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Abstract
This paper presents a framework for texture recognition

based on local affine-invariant descriptors and their spa-
tial layout. At modeling time, a generative model of local
descriptors is learned from sample images using the EM al-
gorithm. The EM framework allows the incorporation of
unsegmented multi-texture images into the training set. The
second modeling step consists of gathering co-occurrence
statistics of neighboring descriptors. At recognition time,
initial probabilities computed from the generative model
are refined using a relaxation step that incorporates co-
occurrence statistics. Performance is evaluated on images
of an indoor scene and pictures of wild animals.

1 Introduction
Texture representations that are invariant to a wide

range of geometric and photometric transformations are
desirable for many applications, including wide-baseline
matching [9, 13, 15], texture-based retrieval in image
databases [12, 14], segmentation of natural scenes [7],
recognition of materials [16], and recognition of semantic
texture categories, e.g., natural vs. man-made [3]. In this
paper, we investigate a texture representation that is invari-
ant to any geometric transformations that can be locally ap-
proximated by an affine model, from perspective distortions
to non-rigid deformations.

Recently, several affine-invariant region detectors have
been developed for the applications of wide-baseline match-
ing, indexing, and retrieval [9, 15]. As demonstrated in our
earlier work [4], such detectors can also make effective tex-
ture analysis tools. In this paper, we use a texture repre-
sentation based on a sparse set of affine-invariant regions to
perform retrieval and segmentation of multi-texture images.
This task is more challenging than the recognition of single-
texture images: instead of comparing distributions of local
features gathered over a large field, we are forced to clas-
sify each local feature individually. Since it is not always
possible to unambiguously classify a small image region,
we must augment the local representation with a descrip-
tion of the spatial relationship between neighoring regions.
The systems developed by Malik et al. [7] and Schmid [14]
are examples of this two-layer architecture, with intensity-

based descriptors at the first level and histograms of texton
distributions at the second.

This paper describes a conceptually similar two-stage
approach to texture modeling. The first stage consists in es-
timating the distribution of local intensity descriptors. Un-
like most existing methods, which use fixed-size windows
to compute these descriptors, ours employs shape selection:
the area over which the descriptors are computed is deter-
mined automatically using an affine adaptation process [5].
We represent the distribution of descriptors in each class
by a Gaussian mixture model where each component corre-
sponds to a “sub-class”. This generative model is used to as-
sign the most likely sub-class label to each region extracted
from a training image. At the second stage of the model-
ing process, co-occurrence statistics of different sub-class
labels are computed over neighborhoods adaptively defined
using the affine shape of local regions. Test images (which
may contain multiple textures) are also processed in two
stages. First, the generative model is used to assign initial
probability estimates of sub-class membership to all feature
vectors. These estimates are then refined using a relaxation
step that incorporates co-occurrence statistics.

The most basic form of the modeling process is fully su-
pervised, i.e., the training data contains only single-texture
images. However, we show in Section 2.2 that a weaker
form of supervision is possible: the training data may in-
clude unsegmented multi-texture images. In Section 3, we
evaluate the proposed texture representation on two data
sets. The first set consists of photographs of textured sur-
faces taken from different viewpoints and featuring signifi-
cant scale changes and perspective distortions. The second
set consists of images of animals whose appearance can be
adequately modeled by texture-based methods.

2 Modeling Textures
2.1 Feature Extraction

At the feature extraction stage, our implementation uses
an affine-adapted Laplacian blob detector based on the scale
and shape selection framework developed by Lindeberg et
al. [5, 6]. The detector begins by finding the locations in
scale space where a normalized Laplacian measure attains
a local maximum. Informally, the spatial coordinates of the
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maximum define the center of a circular “blob”, and the
scale at which the maximum is achieved becomes the char-
acteristic scale of the blob. The second stage applies an
affine adaptation process based on the second-moment ma-
trix. The regions found by the detector are ellipses defined
by (p − p0)T M(p − p0) ≤ 1, where p0 is the center of
the ellipse, and M is a 2 × 2 symmetric local shape matrix
(see [5, 9] for details). We can normalize the patch defined
by M by applying to it any transformation that maps the
ellipse onto a unit circle. It can be shown that if two im-
age patches are initially related by an affine transformation,
then the respective normalized patches are related by a ro-
tation [5, 9]. We eliminate this ambiguity by representing
each normalized patch by a rotationally invariant descriptor.

The descriptors used in this work are intensity domain
spin images [4] inspired by the spin images used by Johnson
and Hebert [2] for matching range data. An intensity do-
main spin image is a two-dimensional histogram of bright-
ness values in an affine-normalized patch. The two dimen-
sions of the histogram are d, the distance from the center of
the normalized patch, and i, the intensity value. Thus the
“slice” of the spin image corresponding to a fixed d is sim-
ply the histogram of the intensity values of pixels located at
a distance d from the center. In this work, the size of spin
images is 10 × 10. Before using spin images as input to
the density estimation process described in the next section,
we rescale them to have a constant norm and “flatten” them
into 100-dimensional feature vectors denoted x below.

2.2 Density Estimation
In the supervised framework, the training data consists of

single-texture sample images from classes with labels C�,
� = 1, . . . , L. The class-conditional densities p(x|C�) can
be estimated using all the feature vectors extracted from the
images belonging to class C�. We model class-conditional
densities as p(x|C�) =

∑M
m=1 p(x|c�m) p(c�m), where

the components c�m, m = 1, . . . ,M , are thought of as
sub-classes. Each p(x|c�m) is assumed to be a Gaussian
with mean µ�m and covariance matrix Σ�m. The EM al-
gorithm is used to estimate the parameters of the mixture
model, namely the means µ�m, covariances Σ�m, and mix-
ing weights p(c�m). EM is initialized with the output of the
K-means algorithm. In this work, we use the same num-
ber of mixture components for each class (M = 15 and
M = 10, respectively, for the experiments reported in Sec-
tions 3.1 and 3.2). We limit the number of free parameters
and control numerical behavior by using spherical Gaus-
sians with covariance matrices of the form Σ�m = σ2

�mI .
The EM framework provides a natural way of incorporat-

ing unsegmented multi-texture images into the training set.
Our approach is inspired by the work of Nigam et al. [10],
who have proposed techniques for using unlabeled training
data in text classification. Suppose we are given a multi-
texture image annotated with the set L of class indices that

it contains—that is, each feature vector x extracted from
this image has a label set of the form CL = {C�|� ∈ L}.
To accommodate label sets, the density estimation frame-
work needs to be modified: instead of partitioning the train-
ing data into subsets belonging to each class and separately
estimating L mixture models with M components each, we
now use all the data simultaneously to estimate a single mix-
ture model with L × M components. The estimation pro-
cess must start by selecting some initial values for model
parameters. During the expectation or E-step, we use the
parameters to compute probabilistic sub-class membership
weights given the feature vectors x and the label sets CL:
p(c�m|x, CL) ∝ p(x|c�m) p(c�m|CL), where p(c�m|CL) =
0 for all � /∈ L and

∑
�∈L

∑M
m=1 p(c�m|CL) = 1. During

the maximization or M-step, we use the computed weights
to re-estimate the parameters by maximizing the expected
likelihood of the data in the standard fashion [1].

Overall, the incorporation of incompletely labeled data
requires only a slight modification of the EM algorithm used
for estimating class-conditional densities. However, this
modification is of great utility, since the task of segment-
ing training examples by hand becomes an odious chore
even for moderately-sized data sets. In situations where it is
difficult to obtain large amounts of fully labeled examples,
training on incompletely labeled or unlabeled data helps to
improve classification performance [10].

In the subsequent experiments, we exercise the EM
framework in two different ways. The data set of Section
3.1 contains both single- and multi-texture training images,
which are used respectively to initialize and refine the pa-
rameters of the generative model. The data set of Section
3.2 consists entirely of unsegmented multi-texture images.

2.3 Neighborhood Statistics
This section describes the second layer of our representa-

tion, which accumulates information about the distribution
of pairs of sub-class labels in neighboring regions. After the
density estimation step, each region in the training image
is assigned the sub-class label that maximizes the posterior
probability p(c�m|x, CL). Next, we need a method for com-
puting the neighborhood of a region centered at location p0

and having local shape matrix M . The simplest approach
is to define the neighborhood as the set of all points p such
that (p−p0)T M(p−p0) ≤ α for some constant α. How-
ever, in practice this definition produces poor results: points
with small ellipses get too few neighbors, and points with
large ellipses get too many. A better approach is to “grow”
the ellipse by adding a constant absolute amount (15 pix-
els in the implementation) to the major and minor axes, and
to let the neighborhood consist of all points that fall inside
this enlarged ellipse. In this way, the size and shape of the
neighborhood still depends on the affine shape of the region,
but the neighborhood structure is more balanced.

Once we have defined the neighborhood structure, we
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can think of the image as a directed graph with arcs emanat-
ing from the center of each region to other centers within its
neighborhood. The existence of an arc from a region with
sub-class label c to another region with label c′ is a joint
event (c, c′) (note that the order is important since the neigh-
borhood relation is not symmetric). We find the relative fre-
quencies p(c, c′) for all pairs (c, c′), and also compute the
marginals p̂(c) =

∑
c′ p(c, c′) and p̌(c′) =

∑
c p(c, c′). Fi-

nally, we compute the values

r(c, c′) =
p(c, c′) − p̂(c) p̌(c′)[(

p̂(c) − p̂2(c)
) (

p̌(c′) − p̌2(c′)
)] 1

2

representing the correlations between the events that the la-
bels c and c′, respectively, belong to the source and destina-
tion nodes of the same arc. The values of r(c, c′) must lie
between −1 and 1; negative (resp. positive) values indicate
that c and c′ rarely (resp. frequently) co-occur as labels at
endpoints of the same edge.

In our experiments, we have found that the values of
r(c, c′) are reliable only when c and c′ are sub-classes of the
same class. Part of the difficulty in estimating correlations
across classes is the lack of data in the training set. Even
if the set contains multi-texture images, only a few arcs ac-
tually fall across texture boundaries. Unless the number of
texture classes is very small, it is quite difficult to create
a training set that would include samples of every possi-
ble boundary. Thus, whenever c and c′ belong to differ-
ent classes, we set r(c, c′) to a constant negative value that
serves as a “smoothness constraint” in the relaxation algo-
rithm described in the next section (we use values between
−0.5 and −1, all of which tend to produce similar results).
2.4 Relaxation

We have implemented the classic relaxation algorithm of
Rosenfeld et al. [11]. The initial estimate of the probability
that the ith region has label c, denoted p

(0)
i (c), is obtained

from the learned mixture model as the posterior p(c|xi).
Note that since we run relaxation on unlabeled test data,
these probabilities must be computed for all L × M sub-
class labels corresponding to all possible classes. At each
iteration, new estimates p

(t+1)
i (c) are obtained by updating

the current probabilities p
(t)
i (c) using the equation

p
(t+1)
i (c) =

p
(t)
i (c)

[
1 + q

(t)
i (c)

]
∑

c p
(t)
i (c)

[
1 + q

(t)
i (c)

] ,

q
(t)
i (c) =

∑
j

wij

[∑
c′

r(c, c′) p
(t)
j (c′)

]
. (1)

The scalars wij are weights that indicate how much influ-
ence region j exerts on region i. We treat wij as a binary
indicator variable that is nonzero if and only if the jth region
belongs to the ith neighborhood. The weights are required
to be normalized so that

∑
j wij = 1 [11].

The update equation (1) can be justified in qualitative
terms as follows. Note that p

(t)
j (c′) has no practical effect

on p
(t)
i (c) when the ith and jth regions are not neighbors,

when c and c′ are uncorrelated, or when the probability
p
(t)
j (c′) is low. However, the effect is significant when the

jth region belongs to the ith neighborhood and the value
of p

(t)
j (c′) is high. The correlation r(c, c′) expresses how

“compatible” the labels c and c′ are at nearby locations.
Thus, p

(t)
i (c) is increased (resp. decreased) by the largest

amount when r(c, c′) has a large positive (resp. negative)
value. Overall, the probabilities of different sub-class la-
bels at neighboring locations reinforce each other in an in-
tuitively satisfying fashion. Even though the iteration of (1)
has no convergence guarantees, we have found it to behave
well on our data. To obtain the results of Sections 3.1 and
3.2, we run relaxation for 200 iterations.
2.5 Classification and Retrieval

Individual regions are classified by assigning them to the
class that maximizes pi(C�) =

∑M
m=1 pi(c�m). To perform

classification and retrieval at the image level, we need to
define a “global” score for each class. In the experiments
of the next section, the score for class C� is computed by
summing the probability of C� over all N regions found in
the image:

∑N
i=1

∑M
m=1 pi(c�m), where the pi(c�m) are the

probability estimates following relaxation. Classification of
single-texture images is carried out by assigning the image
to the class with the highest score, and retrieval for a given
texture model proceeds from highest scores to lowest.

3 Experimental Results
3.1 The Indoor Scene

Our first data set contains seven different textures present
in a single indoor scene (Figure 1). To test the invariance of
our representation, we have gathered images over a wide
range of viewpoints and scales. The data set is partitioned
as follows: 10 single-texture training images of each class;
10 single-texture validation images of each class; 13 two-
texture training images; and 45 multi-texture test images.

Table 1 shows classification results for the single-texture
validation images following training on single-texture im-
ages only. The columns labeled “image” show the fraction
of images classified correctly using the score described in
Section 2.5. As can be seen from the first column, success-
ful classification at the image level does not require relax-
ation: good results are achieved in most cases by using the
probabilities output by the generative model. Interestingly,
for class T6 (marble), the classification rate actually drops
as an artifact of relaxation. When the right class has rela-
tively low initial probabilities, the self-reinforcing nature of
relaxation often serves to diminish these probabilities fur-
ther. The columns labeled “region”, which show the frac-
tion of all individual regions in the validation images that
were correctly classified based on the probabilities pi(C�),
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T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

Figure 1: Samples of the texture classes used in the experiments of Section 3.1.

Before relaxation After relaxation
Class image region image region

T1 1.00 0.61 1.00 0.97
T2 1.00 0.58 1.00 0.99
T3 0.90 0.70 0.90 0.85
T4 1.00 0.61 1.00 0.99
T5 1.00 0.45 1.00 0.95
T6 0.90 0.29 0.80 0.67
T7 0.60 0.41 0.70 0.73

Table 1: Classification rates for single-texture images.

are much more indicative of the impact of relaxation: for all
seven classes, classification rates improve dramatically.

Next, we evaluate the performance of the system for re-
trieval of images containing a given texture. Figure 2 shows
the results in the form of ROC curves that plot the posi-
tive detection rate (the number of correct images retrieved
over the total number of correct images) against the false
detection rate (the number of false positives over the total
number of negatives in the data set). The top row shows
results obtained after fully supervised training using single-
texture images only, as described in Section 2.2. The bottom
row shows the results obtained after re-estimating the gen-
erative model following the incorporation of 13 two-texture
images into the training set. Following relaxation, a mod-
est improvement in performance is achieved for most of the
classes. A more significant improvement could probably be
achieved by using more multi-texture training samples [10].

For the majority of test images, our system succeeds in
providing an accurate segmentation of the image into re-
gions of different texture. Part (a) of Figure 3 shows a typ-
ical example of the difference made by relaxation in the
assignment of class labels to individual regions. Part (b)
shows more examples where the relaxation was successful.
Note in particular the top example of part (b), where the per-
ceptually similar classes T4 and T5 are unambiguously sep-
arated. Part (c) of Figure 3 shows two examples of segmen-
tation failure. In the bottom example, classes T2 (carpet)
and T3 (chair) are confused, which can be partly explained
by the fact that the scales at which the two textures appear
in this image are not well represented in the training set.
Overall, we have found the relaxation process to be sensi-
tive to initialization, in the sense that poor initial probability
estimates lead to artifacts in the final assignment.

3.2 Animals
Our second data set consists of unsegmented images of

three kinds of animals: cheetahs, giraffes, and zebras. The
training set contains 10 images from each class, and the test
set contains 20 images from each class, plus 20 “negative”
images not containing instances of the target animals. To
account for the lack of segmentation, we introduce an ad-
ditional “background” class, and each training image is la-
beled as containing the appropriate animal and the back-
ground. To initialize EM on this data, we randomly assign
each feature vector either to the appropriate animal class,
or to the background. The ROC curves for each class are
shown in Figure 4, and segmentation results are shown in
Figure 5. Overall, our system appears to have learned very
good models for cheetahs and zebras, but not for giraffes.

We conjecture that several factors account for the weak-
ness of the giraffe model. Some of the blame can be
placed on the early stage of feature extraction. Namely, the
Laplacian-based affine region detector is not well adapted
to the giraffe texture whose blobs have a relatively com-
plex shape. At the learning stage, the system also appears
to be “distracted” by background features, such as sky and
trees, that occur more commonly in training samples of gi-
raffes than of the other animals. In the bottom image of
Figure 5, “giraffe-ness” is associated with some parts of the
background, as opposed to the animals themselves. The ar-
tificial “background” class is simply too inhomogeneous to
be successfully represented in the mixture framework. A
principled solution to this problem would involve partition-
ing the background into a set of natural classes (e.g., grass,
trees, water, rocks, etc.) and building larger training sets
that would include these classes in different combinations.

Overall, our results (though somewhat uneven) are
promising. Unlike many other methods suitable for mod-
eling natural textures, ours does not require negative ex-
amples. The EM framework shows surprising aptitude for
automatically separating positive areas of the image from
negative ones, without the need for specially designed sig-
nificance scores such as the ones used by Schmid [14].

4 Discussion and Future Work
The texture representation method proposed in this paper

offers several important advantages over other methods pro-
posed in recent literature [3, 7, 14]. The use of an interest
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Figure 2: ROC curves for retrieval in the test set of 45 multi-texture images. The dashed (resp. solid) line represents performance before
(resp. after) relaxation. Top row: single-texture training images only, bottom row: single-texture and two-texture training images.
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Figure 4: ROC curves for the animal dataset. The dashed (resp.
solid) line represents performance before (resp. after) relaxation.

point detector leads to a sparse representation that selects
the most perceptually salient regions in an image, while the
shape selection process provides affine invariance. Another
important advantage of shape selection is the adaptive deter-
mination of both levels of image structure: the window size
over which local descriptors are computed, and the neigh-
borhood relationship between adjacent windows.

In the future, we will pursue several directions for the
improvement of our system. We have found that the perfor-
mance of relaxation is sensitive to the quality of the initial
probability estimates; therefore, we need to obtain the best
estimates possible. To this end, we plan to investigate the ef-
fectiveness of discriminative models, e.g. neural networks,
that output confidence values interpretable as probabilities
of class membership. Relaxation can also be made more ef-
fective by the use of stronger geometric neighborhood rela-
tions that take into account affine shape while preserving the
maximum amount of invariance. Finally, we plan to extend
our work to modeling complex texture categories found in
natural imagery, e.g., cities, forests, and oceans.
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Original image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(a) Initial labeling of regions (top) vs. the final labeling following relaxation (bottom).

Original image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(b) Successful segmentation examples.

Original image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(c) Unsuccessful segmentation examples.

Figure 3: Segmentation results.
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Original image Cheetah Zebra Giraffe Background

Figure 5: Segmentation on the animal dataset.
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