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Abstract

We present a novel representation of shape for closed
planar contours explicitly designed to possess a linear
structure. This greatly simplifies linear operations such
as averaging, principal component analysis or differen-
tiation in the space of shapes. The representation relies
upon embedding the contour on a subset of the space of
harmonic functions of which the original contour is the
zero level set.

1. Introduction

The analysis and representation of shape is at the
basis of many visual perception tasks, from classifi-
cation and recognition to visual servoing. This is a
vast and complex problem, which we have no inten-
tion of addressing in its full generality here. Instead,
we concentrate on a specific issue that relates to the
representation of closed, planar contours. Even this
issue has received considerable attention in the litera-
ture. In particular, in their work on statistical shape
influence in segmentation [19], Leventon et al. have
proposed representing a closed planar contour as the
zero level set of a function in order to perform linear
operations such as averaging or principal component
analysis. The contour is represented by the embedding
function, and all operations are then performed on the
embedded representation. They choose as their em-
bedding function the signed distance from the contour
(whose differential structure is described by the non-
linear Eikonal Equation) and implement its evolution
in the numerical framework of level sets pioneered by
Osher and Sethian [26].

While this general program has proven effective
in various applications, the particular choice of em-
bedding function presents several difficulties, because
signed distance functions are not a closed set under

linear operations: the sum or difference of two signed
distance functions is not a signed distance function (an
immediate consequence of their nonlinear differential
structures). Consequently, the space cannot be en-
dowed with a probabilistic structure in a straightfor-
ward manner, and repeated linear operations, includ-
ing increments and differentiation, eventually lead to
computational difficulties that are not easily addressed
within this representation. Alternative methods that
possess a linear structure rely on parametric represen-
tations, for instance various forms of splines [7], that
do not guarantee that the general structure of the orig-
inal shape (geometry and topology) is preserved in a
neighborhood. Furthermore, such representations are
not geometric, for they depend on the chosen parame-
terization.

In this paper, we present a novel representation of
shape for closed planar contours that is geometric and
explicitly designed to possess a (locally) linear struc-
ture. This allows linear operations such as principal
component analysis or differentiation to be naturally
defined and easily carried out. The basic idea consists
of, again, representing the contour as the zero level set
of a function, but this time the function belongs to a
linear (or quasi-linear1) space. While previous meth-
ods relied on the (non-linear) Eikonal equation, ours
relies on Laplace equation, which is linear. Our repre-
sentation allows exploring the neighborhood of a given
shape while guaranteeing that the topology and the
geometry of the original shape is preserved.

We introduce the simplest form of this idea in Sect.
2, where we point out some of its difficulties. We then
extend the representation to an anisotropic operator
in Sect. 3, and discuss its finite-dimensional imple-
mentation in Sect. 4. Finally, we illustrate some of the
properties of this representation in Sect. 5.

1The representation is restricted to a convex subset of a linear
vector space.
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1.1. Relation to previous work

The literature on shape modeling and representa-
tion is too vast to review in the limited scope of this
paper. It spans at least a hundred years of research
in different communities from mathematical morphol-
ogy to statistics, geology, neuroanatomy, paleontology,
astronomy etc. Some of the earlier attempts to for-
malize a notion of shape include D’Arcy Thompson’s
treatise “Growth and Form” [30], the work of Math-
eron on “Stochastic Sets” [23] as well as that of Thom,
Giblin and others [29, 8]. The most common repre-
sentations of shape rely on a finite collection of points,
possibly defined up to equivalence classes of group ac-
tions [13, 18, 5, 22]. These tools have proven useful
in contexts where distinct “landmarks” are available,
for instance in comparing biological shapes with dis-
tinct “parts.” However, comparing objects that have a
different number of parts, or objects that do not have
any distinct landmark, is elusive under the aegis of sta-
tistical shape spaces. Koenderink [17] is credited with
providing some of the key ideas involved in formalizing
a notion of shape that matches our intuition. However,
Mumford has critiqued current theories of shape on the
grounds that they fail to capture the essential features
of perception [25].

“Deformable Templates,” pioneered by Grenander
[11], do not rely on “features” or “landmarks;” rather,
images are directly deformed by a (possibly infinite-
dimensional) group action and compared for the best
match in an “image-based” approach [35]. Another
line of work uses variational methods and the solution
of partial differential equations (PDEs) to model shape
and to compute distances and similarity. In this frame-
work, not only can the notion of alignment or distance
be made precise [3, 34, 24, 15, 27], but quite sophis-
ticated theories that encompass perceptually relevant
aspects can be formalized in terms of the properties of
the evolution of PDEs (e.g. [16]). The work of Kimia
et al. [14] describes a scale-space that corresponds to
various stages of evolution of a diffusing PDE, and a
“reacting” PDE that splits “salient parts” of planar
contours by generating singularities. [14] also contains
a nice taxonomy of existing work on shape and defor-
mation and a review of the state of the art as of 1994.

The variational framework has also proven very ef-
fective in the analysis of medical images [21, 31, 20, 33].
Although most of the ideas are developed in a deter-
ministic setting, many can be transposed to a prob-
abilistic context Scale-space is a very active research
area, and some of the key contributions as they re-
late to the material of this paper can be found in
[12, 28, 2, 1] and references therein. Leventon et al. [19]
perform principal component analysis in the aligned

frames to regularize the segmentation of regions with
low contrast in brain images. Similarly, [32] performs
the joint segmentation of a number of images by assum-
ing that their registration (stereo calibration) is given.

We present a novel representation of shape that sup-
ports linear operations. We only consider closed planar
contours, and even within this set our representation
cannot capture any shape; it does not include a notion
of hierarchy or compositionality, which are crucial in a
complete theory of shape. Despite its limitations that
restrict the class of shapes and the analysis to their
global properties, our representation has desirable fea-
tures when it comes to linear analysis. In fact, it al-
lows us to naturally take linear combinations of shapes;
performing principal component analysis (PCA) on the
embedding function results in a natural notion of defor-
mation (we call it “principal deformation analysis”, or
PDA) on the underlying shapes. Endowing the space
with a probabilistic structure, although not addressed
in this paper, is greatly facilitated by the (quasi-)linear
nature of the representation.

We note that, although we represent a contour as the
zero level set of an embedding function, our approach
is not a level set method in the traditional sense [26]: in
fact, in local shape analysis we are interested in guar-
anteeing that changes of topology do not occur. In this
sense, our approach is far less general, but in ways that
are desirable for the specific problem we address, that
of representing a neighborhood of a given shape.

As we will see in Sect. 4, our approach relies on a
finite-dimensional set of boundary values at specified
locations. In this sense, therefore, our technique could
be thought of as an implicit version of splines [7, 6],
in the sense that changing the location of the control
points results in an evolution of the contour

2. Harmonic Embedding

The basic idea is to represent a closed planar con-
tour, γ, as the zero level set of a function u that
inherits the linear structure of its embedding space.
This linear space is chosen to be the set of har-
monic functions, which naturally leads to the contour
being represented as the solution of certain Laplace
equations. More formally, consider the domain Ω .={
x ∈ R

2 : r < |x| < R
}
; we will restrict our attention

to contours that are contained in such a domain, for
some r,R ∈ R. In particular, we will consider smooth
contours γ ∈ CΩ

.= C∞(S1,Ω) from the unit circle to
Ω. We call the inner and outer boundaries of Ω, ∂0Ω

.={
x ∈ R

2 : |x| = r
}

and ∂1Ω
.=

{
x ∈ R

2 : |x| = R
}

re-
spectively. Each contour is then represented by a
function u : Ω → R, and in particular by the value
of this function in the inner and outer boundaries
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hΩ
.= C0(S1) × C0(S1). Among all possible u, we re-

strict our attention to harmonic functions, i.e. to the
set HΩ

.=
{
u ∈ C∞(Ω) ∩ C0(Ω̄) : ∆u = 0

}
.

Definition 2.1 (Harmonic Embedding). We say
that a contour γ ∈ CΩ has an harmonic embedding if
there exists a function u ∈ HΩ such that{

u(x) = 0 for x ∈ γ,

u(x) �= 0 for x ∈ Ω̄ \ γ. (1)

We say that the function u is an harmonic representa-
tion associated to γ. The set of contours that admit
an harmonic embedding will be indicated by C∗

Ω. We
say that u ∈ HΩ represents an harmonic contour if the
zero level set of u is an element of C∗

Ω. The set of all
the harmonic representations will be indicated by H

∗
Ω.

In plain words, we plan to represent a contour γ by
the values that a harmonic function u, that is zero on
the contour, takes on the inner and outer boundaries
∂0Ω, ∂1Ω. Naturally, not all contours admit a harmonic
embedding.

Proposition 2.1. If γ ∈ C∗
Ω and u ∈ H

∗
Ω is an har-

monic function associated to γ, then u has a constant
sign on each connected component of the boundary, ∂0Ω
and ∂1Ω, where it takes opposite signs.

Proof. The function u cannot be zero on the bound-
ary of Ω, because γ does not belong to ∂0Ω ∪ ∂1Ω
and the function u is continuous. This implies that
it has constant sign on each connected component of
the boundary. If u has the same sign on both the con-
nected components of the boundary, then the zero level
set must be empty as a consequence of the maximum
principle.

The relevance of this proposition is that, if we assign
negative values to u on the inner boundary and posi-
tive values on the outer boundary, the maximum prin-
ciple guarantees that the resulting zero level set is al-
ways simply connected. This is desirable in local shape
analysis since we do not want small perturbations of a
contour to result in changes of topology. Note that
this feature is quite different than traditional level set
methods that address more general deformations where
changes of topology are desirable. Due to the unique-
ness of solution to the Laplace equation, knowing u is
equivalent to knowing its values at the boundaries of
the set Ω. Therefore, we can use as a representative
of γ not the entire u, but the values f0 and f1 that u
takes at the boundaries.

Definition 2.2 (Boundary representation). Let
h∗Ω ⊂ hΩ such that

h∗Ω
.= {(f0, f1) ∈ hΩ : f0 < 0, f1 > 0} . (2)

The elements of h∗Ω are the harmonic shapes and we
call the set h∗Ω the harmonic shape space.

The map πΩ : H
∗
Ω → hΩ associates to a har-

monic function the rescaled boundary values. The map
ψΩ : h∗Ω → C∗

Ω associates to a rescaled boundary con-
dition the zero level set of the harmonic function with
that boundary conditions. The map hΩ : H

∗
Ω → C∗

Ω

associates to a harmonic function in H
∗
Ω its zero level

set in C∗
Ω.

Remark 2.2. The harmonic representation is invariant
to scale factors; in fact, if u is the harmonic represen-
tation of a contour γ and λ �= 0 then also λu is an
harmonic representation of γ. Therefore, every con-
tour γ admits an entire equivalence class of embedding
functions u, and therefore f0, f1. In order to fix this
ambiguity, one can rescale the energy of u, for instance
by fixing the value of the integral of |f0|, |f1|. This will
be illustrated in the implementation section (Sect. 4).

The following proposition guarantees that the repre-
sentation we have introduced is linear when restricted
to h∗Ω. It should also be noted that the set h∗Ω is convex.

Proposition 2.3 (Linearity). Let u1, u2 ∈ h∗Ω, then
there exists a positive number λ such that u1 ± λu2 ∈
h∗Ω.

Proof. If we take ε = min∂Ω |u1|, µ = max∂Ω |u2|,
then λ = ε

2µ satisfies the requirement.

3. Anisotropic extension

The definitions above indicate that u can be used
as a linear embedded representation of γ. However, as
we have pointed out, not all contours admit a harmonic
embedding. In the experimental section 5 we give some
examples of contours that are not easily captured by
the straightforward harmonic representation. In this
section, therefore, we extend the representation to a
more general elliptic operator (see [9, 10]) instead of the
Laplacian in eq. (1). In particular we use an operator
of the form

∇ · (A(x, y)∇u) (3)

where A : Ω → R
4 is a differentiable function that

associates to each point of the domain a 2 × 2 matrix.
It is immediate to see that if A(x, y) = I, the operator
(3) reduces to the Laplacian in (1). Naturally, there
are infinitely many choices of A(x, y), and this is a
power of the representation that is at the disposal of
the designer. We choose the following operator:

A(x, y) .=
1
ρ2

(
λ1x

2 + λ2y
2 (λ1 − λ2)xy

(λ1 − λ2)xy λ2x
2 + λ1y

2

)
(4)
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where ρ =
√
x2 + y2, λ1 and λ2 are two positive con-

stants. The matrix A has the following property:

(x, y) �→ λ1(x, y), (y,−x) �→ λ2(y,−x).

This choice may seem to come from “black magic,”
but its motivation becomes clear by looking at Fig. 1.
In our finite-dimensional implementation, described in
Sect. 4, if we use the harmonic function ∆u = 0, the
basis elements are not well localized2, and therefore
many coefficients are needed to represent even simple
contours. The choice of the operator A above, on the
other hand, helps localize and direct the energy of each
basis element from the outer to the inner boundary.

Figure 1. Basis elements according to the model
(1) (top), and the more general model with the
operator (3) replacing the Laplacian, for λ1 =
20, λ2 = 1 (bottom).

4. Finite-dimensional implementation

So far we have managed to avoid addressing the
problem of how to compute the representation u (or
its boundary values f0, f1) from the contour γ from ei-
ther (1) or (3). This is not an easy task, since it is not a
standard boundary value problem: one could think of

2The meaning of the word “basis” will be made precise in the
next section.

fixing the boundary value at the inner contour to, say,
−1, then solve the Dirichlet problem between ∂0Ω and
γ, and then attempt to extend u outside γ towards ∂1Ω.
Unfortunately, the analytic continuation of u outside γ
is severely ill-posed, and one cannot hope in general to
reach the outer boundary for any given contour. A way
to fix this would be to carry out the analytic contin-
uation as far as possible (until a singularity develops)
toward the outer boundary, then smooth the resulting
analytic boundary values. Next, reverse the procedure
to solve the Dirichlet problem between the smoothed
outer analytic boundary and the contour γ, and then
extend it inward toward the inner boundary. One could
iterate the procedure back and forth, which would re-
sult in a very laborious and numerically ill-conditioned
algorithm to find the representation of a given contour.

In this section, therefore, we seek to approximate γ
by the zero level set of a function u that is guaranteed,
by construction, to be analytical in Ω. The linear struc-
ture of the representation comes handy at this point:
in fact, we can seek for functions u of the form

u =
n∑

i=1

α0iu0i + α1iu1i (5)

where u0i and u1i are a set of “basis” functions that
are constructed to satisfy eq. (1) with the operator (3)
replacing the Laplacian, and including the constraints
of Remark 2.2 on the inner and outer boundary respec-
tively. More in detail, in order to compute the basis ele-
ments, for a chosen positive integer n , we indicate with
{s0j}1≤j≤n and {s1j}1≤j≤n respectively a partition of
the inner and outer boundary of Ω, with |sij | the length
of the segment si,j , and seek for {uij}i=0,1;j=1...n that
solve the following partial differential equation (PDE)



∇ · (A(x, y)∇uij(x, y)) = 0 for (x, y) ∈ Ω
uij(x, y) = 0 for (x, y) ∈ ∂Ω \ sij ,

uij(x, y) = 1
|sij | for (x, y) ∈ sij .

(6)

We have integrated this PDE numerically using stan-
dard finite-element methods [4], and in Fig. 1 we
show sample basis elements for the case of the sim-
ple Laplacian A(x, y) = I (top), and the more general
anisotropic operator (4) (bottom).

Note that this PDE needs only to be solved once
and off-line. Once the basis elements are known, each
contour will be represented by the coefficients {αij},
which can be found following the procedure that we
describe next.

First, we need to set up a cost functional that mea-
sures the discrepancy between the target contour that
we want to represent, γ, and the model contour that

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



admits a harmonic embedding. A simple cost function
is simply the Lebesgue measure of the set symmetric
difference3 between the inside of the contour γ, which
we indicate with

◦
γ, and the set of points that corre-

spond to a negative value of u, which we indicate by
u−. Other choices of cost functionals are possible, for
instance the Hausdorff distance, and we choose the set
symmetric difference only for simplicity. Now, ideally
one would want to write this functional explicitly in
terms of {αij}, and differentiate it to yield a gradi-
ent descent algorithm. Unfortunately, it is not easy
to write the zero level set of u as a function of the
parameters α. However, one can achieve the same re-
sults by first computing the gradient flow of the cost
functional with respect to an unconstrained u, then
projecting this flow onto the basis {uij}. More for-
mally, consider a general infinitesimal contour varia-
tion C : [0, 1] × [−ε, ε] → Ω; then the gradient descend

evolutions of the symmetric difference the target set
◦
γ

and the approximating set
◦
C is given by

Ct =
(
X◦

γ
− 1

2

)
N

where N is the outward unit normal at C(·, 0) and

X◦
γ

is the characteristic function of the set
◦
γ. After

projecting onto the basis elements uij via
∫

C
〈ut, uij〉ds,

one obtains the update formula for the coefficients

α′
ij = αij + µ

∫
C(·,0)

uij

|∇u|
(
X◦

γ
− 1

2

)
d s, (7)

where µ is a positive constant to be chosen as a design
parameter. Finally, one has to enforce the conditions
on the sign at the boundary value, described in Propo-
sition 2.1; in this case we simply have:

α0j < 0, α1j > 0 ∀j ∈ {1, . . . , n}.
We obtain the normalization, with respect to the scale
factor of the remark 2.2, dividing by∑

i=1,2;j=1,...,n

|αi,j |.

Given a target contour γ, this procedure allows us to
estimate its representation αi,j . In the next section we
present some experiments that illustrate the features
of this representation.

5. Experiments

In this section we report some experiments that il-
lustrate the power and limitations of the representation

3The symmetric difference between two set A and B is
A∆B

.
= (A \ B) ∪ (B \ A).

Figure 2. (Top) Original contours (dashed lines)
in the domain Ω enclosed between the inner cir-
cle ∂0Ω and the outer circle ∂1Ω. The solid line
indicates the best approximation based on har-
monic embedding (1). The contours in the second
row, however, are not as well captured by the sim-
plest representation. Substituting the anisotropic
operator (3) instead of the Laplacian results in
improved representational power of our scheme
(bottom).

proposed. In Fig. 2 (top) we show a few planar con-
tours (dashed) together with the domain Ω, delimited
by the inner and outer boundary circles, and - super-
imposed - the best approximation of the target contour
based on the model (1). While these contours are faith-
fully captured in the representation, the contours in the
second row are clearly not well approximated. In the
following row we show the same target contours and
their approximation using the anisotropic operator (3)
instead of the Laplacian. As it can be seen, the tar-
get contours are much better approximated. Figure 3
shows the evolution of the contour from an initial es-
timate (the outer boundary) to the minimum of the
set-symmetric difference as described in Sect. 4. One
of the strengths of our representation is that it admits
a linear structure. Therefore, the computation of incre-
ments of a shape (Fig. 4), the average of two or more
shapes (Fig. 5) and the analysis of the principal modes
of deformation of a shape (Fig. 6) are straightforward
to compute. We would like to stress that what is im-
portant here is not the result, that is the final value
of the principal components shown in Fig. 6, but the
procedure followed to get such principal components.
Since our representation is linear by construction, one
can simply perform PCA on the coefficients, and au-
tomatically get a geometric representation of the de-
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Figure 3. Evolution of an initial estimate (the
outer contour) to the minimum of the set-
symmetric difference that is used to find the best
harmonic embedding.

formation that guarantees that no changes of topology
occur. Figure 4 is perhaps the most crucial one to il-

Figure 4. Directional derivatives of a shape
can be easily computed in the framework of
(anisotropic) harmonic embedding. For the figure
in (top-left), we show local perturbations along
the direction of five basis elements.
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Figure 5. (Top) The average shape between (left)
and (right) can be computed by simply averaging
(center) the corresponding coefficients (bottom)
{αij}.

lustrate the features of our method. In fact, if we were

to use parametric representations of a curve, for in-
stance splines, by perturbing the control points we are
not guaranteed that the contour does not develop sin-
gularities or self-intersects. Our framework enjoys the
benefits of splines in having a finite-dimensional linear
representation, but is geometric and perturbations are
guaranteed not to result in changes of topology.

Figure 6. Principal modes of deformation can be
easily computed by principal component analy-
sis of the embedded representation. On the top
five rows we show a few samples of a collection of
shapes. On the bottom in the first row we show
the average shape (middle), plus (right) and mi-
nus (left) once and twice the first principal com-
ponent. On the second row we see the effect of
the second principal component (left-right) on the
mean shape (middle).

6. Summary and Conclusions

We have presented a novel representation for the
shape of closed planar contours. It does not rely on
features or landmark points, and it is characterized by
an underlying linear structure that makes linear opera-
tions straightforward. We showed examples of compu-
tation of the average, increments and principal defor-
mations. Our representation has many shortcomings
and it should not be taken as a general tool for shape
analysis. It is not invariant with respect to the action
of a group (and therefore one has to assume that the
shapes are “registered”), it does not possess a notion of
compositionality, and it cannot capture many complex
contours of practical interest. However, to the best of
our knowledge, it is the first and only variational shape
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representation to possess a linear structure, which is
extremely desirable when it comes to numerical imple-
mentation of linear operations.
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