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Abstract

3D surface classification is a fundamental problem in
computer vision and computational geometry. Surfaces can
be classified by different transformation groups. Traditional
classification methods mainly use topological transforma-
tion groups and Euclidean transformation groups. This pa-
per introduces a novel method to classify surfaces by con-
formal transformation groups. Conformal equivalent class
is refiner than topological equivalent class and coarser than
isometric equivalent class, making it suitable for practical
classification purposes. For general surfaces, the gradient
fields of conformal maps form a vector space, which has
a natural structure invariant under conformal transforma-
tions. We present an algorithm to compute this conformal
structure, which can be represented as matrices, and use it
to classify surfaces. The result is intrinsic to the geometry,
invariant to triangulation and insensitive to resolution. To
the best of our knowledge, this is the first paper to classify
surfaces with arbitrary topologies by global conformal in-
variants. The method introduced here can also be used for
surface matching problems.

1. Introduction

3D surface classification and matching are fundamental
problems in computer vision, computational geometry and
computer aided geometric design. Recent developments in
modelling and digitizing techniques have led to an increas-
ing accumulation of 3D models. This has highlighted the
need for efficient 3D objects searching techniques in large
scale databases.

Many methods have been developed based on the topo-
logical and geometric features of the surfaces in order to
describe shapes. In general, all the methods treat the sur-
face as a two dimensional real manifold embedded in R3,
with the induced Euclidean metric structure.

In this paper, we view the surfaces from a completely

novel viewpoint: treating them as Riemann surfaces with
conformal structures, or namely one dimensional complex
manifolds. A Riemann surface is a surface covered by holo-
morphic coordinate charts. The conformal structure is the
complete invariants under conformal transformations and
can be represented as matrices.

Compared to other surface classification methods, con-
formal classification has some advantages. Theoretically,
conformal geometry has a sound foundation. Conformal
equivalent classes are much refiner than the topological
equivalent classes and much coarser than the isometric
classes. Each topological equivalent class has infinite con-
formal equivalent classes, each conformal equivalent class
has infinite isometric classes. The conformal structures
are intrinsic to the geometry, independent of triangulation,
insensitive to resolution and local features, and robust to
noises. Also, conformal invariants are concise and efficient
to compute, and can be used as search keys conveniently.
Hence conformal classification is more suitable for practi-
cal surface classification problems.

Conformal invariants can also be used for general sur-
face matching problems. In nature, it is highly unlikely for
different shapes to share the same conformal structure. For
many surface matching problems based on geometric fea-
tures in the Euclidean space, conformal invariants can offer
sufficient information to differentiate shapes. The compu-
tation of conformal invariants is much cheaper and more
stable than computing geometric features.

To the best of our knowledge, although conformal struc-
ture is well known, we are the first group to systematically
use it for surface classification problems.

We introduce previous work and the theoretic back-
ground in the following part of this section, followed by
detailed explanation of the algorithms in Section two. Our
surface classification method is introduced in Section three.
Experimental results are reported in Section four. Finally, a
brief summary and conclusion appears in Section five, fol-
lowed by a discussion of topics for future work in Section
six.
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1.1 Previous work

3D shape classification and recognition is a core prob-
lem in computer vision. Due to the apparent difference in
nature, 2D shape classification methods can not be easily
extended to 3D shape classification problems. To develop a
3D shape classification method, which makes use of 3D ob-
ject topological and geometric features that is independent
of tessellation and resolution, becomes desirable. Roughly,
the current 3D shape classification methods fall into the fol-
lowing categories.

1. Statistical properties based methods. The simplest ap-
proach represents objects with feature vectors in a mul-
tidimensional space where the axes encode global ge-
ometric properties. Ankerst et al. [1] proposed shape
histogram decomposing shells and sectors around a
model’s centroid. Osada et al. [12] represented shapes
with probability distributions of geometric properties
computed for points randomly sampled on an object’s
surface. However, these statistical methods are not
discriminating enough to make subtle distinctions be-
tween shapes.

2. Topology based methods. Hilaga et al. [8] computed
3D shape similarity by comparing Multiresolutional
Reeb Graphs(MRGs) which encodes the skeletal and
topological structure at various levels of resolution.
The MRG is constructed using a continuous function
on the 3D shape, preferably a function of geodesic dis-
tance. These methods can not describe the geometric
distinctions.

3. Geometry based methods. Novotni et al. [11] describe
a method based on calculating a volumetric error be-
tween one object and a sequence of offset hulls of
the other object. Tangelder et al. [15] represent the
3D shape by a signature representing a weighted point
set. A shape similarity measurement based on weight
transportation is used to compute the similarity be-
tween two shapes. Funkhouser et al. [3] developed a
3D matching algorithm that uses spherical harmonics
to compute discriminating similarity measures. Kazh-
dan et al.[9] introduced a reflective symmetry descrip-
tor that represents a measure of reflective symmetry
for an arbitrary 3D model for all planes through the
model’s center of mass. These methods take into ac-
count of the embedding of the geometric shapes. The
shape descriptors are represented as functions, incon-
venient for searching. The classification is also too re-
strictive.

1.2 Theoretic background

The algorithms introduced in this paper are based on the
theories of Riemann surfaces, especially the Abel-Jacobi
theory as introduced in [4, 13]. We treat surfaces as Rie-
mann surfaces, and compute their conformal structures rep-
resented as holomorphic one-forms and period matrices.

A conformal map is a map which only scales the first
fundamental forms, hence preserving angles. If a map-
ping f : M1 → M2 is conformal, where M1 and M2 are
two surfaces, suppose (u1, u2) are local parameters and the
Riemann metric (first fundamental form) of M1 is ds2 =∑

ij gijduiduj , the metric of M2 is ds2 =
∑

ijg̃ijduiduj ,
then the induced metric f∗g̃ij satisfies

gij(u1, u2) = λ(u1, u2)f∗g̃ij(u1, u2). (1)

Figure 1 illustrates a conformal map from a real female
face surface to a square. All the rights angles on the texture
are preserved on the surface, which is shown in (c) and (d).

Two surfaces are called conformal equivalent if there ex-
ists a conformal diffeomorphism between them. Conformal
equivalent surfaces share the same conformal invariants,
which can be represented as a matrix.

Figure 2 shows two genus one surfaces. Although they
are topologically equivalent, they are not conformal equiv-
alent. Each torus can be cut open and conformally mapped
to a planar parallelogram. The two tori can be conformally
mapped to each other, if and only if one such parallelogam
can be exactly matched to the other by translation, rotation
and scaling. In other words, the shape of such parallelo-
gram indicates the conformal equivalent class for the torus.
We use the non-obtuse angle (right angle in this case) of the
parallelogram and the length ratio between the two adjacent
edges to represent the conformal invariants of the genus one
surfaces. We call them shape factors. From (b) and (d), it is
clear that the two tori have different shape factors, they are
not conformal equivalent. Hence conformal classification is
refiner than topological classification.

For higher genus surfaces, the conformal invariants are
more complicated. Basically, handles of the surface can be
cut open and conformally mapped to parallelograms with
different shapes. The shape factors of all the handles in-
dicate the conformal class. Figure 3 demonstrates a genus
three surface, where each handle is conformally mapped to
a parallelogram. The shapes of the three parallelograms
are the conformal invariants. The rigorous representation
of conformal invariants of a high genus surface, through pe-
riod matrices, is explained below.

If a surface is mapped to the complex plane, and the map-
ping is conformal everywhere on the surface, then we call
the complex gradient vector field of the mapping a holomor-
phic one-form. All the holomorphic one-forms on the sur-
face form a real vector space, which we call holomorphic
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(a) Original Surface (b) Conformal map to the plane (c) Checkerboard texture (d) Texture mapped surface

Figure 1. Conformal mapping. The original surface is a real human face (a), which is conformally
mapped to a square (b). A checker board texture (c) is mapped back to the face. All the right angles
on the texture are preserved on (d).

differentials. The dimension of the holomorphic differen-
tials is equal to two times the surface’s genus number.

All the oriented closed curves on the surface form a
group in the sense that they can be duplicated, merged and
reversed. Two closed curves are homologous equivalent if
they together bound a 2D surface patch. The group of all
the homologous equivalent classes is called the homology
group. For surfaces, homology group can determine the
topology.

Let M be a closed surface of genus g, and B =
{e1, e2, . . . , e2g} be an arbitrary basis of its homology
group. We define the entries of the intersection matrix C
of B as

cij = −ei · ej (2)

where the dot denotes the number of intersections, counting
+1 when the direction of the cross product of the tangent
vectors of ei and ej at the intersection point is consistent
with the normal direction, −1 otherwise.

A holomorphic basis B∗ = {ω1, ω2, . . . , ω2g} is defined
to be dual of B if

Re

∫
ei

ωj = cij . (3)

Define matrix S as having entries

Im

∫
ei

ωj = sij . (4)

The matrix R defined as

CR = S (5)

satisfies R2 = −I , where I is the identity matrix. After
H.Weyl [16] and C.L.Siegel [14], R is called the period ma-
trix of M with respect to the homology basis B.

The matrices (R,C) determine the conformal equivalent
class of M in the following sense: For two surfaces M1

and M2 with (R1, C1) and (R2, C2) respectively, M1 and

M2 are conformal equivalent if and only if there exists an
integer matrix N such that

N−1R1N = R2;NT C1N = C2. (6)

We call (R,C) the conformal structure of M .
In the following sections, we will introduce a method

to compute the shape factors for genus one surfaces, and
(R,C) for higher genus surfaces, and use them to classify
surfaces.

2 Computing Conformal Invariants

In this section, we will introduce a method to compute
the homology group and holomorphic differential group of
non-zero genus surfaces. We assume the surfaces are repre-
sented as triangular meshes. The method is improved upon
the algorithm introduced in [6, 7, 2, 5].

Let K be a simplicial complex whose topological real-
ization |K| is homeomorphic to a compact 2-dimensional
manifold. Suppose there is a piecewise linear embedding

F : |K| → R3.

The pair (K,F ) is called a triangular mesh and denoted as
M .

2.1 Computing homology

Suppose M is a triangular mesh, u, v are vertices (0-
simplices), we use [u, v], [u, v, w] to represent its edges
and faces( 1-simplicies and 2-simplices). We define chain
spaces as the following:

CpK = {
∑

αiσ
i
p|αi ∈ Z}, p = 0, 1, 2,

where σi
p’s are p dimensional simplices in K. Therefore,

the linear space C2K is the space representing all the sur-
face patches on M , C1K is the the space representing all
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(a) Torus one (b) Conformal map to (c) Torus two (d) Conformal map to
a parallelogram a parallelogram

Figure 2. Topological equivalence but not conformal equivalence. The two tori (a) and (c) are topo-
logically equivalent, but not conformally equivalent. Because they are conformally mapped to planar
parallelograms with different shapes.

the curves on M , and C0K is the space representing all the
points on M . The boundary operators are linear mappings
among these spaces ∂p : CpK → Cp−1K:

∂p(
∑

i

αiσ
i
p) =

∑
i

αi∂pσ
i
p, p = 1, 2.

The boundary operators defined on each simplex are as fol-
lows:

∂2([u, v, w]) = [u, v] + [v, w] + [w, u]

where [u, v, w] is a face, [u, v], [v, w] and [w, u] are its three
edges with consistent orientation. Therefore, ∂2 is an op-
eration that returns the boundary of a surface patch. ∂1 is
defined in a similar way ∂1([u, v]) = v − u. ∂2 and ∂1 are
linear operators and can be represented as integer matrices
with elements 0, 1 or -1.

The kernel space of ∂1 is the set of all closed curves,
since closed curves do not have boundaries. The image
space of ∂2 is the set of all surface patch boundaries.

The homology group is defined as the quotient space in
[10]

H1(M,Z) =
ker∂1

img∂2
.

The homology bases are the eigenvectors of the kernel space
of the linear operator L : C1K → C1K:

L = ∂T
1 ∂1 + ∂2∂

T
2 .

L is symmetric, the eigenvectors for the zero eigenvalue are
the basis of H1(M,Z). Suppose B = {e1, e2, · · · , e2g} is a
set of homology basis, the intersection matrix C is a skew-
symmetric matrix. In order to simplify the classification
process, we can make the homology basis a canonical one
B̃, such that B̃ = {a1, · · · , ag, b1, · · · , bg}, ai·bi = +1, and
other intersection numbers are zeros. For any closed sur-
faces, such canonical homology basis always exists. Figure
4 illustrates such canonical homology bases for a genus 2

surface. Canonical homology basis is not unique, as shown
in the figure. The intersection matrix of a canonical homol-
ogy basis has a special format:

C̃ =
(

0 −Ig

Ig 0

)
, (7)

where Ig is a g × g identity matrix, g is genus.
There exists an unitary integer matrix N (Its determinant

is either 1 or -1), such that NCNT = C̃. Both C and C̃ are
congruent skew-symmetric matrices. C and C̃ can be diag-
onalized by orthonormal matrices U and V respectively, i.e.
C = UΛUT and C̃ = V ΛV T , Λ = diag{J1, J2, · · · , Jg},

Ji =
(

0 +1
−1 0

)
, i = 1, 2, . . . , g.

The N is simply N = V UT . The canonical homology basis
can be obtained by B̃ = BNT . In the following discussion,
we assume the homology bases are canonical ones.

2.2 Computing harmonic one-forms

We define the linear functional spaces of C2K, C1K and
C0K as C2K, C1K and C0K respectively. In other words,
C2K is the set of all the linear functions defined on the
surface patches, C1K is the set of all linear functions de-
fined on the curves on the surface. We can then define the
coboundary δ1 and δ0 as the adjoint operator of ∂2 and ∂1,
such that

δpω(σ) = ω∂p+1(σ), p = 0, 1, (8)

where ω ∈ CpK, σ ∈ Cp+1K. Suppose ω ∈ C1K, if
δ1ω ≡ 0, then ω is called a closed one-form, and for any
[u, v, w] ∈ K,

δω([u, v, w]) = ω([u, v])+ω([v, w])+ω([w, u]) = 0. (9)
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We use C1K to represent tangential vector fields on M
and associate an energy with each ω ∈ C1K:

E(ω) =
1
2

∑
[u,v]∈K1

ku,v|ω([u, v])|2, (10)

where ku,v = 1
2 (cot α + cot β), α and β are the two angles

against the edge [u, v]. E(ω) is called the harmonic energy
of ω. A closed one-form which minimizes the harmonic
energy is called a harmonic one-form. The Laplacian is a
linear operator ∆ : C1K → C0K ,

∆ω(u) =
∑

[u,v]∈K

ku,vω([u, v]). (11)

Harmonic one-forms have zero Laplacian.
According to Hodge theory [13], all the harmonic one-

forms form a real linear space, which can be treated as a
dual space ( linear functional space ) of the homology group
H1(M,Z). Given a homology basis B = {e1, e2, · · · , e2g},
we can compute a dual basis of the harmonic one-forms
{ω1, ω2, . . . , ω2g} by the following linear system:


δωi ≡ 0
∆ωi ≡ 0∫
ej

ωi = δi
j

, (12)

where δi
j is the Kronecker symbol. This linear system can

be solved by conjugate gradient methods efficiently.

2.3 Computing holomorphic one-forms

Holomorphic one-forms are the gradient fields of confor-
mal maps, which can be formulated as ω +

√−1 ∗ω, where
ω and ∗ω are harmonic one-forms, and ∗ω is orthogonal to
ω everywhere, i.e. ∗ω = n × ω, n is the normal field on
M . ∗ω is called the conjugate harmonic one-form of ω. In

(a) Genus 3 surface (b) Conformal mapping.

Figure 3. For higher genus surfaces, each
handle can be conformally mapped to a par-
allelogram on the complex plane.

order to compute ∗ω, we construct a linear system based on
the wedge product of closed one-forms. Given two closed
one-forms τ1, τ2 ∈ C1K, we define the wedge product as
the following linear operator ∧ : C1K × C1K → C2K,

τ1∧τ2([u, v, w]) =
1
6

∣∣∣∣∣∣
τ1([u, v]) τ1([v, w]) τ1([w, u])
τ2([u, v]) τ2([v, w]) τ2([w, u])

1 1 1

∣∣∣∣∣∣ .

(13)
Similarly, we can define the conjugate wedge product of τ1

and τ2, denoted as ∧∗,

τ1 ∧∗ τ2([u, v, w]) = sMtT , (14)

where s = (τ1([u, v]), τ1([v, w]), τ1([w, u])), t =
(τ2([u, v]), τ2([v, w]), τ2([w, u])), and

M =
1

24S


 2(l22 + l23) l21 + l22 − l23 l21 + l23 − l22

l21 + l22 − l23 2(l23 + l21) l22 + l23 − l21
l21 + l23 − l22 l22 + l23 − l21 2(l21 + l22)


 ,

(15)
li are the edge lengths, |[u, v]| = l1, |[v, w]| = l2, |[w, u]| =
l3, and S is the area of face [u, v, w].

Given a harmonic one-form ω, then ∗ω is still a har-
monic one-form and satisfies the following linear equations∫

M

ωi ∧ ( ∗ω) =
∫

M

ωi ∧∗ ω, i = 1, 2, . . . , 2g (16)

where ωi’s are a set of basis of harmonic one-forms. Be-
cause ∗ω is still a harmonic one-form, it can be represented
as a linear combination of ωi’s, suppose ∗ω =

∑2g
i=1 αiωi,

then equation (16) becomes

∫
M

ωi ∧∗ ω =
2g∑

j=1

αi

∫
M

ωi ∧ ωj , i = 1, 2, . . . , 2g (17)

Given a harmonic one-form basis {ω1, ω2, . . . , ω2g}, we
can compute the conjugate harmonic one-forms ∗ωi’s us-
ing 17, then {ωi +

√−1 ∗ωi, i = 1, 2, . . . , 2g} is a basis of
holomorphic one-forms.

Figure 4. Canonical homology bases.
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2.4 Computing period matrix

For a genus one surface M , there are two homology base
curves e1, e2. Suppose e1, e2 only intersect at a point p. we
can cut the surface open along e1, e2, then obtain a topo-
logical disk M̃ . Then we choose one vertex to map to the
origin of the complex plane, and integrate the holomorphic
one-form on M ′. Then M̃ is conformally mapped to the
complex plane. Point p will be mapped to four corners of
a parallelogram. We can compute the non-obtuse angle and
adjacent edge length ratio of this parallelogram, which are
the conformal invariants of M .

For a higher genus surface, suppose we have computed a
canonical homology basis B̃ = {e1, e2, . . . , e2g}, such that
ei · ej = δi+g

j , 1 ≤ i ≤ g < j ≤ 2g, δi+g
j is the Kronecker

symbol, and constructed a dual holomorphic differential
basis B∗ = {ω1 +

√−1 ∗ω1, ω2 +
√−1 ∗ω2, . . . , ω2g +√−1 ∗ω2g}, then the matrices C and S have entries:

cij =
∫

ei

ωj , sij =
∫

ei

∗ωj . (18)

Then R is computed as R = C−1S. (R,C) are the confor-
mal invariants.

2.5 Double covering

For surfaces with boundaries, we can convert them to
closed ones by the so called double covering technique.
Given a surface M with boundaries, we make a copy of
M denoted as M ′, then reverse the orientation of M ′. We
simply glue M and M ′ together along their corresponding
boundaries, the obtained surface M̃ is a closed surface and
called the double covering of M . We can then classify the
surfaces with boundaries by the period matrices of its dou-
ble covering.

All genus zero surfaces are conformal equivalent. It is
impossible to differentiate them by their conformal struc-
tures directly. In practice, we can locate the critical points
of their Gaussian curvature and remove them from the sur-
face. The obtained surfaces are with boundaries and can be
classified by using the double covering technique.

Figure 5 shows a genus zero example. Three holes are
punched on the bunny surface, the bottom, and the tips of
the ears. (d) illustrates a holomorphic one-form computed
on the double covering, visualized by texture mapping a
checkerboard pattern.

3 Surface Classification and Matching
Method

Suppose M1 and M2 are two surfaces, the corresponding
period matrices are (R1, C1) and (R2, C2) respectively. Ri

can be decomposed as PiΛiP
−1
i , where Λi is the Jordan

norm form of Ri. If M1 is conformal equivalent to M2,
then

Λ1 = Λ2 (19)

and N = P1P
−1
2 is an integer matrix with determinant ±1.

Furthermore,
NT C1N = C2. (20)

Equations (19) and (20) are the sufficient and necessary
conditions to verify whether two surfaces are conformal
equivalent. In our case, Ci’s are canonical, matrices sat-
isfying equation 20 are called symplectic matrices.

Then the surface classification problem is reduced to
how to classify period matrices R under the integer sym-
plectic matrix group. It has been proven that for genus g
surfaces, the equivalent class of R is 6g − 6 dimensional
[4]. We will introduce a method to compute these 6g − 6
parameters in our future work.

In practice, we use the sorted eigenvalues of R as the
indices for surface indexing and matching.

4 Experiments Results

The algorithm is purely algebraic and easy to imple-
ment. The algorithm is intrinsic to the geometry, inde-
pendent of triangulation and insensitive to resolution. The
conformal structure is global and insensitive to local fea-
tures and robust to noises. Figure 6 illustrates holomorphic
one-forms, visualized by texture mapping a checkerboard
image. The scaling of each texcel, and direction of iso-
parametric curves are consistent under different triangula-
tion and resolution. Comparing (a) and (c), we can see that
the resolutions and the triangulation are quite different. This
shows the algorithm is intrinsic to the geometry and inde-
pendent of the surface representation.

Table 1 shows the conformal invariants of the genus one
surfaces illustrated in figure 7. By examining their shape
factors, it is easy to verify that there are no two surfaces
that are conformal equivalent.

mesh angle (degree) length ratio vertices faces
torus 89.987 2.2916 1089 2048
knot 85.1 31.150 5808 11616
knot2 89.9889 25.2575 2050 3672
rocker 85.432 4.9928 3750 7500
teapot 89.95 3.0264 17024 34048

Table 1. Conformal invariants of genus one
surfaces.

The following are the period matrices R’s for some
genus two surfaces. All the intersection matrices C’s are
in the canonical form as equation (7).
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The two hole torus mesh as shown in 8(a) has 861 ver-
tices and 1536 faces. Its period matrix is


-1.475e-3 4.840e-4 4.501e-1 2.132e-2
4.858e-4 -1.439e-3 2.132e-2 4.501e-1

-2.260e+0 1.090e-1 1.476e-3 -4.858e-4
1.090e-1 -2.260e+0 -4.840e-4 1.439e-3


 (21)

The vase model shown in 8(b) has 1582 vertices and 2956
faces. Its period matrix is


1.053e-3 -8.838e-6 4.479e-1 2.127e-2

-1.080e-4 -1.031e-3 2.127e-2 4.042e-1
2.309e+0 1.241e-1 1.053e-3 -1.080e-4
-1.241e-1 -2.564e+0 8.851e-6 1.031e-3


 (22)

The flower model shown in 8(c) has 5112 vertices and
10000 faces. Its period matrix is


6.634e-3 -1.950e-3 2.861e-1 -6.076e-2

-1.909e-3 7.091e-3 -6.076e-2 2.497e-1
-3.768e+0 -9.111e-1 -6.634e-3 1.909e-3
-9.111e-1 -4.303e+0 1.950e-3 -7.091e-3


 (23)

The knotty bottle model shown in 8(d) has 15000 vertices
and 30000 faces. Its period matrix is


-1.911e-2 2.757e-3 5.617e-2 -1.001e-3
1.213e-3 -9.294e-2 -1.003e-3 5.699e-2

-1.792e+1 -4.829e-1 1.912e-2 -6.224e-4
-4.817e-1 -1.819e+1 -3.355e-3 9.295e-2


 (24)

By checking the conditions of equations (19) and (20), it
can be verified easily that all the surfaces above belong to
different conformal equivalent classes.

We tested our algorithm on other complex models
scanned from real models, the highest genus is 7 and the
biggest surface is with hundreds of thousands of faces.
The computational procedure is stable. We also retrian-
gulated several surfaces, and compared the computing re-
sults, which are very close. For example, we computed the
shape factors of the teapot surfaces with different resolu-
tions as shown in figure 6, the high resolution shape fac-
tors are (89.95, 3.0264), the low resolution shape factors
are (89.98, 3.0936).

5. Summary and Conclusions

This paper introduces a surface classification method
based on the Riemann surface theories. All surfaces can be
classified by the conformal transformation group and their
conformal invariants can be represented by period matri-
ces. The method is intrinsic to the geometry, independent
of triangulation and insensitive to resolution. The confor-
mal invariants are global features of surfaces, hence they are
robust to noises. The conformal equivalent classification is
refiner than topological classification and coarser than iso-
metric classification, making it suitable for surface classifi-
cations and matching.

6 Future Work

In the future, we will test our algorithm using larger scale
geometric databases. We also would like to explore ways
to improve efficiency in computing harmonic one-forms,
which is the most time consuming step of the current pro-
cess. We also would like to generalize our current algorithm
to non-manifold surfaces and implicit surfaces.
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(a) Integration curve of the (b) Integration curve of the (c) Gradient field of a (d) Texture mapping
real part of (c) Imaginary part of (c) conformal map generated by (c)

Figure 5. Holomorphic 1-form is a complex gradient field of a conformal map from the surface to the
complex plane. (d) visualizes the holomorphic 1-form by a texture mapping.

(a) Surface with 4K faces (b) Holomorphic 1-form of (a) (c) Surface with 34K faces (d) Holomorphic 1-form of (c)

Figure 6. Conformal structure is only dependent on geometry, independent of triangulation and
insensitive to resolution.

(a) A torus surface (b) A knot surface (a) (c) Another knot surface (d) A rocker

Figure 7. Genus one surfaces with different conformal structures.

(a) A two hole torus surface (b) A vase surface (c) A rose surface (d) A knotty surface

Figure 8. Genus two surfaces with different conformal structures.
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