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Abstract 
 

A general classification framework, called boosting 
chain, is proposed for learning boosting cascade. In this 
framework, a “chain” structure is introduced to integrate 
historical knowledge into successive boosting learning. 
Moreover, a linear optimization scheme is proposed to 
address the problems of redundancy in boosting learning 
and threshold adjusting in cascade coupling. By this 
means, the resulting classifier consists of fewer weak 
classifiers yet achieves lower error rates than boosting 
cascade in both training and test. Experimental 
comparisons of boosting chain and boosting cascade are 
provided through a face detection problem.  The 
promising results clearly demonstrate the effectiveness 
made by boosting chain. 

 
 
1. Introduction 

 
Different from the traditional pattern classification 

problem where decision is made between well-defined 
classes, the detection problem requires discriminate 
analysis between the object class and the rest of the world. 
As a result, the detection algorithm must accommodate 
the intra-class variance without compromising the 
discriminability of locating object within cluttered scenes. 
On the other hand, typical negative samples are usually 
unavailable for building a training set due to large 
variance of negative class. Moreover, as the location and 
scale of target class are unknown, the computation cost 
for exhaustive search can hardly be avoided. To conclude, 
there are three issues which are critical for a detection 
system: training strategy for negative sample collection, 
robust learning algorithm, and computation cost for 
evaluation.  

Sung and Poggio [10] proposed training schema, called 
bootstrap, was applied for negative samples collecting.  
During bootstrap procedure, false detections are collected 
iteratively into the training set, and a very low false 

positive rate is achieved after several iterations of 
learning.  

Also, various learning algorithm has been applied to 
the detection problem. Papageorgiou [1] built a detector 
by training a Support Vector Machine (SVM) [12] on an 
over-complete wavelet representation of object classes. 
Rowley [3] presented a neural network-based face 
detection system. Roth [2] used a network of linear units, 
called SNoW learning architecture, which is specifically 
tailored for learning in the presence of a very large 
number of features. Schneiderman [4] used naive Bayesian 
classifier on multi-resolution features from different levels 
of wavelet transform.  

Although, some works, such as [2] and [4] have 
achieved the best detection accuracy in the literature, both 
of them are too slow to be applied in real-time 
applications due to the computation complexity. Thereby, 
hierarchical classification framework is wildly adopted to 
build rapid detector. Serra [11] implemented a two-layer 
detector. The first layer consists of a fast linear SVM that 
removes large parts of the background. The second layer 
consists of a more accurate polynomial SVM performs the 
final face detection. Viola and Jones [7] built a cascade of 
boosting classifiers on an over-complete set of Haar-like 
features. In each layer of the cascade, AdaBoost [13] is 
adapted to integrate the feature selection and classifier 
design in one boosting procedure. By adopting 
simple-to-complex strategy, most non-face candidates are 
rejected in earlier layer of cascade with little computation 
costs. This structure results in extremely rapid object 
detector. However, AdaBoost is a sequential forward 
search procedure using the greedy selection strategy. Its 
heuristic assumption is the monotonicity. The premise 
offered by the sequential procedure can be broken-down 
when the assumption is violated. Stan Li [8] proposed 
FloatBoost algorithm by incorporating the idea of Floating 
Search into AdaBoost.  Based on FloatBoost, a detector 
for multi-view face detection [9] is implemented. 
Although the new detector achieves the better 
performance with fewer features, the FloatBoost is 
unstable and computation extensive for learning 
complicated problem.   
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In this paper, a new framework, called boosting chain, 
is proposed for object detection. Different from the 
boosting cascade, this algorithm integrates the bootstrap 
training and boosting algorithm into a single learning 
procedure, and enables the utilization of historical 
information during boosting cascade training. Also, based 
on linear recursive feature elimination (RFE) [5] strategy, 
the redundancy of AdaBoost is removed, which avoid the 
local minimum with comparable performance. Moreover, 
during the RFE procedure, an optimized detection rate 
adjusting for cascade coupling is achieved. 

The rest of the paper is organized as follows: Section 2 
presented in detail the proposed boosting chain framework. 
The linear optimization algorithm for boosting chain is 
presented in Section 3. Section 4 provides the 
experimental results and conclusion is drawn in Section 5. 
 
2. Boosting chain learning 

 
Boosting cascade proposed by Viola [7] has been 

proved to be an effective way to detect faces with high 
speed. Based on a thorough analysis of boosting cascade, 
a naive boosting chain is proposed to accelerate the 
convergence of cascade training.  Moreover, inspired by 
the similarity between the boosting chain learning and 
AdaBoost algorithm, a boosting analysis for these 
phenomena is therefore given. This also derived the 
improved training algorithm for boosting chain. 

 
2.1. Boosting cascade 
 

During the training procedure, windows which are 
falsely detected as faces by the previous classifier are 
processed by successive classifiers. Therefore, the overall 
false positive (FP) rate F and detection rate D on the 
training set can be defined as: 
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where symbol M, fi, and di take the notation in Figure 1. 

 
 Figure 1. Notation for boosting cascade 
 

2.1.1 Historical information in cascade training. In 
each layer of the boosting cascade, the classifier is 
adjusted to a very high recall ratio to preserve the overall 
recall ratio. For example, for a 11 layers cascade, to 
anticipate a overall detection rates at 96% in training set, 
the recall rate in each single layer will be 99.63% 
( 996.096.011 = 3) on the average. 
 

However, such a high recall rate at each layer is 
achieved with the penalty of sharply precision decreasing. 
As shown in Figure 2, value b is computed for the best 
precision, and value a is the best threshold which satisfies 
the minimal recall requirement. During the threshold 
adjustment from value b to value a, the classifier’s 
discriminability in the range ],[ +∞a is lost. As the 

performance of most weak learner used in the boosting 
algorithm is near to random guess, such discriminative 
information discarded between the layers of boost cascade 
is critical to increase the converge speed of successive 
classifiers.  

 
2.1.2 Fine tune the boosting cascade. Moreover, suppose 
the positive rate in the ith layer is pi, the empirical 
computation cost of each stage classifier can be defined 
as: 
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Since target objects are extremely rare, the positive 
rates of most stage classifier are very close to the FP rates. 
The overall empirical computation cost can be defined as: 
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Figure 2. Adjusting threshold for layer classifier. 

 
Obviously, given concrete goals for F and D, the 

detection rate di does not affect the overall computation 
cost, and the smaller fi and mi are the less computation 
cost will be required. Therefore, a set of optimized fi and 
mi will directly improve the detection speed of the cascade. 
On the other hand, fixed FP rate fi, the overall detection 
rate D can be improved by increasing mi, which 
corresponding to using more feature in ith classifier for a 
better detection rate di. 
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P    positive training set, p=|P| 
Ni   ith negative training set, ni=|Ni| 
fi  maximum false positive rate of ith layer 
di  minimum detection rate of ith layer 
wj  weighting of sample xj 
F    overall false positive rate 
D    overall detection rate 
M number of classifiers used in the cascade.
Φi   ith boosting classifier in the cascade 
hi,j jth weak learner in ith layer 
αi,j parameter for  weak learner hi,j 

bi    threshold for the boosting classifier Φi 

mi the number of weak learner in Φi  
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However, for a given detection task, the problem of 
finding the optimized set of fi and mi task is a major 
challenge for cascade classification.  In this section, a 
new framework, called boosting chain, is proposed to 
improve the convergence of each stage classifier, and an 
optimizing algorithm for fi and mi will be discussed in the 
next section.  
 

2.2. Naive boosting chain learning 
 
As defined in Figure 1, the ith boosting classifier in the 

cascade is:  
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In order to utilize historical information in ith layer, 
define: 
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Then, initialized by the new feature hi+1,0(x), the 
boosting classifier Φi+1 can be learned from the training 
set P and Ni+1 . 
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where
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equation (6) could be rewritten as: 
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Therefore, the ith classifier is “linked” into the (i+1)th 
classifier. Generally, applying this procedure repeatedly 
for i=1,…,M yields:  
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By this means, the boosting cascade is linked into a 
“chain” structure with multiple exits for negative patterns. 
The evaluation of boosting chain could be done in 
following manner:    

 
Figure 3. Evaluate the boosting chain 

 
2.3. Boosting chain learning with bootstrap 

 
Similar to the boosting cascade, a set of images 

without object of target class are regarded as the source of 
the negative samples. After the training procedure of each 

node classifier, the boosting chain is evaluated over the 
whole image set, and any positive predicts, which are 
considered as FPs, are collected to form the negative 
training set to train the next node classifier. The whole 
training procedure could be illustrated in Figure 4.  

 

 
Figure 4. Boosting chain learning with bootstrap 

 
Consequently, under boosting chain structure, previous 

classifier is a prefix of the later classifier. Such 
correspondence can be roughly expressed as: 

MΦ⊂⊂Φ⊂Φ L21
  (9) 

The last node classifier ΦM contains all features used in 
the boosting chain. According to Equation (8) it’s very 
similar to the standard boosting classifier. The only 
difference is the training strategy. Different from the 
Adaboost, boosting chain is learned in M step with one 
positive training set and M different negative training set.  

Actually, such similarity could be simply interpreted 
by the sampling procedure of the Adaboost algorithm. 
Given a very large negative training set, the initial training 
set N0 could be selected by random sampling. After 
several step of learning, classifier Φ0 is obtained. At this 
point, most samples in N0 are classified correctly with 
small weight, and samples which could not be classified 
correctly will have large weight. By extending this 
conclusion to the whole training set, negative training set 
N1 is collected by random sampling on the samples with 
large weight. Based on the new negative training set, the 
training procedure is continued, and new classifier Φ1 is 
learned after several step of learning. With the similar 
strategy, classifier Φ1,Φ2,…,ΦM are learned as well.  

Therefore, based on the sampling interpreting, naive 
boosting chain learning algorithm could be improved with 
minor modification on weighting schema and training 
strategy. 

Firstly, the positive sample weights are directly 
introduced into the substantial learning procedure. For 
negative samples, collected by bootstrap method, their 
weights are adjusted according to the classification errors 
of each previous weak classifier. Similar to the equation 
used in boosting training procedure [13], the adjusting 
could be done by: 
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where yj is the label of sample xj, 0
jw  is the initial weight 

for sample xj, and i is the current node index. 
Secondly, the initial weak learner hi,0(x) is no longer 

required, and the successive training is directly based on 
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1. Given an example x, evaluate the boosting chain with 

M node 
2. Initialize s = 0  
3. Repeat for i = 1 to M: 

a) s  = s + ∑ =
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t titi xh
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b) if (s < bi) then exit with negative response. 
4. Exit with positive response.  

Bootstrap procedure

Positive
Dataset
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the previous boosting classifier. The algorithm description 
will be shown in Figure 5. 

Figure 5. The pseudo-code for learning a 
boosting chain. 

 
Based on this strategy, the boosting chain could be 

regarded as a variant of AdaBoost learning algorithm with 
similar generalization performance and error bound. 

 
3. Boosting chain optimization 

 
In each step of boosting chain, performance at the 

current stage involves a tradeoff between accuracy and 
speed. The more features used the higher detection 
accuracy achieved. At the same time, classifiers with 
more features require more time to evaluate. The naive 
optimization method used by Viola is to simply adjust 
threshold for each classifier to achieve the balance 
between the targeted recall and false positive rates. 
However, as mentioned before, this method frequently 
results in a sharp increase in false positive rate. To address 
this issue, a new algorithm based on a linear model for 
boosting optimization is proposed. 

 
3.1 The linear model for boosting optimization 

 
For simplicity, following abbreviation is used: T=mi, 

hj(x)=hi,j (x), αj=αi,j, b=bi, and α={α1,α2,... αT}. Then, the 
final decision function of AdaBoost in Equation (4) could 
be regarded as the linear combination of weak learners 
{ h1(x), h2(x), …, ht(x)}. 

Each weak learner hi(x) will be determined after the 
boosting training.  When it is fixed, the weak learner 
maps the sample xi from the original feature space F to a 
point 
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in a new space F* with new dimensionality T. 
Consequently, the optimization of α parameter can be 
regarded as finding an optimal separating hyper-plane in 
the new space F* .   
 
3.2 Classifier Adjusting 
 

 
Figure 6. The ROC curves comparing the original 

Boosting chain algorithm with the LSVM 
optimization algorithm with different weights. 

 
According to [12], the solution for finding optimized 

hyper-plane can be obtained by resolving the following 
quadratic programming problem:  

Maximize: 
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i=1,…,n. Coefficient Ci is set according to the trade-off 
constant C and classification risk w over the training set: 
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where classification risk w is determined by the detection 
rate requirement, The detection rate could be improved by 
increasing the value of w at the cost of false positive rate. 

The solution of this maximization problem is denoted 
by )...,,( 00

2
0

1
0

nββββ = . Then the optimized α will be 

given by ∑ =
=

n

i itii xhy
1

)(βα  .  

By adjusting classification risk w and the bias term b, 
the optimized result will be found. Figure 6 shows the 
empirical comparison of boosting optimization strategies 
on face classification problem with 12000 faces and 
14000 non-faces. The experimental results reveal that the 
LSVM optimization algorithm is more effective than 
original brute force adjusting strategy. 
 
3.3 Boosting redundancy reduction 

 
As AdaBoost is a sequential forward search procedure 

using the greedy selection strategy, redundancy during the 

 
1. Initialize: i=0, F0=1,Φ={} 

wj=1/p for all positive sample xj, wj=1/ni for all 
negative sample xj; 

2. While Fi>F 
a) i=i+1  
b) Taining Φi to meet the fi and di requirements on 

validation set. 
−  Using initial weights wj, training set P and Ni  
−  Train a node classifier Φi 

c) Node classifier optimization (in Section 3) 
d) Fi=Fi-1*fi,  Φ=Φ∪{Φi}  
e) Evaluate boosting chain Φ on non-face image set, 

and put false detections into the set Ni+1 
f) For each sample xj in set Ni+1, update weight wj for 

Φi+1 according to Equation (10). The weights of 
missing positive sample are set to zero, and the 
weights of remaining positive samples are kept 
unchanged.  
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learning procedure can not be avoided. FloatBoost adopt 
the backtrack strategy. It deletes unfavorable weak 
classifiers from the ensemble when a new weak classifier 
is added. Although FloatBoost provides a promising way 
to reduce the redundancy during the boosting training, 
such strategy is conflict with the boosting weight schema, 
and the performance of learning procedure is unstable, 
which will be shown in Figure 10. 

According to the linear model of the boosting classifier, 
the result classifier could be expressed as: 

bxhxf
T

i ii +=∑ =1
)()( α    (14) 

The gradient direction of f(x) over hi(x) is: 
α=∇ )()( xfxhi

   (15) 

Figure 7. n-level boosting feature reduction 
algorithm. 

 
Therefore, in the most time, the smaller αi is the less 

significant the feature hi(x) will be.   With this heuristic, 
backtrack the feature selection procedure on each step is 
unnecessary. To remove the redundancy in boosting 
procedure, a top-down schema is more favorable in this 
situation. By incorporating the idea of linear FRE, a new 
boosting redundancy reduction algorithm is proposed, and 
reduction algorithm is shown in Figure 7. 
 
4. Experimental Results 

 
In this Section, a face detector based on boosting chain 

is implemented, and performance comparisons are made 
to AdaBoost cascade and FloatBoost cascade, which are 
two most relevant face detectors in the literature. 

 
4.1 Experimental Setup 
 

 

Figure 8. Some samples in the face training data. 
 

More than 12000 image without faces and 10000 face 
images were collected by cropping from various sources, 
such as AR, Rockfeller, FERET, BioID and from WEB. 
Most faces in the training set have the variation of both 
in-plane and out-of-plane rotation within the range of 
[-30º, 30º]. A total number of about 80000 face training 
samples with size of 20x20 are generated from the 10000 
face images by following random transformation: 
mirroring, four-direction shift with 1 pixels, in-plane 
rotation within 15 degrees and scaling within 20% 
variations, where 12000 face samples are used in boosting 
training and other positive samples are used in boosting 
chain optimization.  

The testing set consists of the standard MIT+CMU 
face database, which composed of 125 grayscale images 
containing 483 labeled frontal faces. And all experiments 
are tested over a 1.5 Ghz Pentium 4 computer. 

 
4.2 Performance comparisons 
 

Three detectors based on boosting chain, FloatBoost 
cascade and Adaboost cascade are implemented on the 
same training set. The FP-Detection rate curve over the 
MIT-CMU test is shown in Figure 9. And the average 
numbers of features used in each detector are listed in 
Table 1.  

 
Table 1. Average number of features used in face 

detection on MIT-CMU Test set. 
Boosting Chain FloatBoost 

Cascade 
Boosting 
Cascade 

18.1 18.9 22.5 
   

 
Figure 9.  Detection rates for various numbers of 

false positives on the MIT+CMU test set. All 
detectors are constructed in 11 layer cascade. 

 

 
1. Training a linear SVM classifier over the set {hi(x)}, 

i=1,…,M, and weight w. 
2. Sort the classifier parameter vector α by value. 

Suppose the new index will be i1,i2,…,iM  
3. k=1,…,N, N is the const for feature elimination. 

a) remove the feature hik,  
b) compute current learning accuracy pk 
c) put back feature hik 

4. Remove the feature hik, with the largest pk 

5. M=M-1, and go to 1.  

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



In order to sidestep any differences resulting from the 
underlying infrastructure systems of detector [6], a 
training set of 18000 images (8000 faces and 10000 
non-faces) and a test set of 15000 images ( 5000 faces, 
and 10000 non-faces) are used to evaluate these 
algorithms. The images are 20*20 grayscale and aligned 
by eye center. By fixing the detection rate to 95%, the FP 
rates under different features are shown in Figure 10. 
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Figure 10.  FP rates for various numbers of 

features on the testing set. The boosting chain 
used here only contains 1 layer. The best result is 

achieved by Boosting chain algorithm with 
around 700 features 

 
4.3 Discussions 
 

From experiment results shown in Figure 9, 10 and 
Table 1, it is seen the performance of proposed approach 
in following aspects:  
1. From the Detection-FP rate curve shown in Figure 9, 

the boosting chain approach outperforms Adaboost 
cascade and FloatBoost cascade. It works especially 
well at higher recall rate. This property will greatly 
enhance the efficiency of the post-filtering procedure.  

2. In Table 1, the boosting chain algorithm again 
achieves the best performance.  

3. From the experimental results in Figure 10, the 
boosting chain classifier outperforms Adaboost and 
FloatBoost. Although, it seems the curve of FloatBoost 
is very close to the curve of boosting chain, boosting 
chain is stable due to the LSVM optimization, and its 
global minimum could be expected.  

4. Specially, as feature began to be eliminated from the 
original feature space, the false alarm rate of boosting 
chain classifier is kept dropping, and reaches its 
minimum at the point with around 700 features. If 
further feature reduction is processed, the performance 
of boosting chain is gradually degraded.  This 

phenomena could be explained that the boosting chain 
reach the intrinsic dimension of boosting linear model 
at the point with 700 features. 

 
In summary, the experimental results from two test set 

reveal the robustness and efficiency of proposed 
framework. 

 
5. Conclusions 

 
In this paper, a novel framework for rapid object 

detection has been presented. In this framework, boosting 
cascade and bootstrap training are integrated into a single 
learning procedure, which not only provide a theoretical 
foundation for cascade training, but also improve 
classifier performance by incorporating historical 
knowledge of cascade learning. Moreover, based on a 
linear analysis model for boosting classifier, a classifier 
adjusting and redundancy reduction algorithm is also 
proposed.  

The experiment results from most testing sets have 
shown the robustness and superiority of the proposed 
framework. Also, we believe the generic framework 
presented in this paper can be applied to other 
classification problems in computer vision. 
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Figure 11: Sample experiment results using our method on MIT-CMU Test Set 
 

 

Figure 12: Sample experiment results using our method on digital photos 
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