistency constraint 
is a re-formulation of the consistency check under the 
multi-view stereo scenario. The weak consistency 
constraint is an extension of the strong consistency 
constraint, which allows a pixel to be matched more than 
once. As a result, the weak consistency constraint can be 
applied to occluded areas as well. 

Like many other approaches, we solve the stereo 
problem under an optimization framework. Different 
optimization techniques, including dynamic programming 
(DP) [1], graph cuts [4], and genetic algorithm [2], have 
been applied under this framework. These techniques try 
to find a global optimized solution under some given 
parameters. However, due to the complex nature of the 
stereo vision problem, it is difficult, if not impossible, to 
have a universal set of parameters that can produce good 
disparity maps for different stereo images. In fact, even 
within a single image, it is highly possible that different 
regions should use different parameters since the signal-to-
noise ratio may vary within the image. As a result, the best 
solution in terms of the given parameters may not 
necessarily be a good solution. 

Hence, our second motivation is to incorporate a 
reliability measure into the optimization technique. The 
proposed reliability-based dynamic programming (RDP) 
algorithm is based on DP, which is well known for its 
efficiency. For each scanline, the algorithm generates the 
best path in terms of a given discontinuity cost, and 
simultaneously provides the reliabilities of matches at 
different locations along the path. As a result, we can 
choose to only accept matches with reliability measures 
higher than a given threshold. 

The RDP algorithm and the consistency constraints can 
be integrated in an iterative process, which we call the 
multi-pass dynamic programming (MDP) approach. The 
MDP approach uses the RDP algorithm to generate 
reliable matches for different source images, and then 
validate the matches obtained from different images using 
either the strong or the weak consistency constraint. Since 
the confirmed matches need to pass both the reliability test 
and the consistency test, the final matches generated by 
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this approach are quite accurate. 

1.2 Related works 
Our RDP algorithm is most related with the scanline 

optimization (SO) algorithm [9]. The SO algorithm is, to 
the best knowledge of the authors, the first DP-based 
algorithm that enforces the smoothness constraint directly. 
When searching for the best path that starts from pixel p, 
instead of limiting the searches using the ordering 
constraint, this algorithm considers all possible paths at 
pixel p–1. The smoothness constraint is enforced using a 
predefined smoothness weight, without which the 
algorithm becomes a local winner-take-all approach. Our 
major improvement over the SO algorithm is in the use of 
the reliability measure, which makes it possible to detect 
potential mismatches. In addition, we also propose a more 
efficient implementation of the algorithm. 

The proposed weak consistency constraint essentially 
enforces the same constraint as the visibility constraint 
used in ref[4]. That is, a match blocks matches that are 
behind it in all views. However, the visibility constraint is 
formulated in the 3D space using a set of interactions that 
contains 3D points occluding each other; while the weak 
consistency constraint is formulated in image space using 
the warping relations and the disparity values of pixels. As 
a result, a more concise form can be defined, and an 
efficient method can be used to check whether or not a 
pixel is occluded in one of the source images. 

Depending on its applications, the proposed MDP 
approach are also related with the unambiguous stereo 
matching [5,7] and the multi-view stereo matching [3,4,8] 
techniques. These papers are cited in relevant sections in 
the following. 

2 Consistency of Disparity Maps 
Here we introduce the two consistency constraints. First 

of all, several concepts in stereo vision are re-formulated 
and generalized to facilitate the definitions of the 
constraints. The definitions and comparison with 
previously used constraints are given later. 

2.1 The Stereo Vision Problem 
Like many stereo vision algorithms, we assume that all 

given source images share the same image plane. The 
disparity of a pixel is defined using the inverse of the 
distance between the corresponding 3D point and the 
shared image plane [6]. As a result, pixels from different 
source images have the same disparity value if they are 
projections of the same 3D point in the scene. For two 
pixels with different disparity values, the one with a larger 
disparity value is the projection of a 3D point that is closer 
to the shared image plane. 

Let D denote the value domain of disparity. Let Fs be 
the set that contains all the pixels in source image s 
(s=1…n), and let Gs be the set containing only pixels that 
have disparity values assigned. By definition, we know 

Gs⊆Fs. A disparity map defined on image s is called a full 
solution, if Gs=Fs, and is called a partial solution 
otherwise. 

The disparity map is defined as a function, ds:Gs→D, 
which assigns each pixel in Gs a disparity value. Assigning 
a disparity value d to pixel p in image s actually defines a 
point Mp

d in the 3D scene. It also defines a set Hp
d, which 

contains the projections of Mp
d in all source images. Here, 

we call the set Hp
d a match and q (q≠p∧q∉Hp

d) the 
corresponding pixel of p under disparity value d. 

For any given image pair s and t, a warping function, 
ws,t:Fs×D→F't, is defined, which maps a pixel p in s to its 
corresponding pixel q in t under a given disparity value d. 
Here, F't⊇Ft since q may be outside the boundary of t. 
Please note that we make no assumption on whether or not 
the epipolar lines coincide with image rows (columns). 
Instead, we assume that the warping functions defined for 
different image pairs and different disparity values satisfy 
the following two properties: 
• One-to-one property: ws,t(wt,s(p,d),d)=p ; 
• Transitive property: ws,t(wr,s(p,d),d)=wr,t(p,d) . 

Consequently, the match Hp
d is a complete set for 

warping operation under disparity value d. This means that 
Hp

d=Hq
d provided q is one of the corresponding pixel of p 

under disparity value d. We also assume that Mp
d=Mq

d, 
even though the 3D coordinates of the two may not exactly 
be the same. In the rest of this paper, a match H and its 
corresponding 3D point M are used interchangeably. 

It can be shown that the above properties hold for most 
of the previously used binocular and multi-view stereo 
datasets [3,6,8,9]. A detailed discussion of this is outside 
the scope of this paper. 

2.2 The Definitions of Constraints 
Definition 1 (Strong Consistency Constraint): A 
disparity map defined on Gs satisfies the strong 
consistency constraint if the following hold: 

 ( ) ( )( )qdpdqtp ts
ts =∧∈∀⇒∈ GG ,  

where q=ws,t(p,ds(p)). 
Basically this constraint requires that if the disparity 

value of pixel p in image s is assigned, the disparity value 
of the corresponding pixel q in any image t must also be 
assigned. In addition, q must have the same disparity value 
as that of p. This indicates that the same 3D point M is 
visible from all these pixels. 
Definition 2 (Weak Consistency Constraint): A disparity 
map defined on Gs satisfies the weak consistency 
constraint if the following hold: 

 ( ) ( )( )qdpdqqtp ts
tts ≤∧∈⇒∈∀⇒∈ GFG ,  

This constraint states that if the disparity value for pixel 
p is assigned, then the disparity value of the corresponding 
pixel q in any image t should also be assigned provided q 
is within the image boundary. Furthermore, q should either 
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have the same disparity value as or a larger value than that 
of p. 

Intuitively, the weak consistency constraint can be 
explained as follows: Assigning a disparity value to pixel 
p in image s defines a 3D point Mp

d. Since the 
corresponding pixel q is the projection of Mp

d in image t, 
Mp

d should be either visible at q or occluded by another 3D 
point, which is closer to the shared image plane. Either 
way, the disparity value at q should not be smaller than 
that of p. More formally, we prove that the weak 
consistency constraint holds for all scenes that can be 
represented by a set of 3D points. 
Lemma 1: The disparity maps for any given set of points 
in 3D space satisfy the weak consistency constraint, as 
long as the disparity maps share the same image plane 
and only one point is visible from any given pixel. 

Proof: Given any set of 3D points, we can generate the 
disparity maps for all images simultaneously by projecting 
the points in the order such that the one closer to the 
shared image plane is projected first. When projecting 3D 
point M to image s, one of the following three situations 
happens: 
• p∉Fs, which means that the projection of M is not within 

the image boundary of image s. No change will be made 
to the disparity map of image s. 

• p∈Fs∧p∉Gs, which means that no previously handled 
point has been projected to pixel p, and therefore, M is 
visible at p. In this case, p is added to Gs, and ds(p) is 
assigned according to the depth of M. Hence, assume 
that the projection of M in any other image t is q, we 
have q=ws,t(p,ds(p)). In addition, if M is also visible in 
image t, we have ds(p)=dt(q). Otherwise, we have 
ds(p)≤dt(q) since all previously projected points should 
not be further away from the image plane than M. 

• p∈Gs, which means that at least one previously handled 
point has been projected to pixel p. Since only the closest 
point is visible from p, M will be occluded. No change 
will be made to the disparity map of image s. 
As a result, after all points are projected, the generated 

disparity maps satisfy the weak consistency constraint. ■ 

2.3 Comparison with Other Constraints 
Both the uniqueness and ordering constraints are widely 

used in previous works [1,10]. In this section, we highlight 
the similarities and differences between these constraints 
and the weak consistency constraint using a binocular 
matching scenario. For binocular stereo, a match Hp

d 
contains two pixels, pixel p from source image and q from 
reference image. It can also be expressed as a pair <p,q>. 

Each of the sub-figures in Figure 1 shows an un-skewed 
disparity space image for a pair of corresponding 
scanlines. Black denotes a match, gray denotes the match’s 
inhibition zone, and striped denotes the match’s occlusion 
zone. 

The uniqueness constraint states that the disparity maps 

have a unique value per pixel [10]. As shown in Figure 
1(a), if we enforce uniqueness in the source image only, a 
match <p,q> will forbid pixel p to be involved in any other 
match. Consequently, all other matches in the same 
column are inhibited. If we enforce uniqueness in both the 
source and the reference images, as shown in Figure 1(b), 
a match will forbid any other matches in the same row or 
the same column. This is the same as the strong 
consistency constraint under our formulation. 

Figure 1: Effects of using different constraints. 

The ordering or monotonicity constraint states that if an 
object is to the left of another in one stereo image, it is also 
to the left in the other image [1]. In practice, we know that 
this constraint does not hold when thin foreground objects 
exist in the scene. As shown in Figure 1(c)1, if we enforce 
the ordering constraint, a match <p,q> inhibits matches 
<u,v> if u≥p and v<q or if v≥q and u<p. Matches in the 
occlusion zone are allowed, but will be penalized by a 
predefined occlusion cost. 

Finally, the effect of the weak consistency constraint is 
shown in Figure 1(d). The figure shows that under the 
weak consistency constraint, a match <p,q> forbids 
matches <p,v> (v<q) and matches <u,q> (u>p) since these 
matches will occlude <p,q>. However, both p and q can be 
involved in another match that <p,q> occludes, as long as 
the occlusion cost is applied. Since occlusion is modeled 
explicitly, the weak consistency constraint can be applied 
to the whole image, while uniqueness and ordering 
constraints do not hold in either occluded areas or areas 
that contain thin foreground objects. 

3 Reliability-based Dynamic Programming 
Here we propose an efficient DP-based algorithm that 

assigns disparity value d to pixel p only when the 
reliability of the corresponding match Hp

d exceeds a given 
threshold. First of all, a reliability measure is defined for 
DP-based approaches in general. A match Hp

d is denoted 
as a pair <p,d> for better readability in this section. 
Definition 3 (Reliability): The reliability R(p,d) of match 
<p,d> is defined as the cost difference between the best 
path that does not pass through <p,d> and the best path 
that passes through <p,d>. 

Obviously, if <p,d> is on the best path that is found 
under no constraint, we have R(p,d)≥0. The higher the 
value of R(p,d), the more likely it is that the true disparity 
                                                        
1 Please refer to figure 9 in ref[1], which visualizes the inhibition 
zone in a skewed disparity space image. 
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value of pixel p is d. 
Comparing to the SO algorithm, our RDP algorithm has 

several improvements, which are elaborated below. It is 
noteworthy that since no attempt is made to determine 
occlusions within a scanline, both algorithms do not 
require the scanlines to coincide with the epipolar lines. 
Please also note that we do not explicitly enforce the weak 
or strong consistency constraint in the RDP algorithm. 
However, as we show in the next section, the consistency 
constraints can be applied by using this algorithm as a 
solver in an iterative process. 

3.1 Efficiency Improvement 
The first improvement is at the implementation level. In 

Scharstein and Szeliski’s implementation, the complexity 
of calculating each scanline is O(L×D2), where L is the 
number of pixels per scanline, and D the disparity range. 
In the result reported by Scharstein and Szeliski [9], 
depending on the disparity range, the running time of the 
SO algorithm is 10%~60% slower than that of the 
conventional DP algorithms. 

In our implementation, we assume that the same non-
negative discontinuity cost λ is applied whenever 
neighboring disparity values are different, no matter how 
large the difference is. With this assumption, at most two 
possible paths need to be considered when searching the 
best path that starts from match <p,d>. The first one 
connects to the path at <p–1,d> so that the discontinuity 
cost will not be incurred. The second path, if differs from 
the first one, connects directly to the best path for the sub-
problem that consists of the first p–1 pixels. 

Since we only need to search for the best path for the 
sub-problem once, the complexity of the algorithm is cut 
down to O(L×D). Our experimental results show that the 
speed of the new implementation is comparable with 
conventional DP algorithms. 

3.2 Reliable Matching 
According to definition 3, calculating R(p,d) for each 

match <p,d> on the best path requires running the DP 
algorithm again under the “do not pass” constraint. For 
efficiency concern, in the RDP algorithm, the approximate 
reliability R'(p,d) is used instead, which can be computed 
using the following algorithm. 

First, we assume that array C[p,d] is used to keep the 
matching cost of <p,d>. When solving the sub-problem for 
the first p pixels, array S[p,d] keeps the cost of the best 
path that starts from <p,d>. For every pixel p, m[p] keeps 
the value of d that has the smallest value of S[p,d], and 
m'[p] keeps the value of d that gives the second-to-the-
smallest value of S[p,d]. 

As shown in Figure 2, the same as in the traditional 
algorithm, the tracing starts from the rightmost pixel z. 
Assuming a=m[z] and b=m'[z], we simultaneously trace 
the best path (shown in solid lines) from “a” and an 

alternate path (shown in dashed lines) from “b”. It is 
highly possible that the alternate path may merge with the 
best path as we trace. We can proof that, using our 
algorithm, if the two paths merge at pixel p they will 
merge at <p,m[p]>. This is because at least one of the two 
paths comes from <p+1,d>, where d≠m[p]. This path 
always connects to <p,m[p]> since it is the only choice 
other than <p,d>. 

Figure 2: Trace the best and alternate paths. 

As shown in the figure, assume that the two paths 
merge at pixel y and c=m[y], d=m'[y]. We can then start a 
new alternate path from d and continue the process. At the 
end of tracing, we have both the best path and several 
alternate paths, one on each segment. The approximate 
reliability R' of matches on the best path within each 
segment is then calculated using the cost difference 
between the corresponding alternate path and the best path 
at the end of the segment. For the above example, the 
approximate reliabilities of matches on ka is S[z,b]–S[z,a], 
and for those on ec is S[y,d]–S[y,c]. 

We can prove that the inequalities R'–λ≤R≤R'+λ hold. 
However, the details are not included in this paper due to 
space limits. Therefore, when the discontinuity cost is 
small (normally within [0,4] in our experiments), using the 
approximate reliability measure instead of the reliability 
measure will not introduce too much bias. 

It is noteworthy that when λ=0, the best path always 
passes through m[p] at pixel p, and the alternate paths 
always start from m'[p] and merge with the best path after 
one pixel. Both R(p,m[p]) and R'(p,m[p]) degenerate into 
measuring S[p,m'[p]]–S[p,m[p]], which is also equal to 
C[p,m'[p]]–C[p,m[p]] when λ=0. 

Since the best path and the alternate paths are traced 
simultaneously, the approximate reliabilities of all the 
matches on the best path can be calculated within the same 
pass as we trace. Therefore, very little computation 
overhead is added to the conventional algorithm. 

3.3 Ground Control Points 
Previous research has shown that pre-calculated ground 

control points (GCPs) can help to eliminate mismatches by 
reducing the search space [1]. Here, we also use them in a 
way to improve efficiency. Whenever a pixel is selected as 
a GCP in previous calculations, the RDP algorithm will 
skip though it without any redundant computations. 

As a result, the complexity of the algorithm drops to 
O(L1+L2×D), where L1 is the number of GCPs, L2 the 
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number of pixels to be calculated. This means that most of 
the calculations are spent on pixels with ambiguities. As 
more pixels are added into the GCPs, less computational 
time is needed. 

4 Enforcing Consistency through Iterations 
In this section, we propose a new MDP approach, which 

integrates consistency constraints and the RDP algorithm 
in an iterative process. Each iteration consists of three 
major steps: match suggestion, match validation, and 
disparity space update. All these steps can be done in 
polynomial time. 

In the first step, the RDP algorithm takes a reliability 
threshold and a discontinuity cost as inputs. It suggests 
some reliable matches for each of the source images. In the 
second step, the matches found through different images 
are validated using either the strong or the weak 
consistency constraint, depending on the application. Each 
pixel involved in a confirmed match H will be added to 
solutions for the corresponding source image s, provided 
that H is visible in s. The pixels already added to the 
solution will be treated as GCPs by the RDP algorithm in 
future iterations. Finally, in the last step, the disparity 
space is updated based on the weak consistency constraint 
using the new matches found in the current iteration. For 
each new match, the cost of matches in its inhibition zone 
is set to infinity. The cost of matches in its occlusion zone 
is set to the predefined occlusion cost, regardless of 
whether the original cost is higher or lower than the 
occlusion cost. 

The disparity space update ensures that the matches 
found by the RDP algorithm in future iterations are weakly 
consistent with the matches already confirmed, even 
though the new matches may not be weakly consistent 
with each other. Since we always add matches to and 
never remove them from the solutions, the algorithm is 
bounded to converge. 

Depending on the application, different strategies can be 
used to combine the consistency constraints and the RDP 
algorithm. We will discuss two different applications in 
the following subsections. 

4.1 Unambiguous Stereo Matching 
Due to the difficulties of binocular stereo matching 

problem, some researchers have started to investigate how 
to find unambiguous components of stereo matching [5,7]. 
Following their idea, here we discuss how to apply the 
MDP approach in this application. 

The ambiguities tend to appear in noisy areas, occluded 
areas, and weakly/periodic textured areas. Similar to 
previous approaches, we can detect occluded areas using 
consistency check, in particular, through the strong 
consistency constraint. Also, the RDP algorithm can be 
used to identify weakly or periodic textured areas by 
setting up a reliability threshold. However, a unique 

feature of our approach is that it is possible to propagate 
the supports from reliable matches to their neighbors 
through the smoothness constraint. While previous 
techniques [7] can only increase the number of matches by 
lowering the threshold, which will introduce more errors, 
our approach can gradually increase the density of matches 
by increasing the discontinuity cost, without lowering the 
reliability threshold. This helps to find correct matches in 
weakly or periodic textured areas, while still keeps 
mismatches caused by isolated noises out of the solution. 

A simple algorithm can be formulated using the above 
idea. Given a binocular stereo dataset, in the first stage, the 
MDP approach is used to compute reliable matches under 
the strong consistency constraint, using a high reliability 
threshold, without any discontinuity cost. After the 
algorithm converges, which normally takes 3~5 iterations, 
we increase the discontinuity cost and start another stage 
of iterations. Depending on how dense or how accurate the 
matches we want, the user can choose how many stages to 
use and how fast the discontinuity cost to grow. 

4.2 Multi-view Stereo Matching 
The visibility problem cannot be fully addressed for 

binocular stereos. To generate full solutions, the best we 
can do is to detect occluded areas and fill them using 
heuristic approaches. However, when multi-view stereo 
data is available, different algorithms [3,4,8] can be 
applied to better solve the problem. 

In the SEA approach [8], 9 cameras, placed in a 3×3 
array on a plane, are used to capture the scene. These 
captured images form 8 pairs, each of which consists of 
the center image and one of the peripheral images. The 
occlusion detection algorithms calculate an overall cost for 
each disparity value based on the matching costs obtained 
using different pairs. The local winner-take-all approach is 
then used to find the best disparity value for the center 
image. 

When handling the same dataset, Kolmogorov and 
Zabih [4] use 5 images (center, top, bottom, left, right), 
forming either 4 or 10 pairs. Instead of calculating an 
overall cost, the matching costs obtained from different 
pairs are used separately. For a given smoothness term, the 
graph cuts technique is used to find a local minimum in a 
strong sense. 

The local approach [8] is fast but gives noisy results. 
Graph cuts based approaches [3,4] produce very nice 
results but are slow. We try to fill the gap. Similar to 
ref[4], in our approach, a separate disparity space Sst is 
initialized using the matching cost computed for each 
image pair <s,t>. In each iteration, based on Sst, the RDP 
algorithm is used to calculate some reliable matches for 
both s and t. Assuming N pairs are used, the above 
calculation will provide N suggested solutions for the 
center image s and one suggested solution for each of the 
peripheral images t. Even though there are redundant 
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calculations for image s, they make it possible to detect 
mismatches that may pass both the reliability and the 
consistency tests. 

For this application, the suggested matches for different 
images are validated by enforcing the strong consistency 
constraint between each pair and the weak consistency 
constraint among all images. That is, to confirm a match 
H, which is found for pixel p in image s through image 
pair <s,t>, H must be visible in both s and t. In addition, H 
cannot occlude any existing or suggested matches in any 
other image u, but it is allowed that H is occluded in u. 

After a match H is confirmed, it will be projected to all 
images. Assuming the projection of H is pixel q in image 
u. q will be added to Gu if it is not already in there. In 
addition, the disparity space Suv for different image pair 
<u,v> are also updated using the weak consistency 
constraint. 

After the iteration converges, we will obtain a disparity 
map for each source image. Disparity values will be 
assigned to most of the pixels that are visible in both the 
center image and at least one of the peripheral images. As 
a result, the disparity map for the center image is normally 
very dense since very few pixels are not visible in any of 
the peripheral images. Those for the peripheral images are 
also denser than the matching results generated using only 
one pair since reliable matches found from other pairs are 
used. In our approach, the missing disparity values are 
filled using median filtering under the weak consistency 
constraint. 

5 Experimental Results 
In the first experiment, the RDP algorithm is tested 

using the “Venus” dataset [9]. To make the results 
comparable with that reported for the SO algorithm, the 
same set of parameters is used here. 

Figure 3(a) shows the disparity map generated using the 
RDP algorithm without setting the reliability threshold. 
The color coding used is shown beside the figure and is the 
same as that used in ref[7]. Since no GCPs are utilized, the 
result is similar to that of the SO algorithm. However, the 
efficiency is improved. On an Athlon 1.5GHz PC with 
1GB memory running Windows XP Professional, our 
implementation can generate the above disparity map in 
0.06 sec, while our implementation of SO algorithm takes 
0.56 sec. Please note that the time needed for the matching 
cost computation is not included because it is the same for 
both algorithms. In addition, the matching costs need to be 
calculated only once when the RDP algorithm is used in 
the iterative approach. 

Figure 3(b) visualizes the approximate reliabilities 
calculated for different regions of the disparity map. The 
brighter the color, the higher the approximate reliability of 
the corresponding disparity value is. The result shows that 
the approximate reliabilities are low in textureless areas, 
such as the top-right corner. Referring to Figure 3(a), we 

notice that there are many horizontal streaks in this area. 
On the other hand, in areas where correct and smooth 
disparity values are produced, such as the top-left corner, 
the approximate reliabilities are relatively high. 

After we set up a reliability threshold, the RDP 
algorithm can give a partial solution that contains only 
reliable matches. As shown in Figure 3(c), most of the 
errors and streaks are removed in the partial solution. 
However, there are still some errors left in the result, 
partly because the large smoothness weight used (50 as 
suggested [9]) enlarges the difference between the 
reliability and the approximate reliability. Normally a 
much smaller smoothness weight is used in the RDP 
algorithm since we do not rely on the smoothness 
constraint to remove mismatches. 

The second experiment compares the unambiguous 
matches generated for the four datasets used in ref[9] using 
Sara’s approach [7] and the proposed MDP approach. The 
results of Sara’s approach are downloaded from 
http://cmp.felk.cvut.cz/cmp/demos/Stereo/New/Matching/ 
smm-standard.html. Our results are generated by running 
the algorithm discussed in 4.1 for three stages. The same 
set of parameters is used for all datasets. The value of the 
reliability threshold is fixed at 2 throughout the process, 
and the value of λ steps through 0, 1, and 2 for the three 
stages. We found that our algorithm is not very sensitive to 
these parameters. However, questions such as which set of 
parameters is the best and how to automatically select 
parameters are worth investigating in the future. 

Table 1: Comparison for unambiguous stereo 
matching 

Tsukuba Sawtooth Venus Map 
 

D (%) e (%) D (%) e (%) D (%) e (%) D (%) e (%)

Stage 1 21.7 0.24 26.8 0.11 14.6 0.02 29.2 0.02
Stage 2 36.5 0.33 47.7 0.19 27.5 0.12 43.5 0.03
Stage 3 85.7 1.07 85.0 0.41 67.1 0.51 60.8 0.09
Sara’s 45.7 2.05 61.7 2.15 47.6 1.54 69.9 0.76

The density (D) and error rate (e) of the matches 
produced are shown in Table 1. Density is defined as the 
percentage of matches generated, and error rate the 
percentage of bad matches (not within correct disparity 
±1). Please note that, different from the measure used in 
ref[9], bad matches within the occluded areas are also 
counted in the error rate calculation. This generates 
slightly higher error rates for both approaches. We believe 
that this is a more fair evaluation for unambiguous stereo 
matching applications, which are supposed to detect 
occluded areas. 

The results show that with different datasets, our 
approach gives a lower error rate. In addition, after three 
stages, in the first three datasets, our approach can produce 
denser disparity maps as well. The result for the “Map” 
dataset is not as dense because, as indicated by Scharstein 
and Szeliski [9], this dataset requires a higher smoothness 
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weight than the other three. If we increase the value of λ to 
4 and run for another stage, we can produce a 76.9% 
density disparity maps with 0.17% error rate. 

Due to page limits, here we only show the disparity map 
generated and the corresponding bad pixels for the first 

dataset, which has the highest error rate under our 
approach. Figure 4(a), (b), and (c) are the results after each 
of the three stages. For comparison, the result of Sara’s 
approach is shown in Figure 4(d). 

  
 (a) (b) (c) 

Figure 3: Results of the reliability-based dynamic programming algorithm. 

(a) (b) (c) (d) 
Figure 4: Unambiguous matches found for binocular stereo. 

(a) (b) (c) (d) 
Figure 5: Trinocular and multi-view stereo matching results. 

The results show how weakly textured areas are filled 
up as we increase the discontinuity cost. In addition, as 
shown in Figure 4(a), because of the high reliability 
threshold used, the first stage only provides a sparse 
disparity map. However, some fine details that are not 
available in Figure 4(d), such as the boom of lamp shade, 
do show up in the result. The disparity map in Figure 4(b), 
which has similar density as the one in Figure 4(d), 

contains much less bad pixels, especially in depth 
discontinuous regions. This is probably because we use 
3×3 matching windows and they use 5×5. 

Using the MDP approach to generate reliable matches is 
also efficient. The experiments show that the three-stage 
process normally requires a total of 10~15 iterations. As a 
result, the RDP algorithm is invoked for about 20~30 
times since both the left and the right disparity map need 
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to be calculated in each iteration. In practice, the CPU time 
needed is between 2~5 sec for each of the above datasets. 
If necessary, the computation time can be reduced at the 
cost of lowering the density or the accuracy of the matches 
by limiting the number of iterations per stage. 

Finally, the MDP approach is tested for multi-view 
stereo matching problems. Figure 5(a) shows the center 
image of the two datasets used in ref[8]. To test the 
performance of our approach on trinocular datasets, 3 of 
the 9 source images (center, top, and right) are used first to 
generate the disparity maps (shown in Figure 5(b)). The 
approach is then tested using 5 images (same as in ref[4]), 
and the results are shown in Figure 5(c). 

Table 2: Comparison for multi-view stereo matching 

 # of images # of pairs e (%) E (%) Time (sec)
3 2 2.03 13.31 2+6 

Ours 
5 4 1.86 12.62 4+11 

SEA 9 8 4.83 23.45 9+0.01 
5 4 2.75 6.13 369 

Graph Cuts 
5 10 2.30 4.53 837 

The comparison on the first dataset, which has the 
ground truth available, is shown in Table 2. In the table, 
the mismatch rate (E) is defined as the percentage of pixels 
that do not match exactly to the ground truth. The running 
time is reported in the form: matching cost computation 
time + disparity computation time. 

The results of SEA approach are based on our 
implementation using 3×3 matching windows and “new 
mask” [8] as the detection algorithm (results shown in 
Figure 5(d)). The results of graph cuts are reported by 
Kolmogorov and Zabih [4]. In their work, the time is 
measured on a 450MHz UltraSPARC II. 

Table 2 shows that our results have less than half of the 
bad pixels as the result of SEA approach does, even 
though less image pairs are used. In addition, within the 
reported time, our approach generates the disparity maps 
for all source images, while the SEA approach only 
produces the center one. Compared with the results of the 
graph cuts approach, our results have a slightly lower error 
rate and a much higher mismatch rate. However, it seems 
the computation cost of our approach is much lower, even 
though no comparison on the same platform is available. 

6 Conclusion 
In this paper, we introduce the strong and the weak 

consistency constraints by re-formulating and extending 
the consistency check. The weak consistency constraint 
explicitly models the visibility in the image space, and can 
be applied to both occluded areas and areas that contain 
thin foreground objects. 

Another contribution of this paper is to introduce a new 
reliability measure for DP approaches in general based on 
the cost difference between the best alternate path and the 
path under use. In the proposed RDP algorithm, an 

approximate reliability measure is calculated for all 
matches on the best path with minimal overhead. As a 
result, instead of relying on the smoothness constraint to 
remove mismatches, which may also remove some details, 
we use the approximate reliability measure to detect 
mismatches. Fine details with enough reliability can then 
be preserved in the resulting disparity map. 

When using the RDP algorithm in an iterative process, 
we can choose to increase the discontinuity cost gradually. 
Consequently, matches of the most distinct features are 
confirmed first. Those in noisy and textureless areas will 
not be accepted until there are enough supports from 
neighboring matches. This gives the effects of 
automatically adjusting the smoothness weight at different 
regions of the image. Basically, the higher the signal-to-
noise ratio of a region, the sooner the matches in the 
region will be confirmed, resulting in a smaller 
discontinuity cost to be applied in the region. Our 
experimental results show that the new MDP approach can 
generate promising results for both unambiguous stereo 
matching and multi-view stereo matching applications. 

Since the techniques proposed in this paper are based on 
DP, they are computationally efficient. Improvements can 
be done on our implementation, especially on matching 
cost computation part. Parallel implementations for real-
time applications appear feasible and will be investigated 
in future research. 
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