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Abstract

This paper deals with the autocalibration of a system
that consists of a planar screen, multiple projectors, and a
camera. In the system, either multiple projectors or a single
moving projector projects patterns on a screen while a sta-
tionary camera placed in front of the screen takes images of
the patterns. We treat the case in which the patterns that the
projectors project toward space are assumed to be known
(i.e., the projectors are calibrated), whereas poses of the
projectors are unknown. Under these conditions, we con-
sider the problem of estimating screen-to-camera homogra-
phy from the images alone. This is intended for cases where
there is no clue on the screen surface that enables direct
estimation of the screen-to-camera homography. One ap-
plication is a 6DOF input device; poses of a multi-beam
projector freely moving in space are computed from the im-
ages of beam spots on the screen. The primary contribution
of the paper is theoretical results on the uniqueness of so-
lutions and a noniterative algorithm for the problem. The
effectiveness of the method is shown by experimental results
on synthetic as well as on real images.

1. Introduction

This paper deals with problems of calibrating projector-
screen-camera systems. A projector-screen-camera system
is a system composed of three components: a planar screen
placed in a scene, projectors projecting patterns on the
screen, and a stationary camera in front of the screen that
takes the images of the patterns (see Fig.1).

This type of system has been well studied to date. For
presentation using a LCD projector, methods for correct-
ing the keystone distortion that occurs when the projector
is placed obliquely toward a screen have been proposed [6].
Also, methods for integrating multiple images that are pro-
jected by different projectors to produce one large seamless
image have been studied ([1] among many others).

Although its purpose is slightly different from the above
systems, there is a system of computing the 3D pose of a
projector that projects multiple laser beams to space. The
projector can arbitrarily move in space while projecting the
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Figure 1. A projector-screen-camera system.

beams. This system can serve as a 6DOF input device
and is expected to replace existing 6DOF input devices that
are based on sensors measuring physical quantities, such as
gyro sensors and magnetic sensors, in several cases where
they are difficult to use. Also, when it is used for PC-based
presentations, it can replace conventional laser pointers and
serve, not just as a pointer, but as a 3D mouse assisting the
presentation, which is expected to enrich presentation.

In this paper, for the projector-screen-camera systems
described above, problems of estimating a geometrical rela-
tion between the screen and the camera are discussed. The
relation can be represented by a homography that is given
as a 3× 3 matrix. We call this a screen-to-camera homogra-
phy. Since in these systems we can observe only the images
taken by the camera, it is first necessary to accurately es-
timate this screen-to-camera homography if the final goal
is to obtain geometrical parameters between the screen and
the projector. This applies to both the case of image correc-
tion/modification of LCD projectors and the case of pose
estimation of the multi-beam projectors.

The screen-to-camera homography is easy to compute
if there are markers or equivalent on the screen surface,
e.g., points of known coordinates on the screen. In previ-
ous research on this type of system, the homography was
determined in this or similar ways. In [6], it was proposed
to use the fact that the screen used in presentation is usu-
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ally square; the homography was computed by detecting the
boundary of the screen.

In this paper, we develop a method for computing the
screen-to-camera homography without such clues for the
homography estimation on the screen surface. This enables
us to deal with, for example, the following cases where the
previous methods are difficult to use:

• an ordinary wall or floor is used as the screen whose
surface does not have clues;

• a projector screen of known boundary shape is used but
the boundary cannot be extracted because of difficult
lighting conditions or small coverage of viewing angle
of the camera lens.

In addition to these, the method has a potential application;
the screen-to-camera homography obtained by the method
might be useful in itself. For example, suppose multiple
stationary cameras observing a floor to track human walk-
ing paths on the floor. Or suppose superimposing synthetic
2D patterns onto the image of some real planar surface. In
order to compute accurate homographies between the target
plane and the image planes of the cameras, a planar cali-
bration pattern or equivalent is necessary, which could be
difficult to prepare or find in several cases. Then the pro-
posed method becomes useful. Although a multi-beam pro-
jector of known beam directions is necessary instead, it can
be made compactly and used as a sort of “calibration appa-
ratus” for these purposes.

It might seem impossible to determine the screen-to-
camera homography without physical clues on the screen.
However it can be done, as shown in what follows, if the
projectors are calibrated and the patterns projected by the
projectors toward space are known. Using knowledge of
the patterns, the screen-to-camera homography can really
be determined, up to freedom of choice of internal coordi-
nate representation. In the case of pose estimation using
multi-beam projectors, this becomes autocalibration. That
is, it can be done without a prior calibration procedure.

The problem is very similar to the problems of autocali-
bration of cameras, which are to estimate (some of the) cam-
era parameters from a given image sequence. With respect
to problems of camera autocalibration, factorization of pro-
jective camera matrices plays a key role[3]. The counter-
part in our problem is factorization of projector-to-camera
homographies. Unfortunately, however, the same method-
ology as that used for camera autocalibration does not apply
directly to our problem, since the forms of factorization are
different. Thus, a new analysis is necessary.

In the rest of the paper we consider theories and meth-
ods for the above problem. Although they can potentially
be used for various types of systems, for the purposes of
explanation, we principally treat the system using multi-
beam projectors. Section 2 describes the basic geometry of
projector-screen-camera systems. In Section 3 it is shown
how, and under what conditions, it is possible to determine

the screen-to-camera homography. In Section 4 an algo-
rithm that is based on the results of Section 3 is presented.
Experimental results are shown in Section 5.

2. Projector-screen-camera system

2.1. Relation between projectors and screen

The screen plane is assumed to be perfectly planar and to
be on the xy plane of a coordinate frame o-xyz. We call this
the screen coordinate frame. The projector has its own coor-
dinate frame O-XYZ called the projector coordinate frame,
which is rigidly attached to the projector. The beams pro-
jected by the projector are assumed to emit from the origin
of this coordinate frame (see Fig.1).

Now we derive a relation between each of the beams
emitting from the projector and the point at which it ar-
rives on the screen. Let M ≡ [X,Y, 1]� be the orientation of
a particular beam represented in the projector coordinates,
and let m ≡ [u, v, 1]� be homogeneous coordinates of the
screen point at which the beam arrives, where [u, v] are the
x and y screen coordinates of that point. Then, the two 3-
vectors m and M are connected by

m ∝ KRM, (1)

where ∝ indicates equality up to scale and

K =


f 0 u0

0 f v0

0 0 1

 , (2)

where u0, v0, and f are variables such that [u0, v0,− f ] give
the screen coordinates of the projector position; R is a rota-
tional component of the coordinate transform from the pro-
jector frame to the screen frame. Eq.(1) can be confirmed
by considering that the projector and the screen form a sys-
tem that has the same geometry as a pinhole camera; the
position of the projector corresponds to the projection cen-
ter and the screen corresponds to its image plane.

Conversely, suppose that we are given a 3×3 matrix Hps,
or a projector-to-screen homography, such that

m ∝ HpsM.

Applying a variant of the QR decomposition to Hps, Hps

can be factorized into an upper triangular matrix K′ and a
rotation matrix R′:

Hps = K′R′. (3)

By confining the signs of the diagonal elements of K′ to
be either [+,+,+] or [−,−,+], the above factorization can
be made unique up to these two cases. In order to guar-
antee det R′ = 1, we normalize Hps so that det Hps > 0.
Then the position of the projector can be uniquely deter-
mined up to the sign of the z coordinate by comparing K′
with K of Eq.(2), and the orientation can be correspond-
ingly determined from R′. In this way, the pointer pose can
be calculated if Hps is provided.
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2.2. Relation between screen and camera

However we can observe only the images of the pro-
jected patterns on the screen that are taken by the camera.
Hence, in order to get the projector-to-screen homography
Hps, we need to derive information on the screen plane from
the observable images. Let n be homogeneous coordinates
of an image point. As is well-known, an image point and its
corresponding point on the screen are connected by

n ∝ Hscm,

where Hsc is the screen-to-camera homography. The sub-
stitution of m ∝ HpsM into the above equation yields

n ∝ HscHpsM. (4)

By defining yet another homography, a projector-to-camera
homography, as Hpc ≡ HscHps, this can be rewritten as

n ∝ HpcM. (5)

The projector-to-camera homography, Hpc, can be read-
ily determined if the orientation M of each beam is given
and its corresponding image point n can be identified. Since
the screen-to-camera homography Hsc is constant indepen-
dently of the projector’s pose, if Hsc can be determined in
advance by some method, the Hps of our interest can be
simply computed as

Hps ∝ H−1
sc Hpc.

Thus, the problem is to obtain the screen-to-camera ho-
mography Hsc. If there are several points of known coordi-
nates on the screen surface, this can be easily done. If more
than four point correspondences are given, Hsc can be deter-
mined. In this paper we deal with the cases where no feature
is available on the screen surface. As will be shown in the
next section, even in those cases, it is possible to estimate
Hsc, provided that the orientations of the beams projected
by the projector are known.

3. Screen-to-camera homography estimation

3.1. Problem formulation

We assume here that the projector-to-camera homogra-
phy Hpc can always be computed from the images. In the
case of a multi-beam projector, this can be done, provided
that (a) the orientation M of each beam is known and its
corresponding image point n is identified, and (b) there are
at least four such beams.

Then we consider the following problem.

Problem 3.1. Given a sequence Hpc,1, . . . ,Hpc,n, where
Hpc,i is the projector-to-camera homography correspond-

ing to ith projector pose, determine the screen-to-camera
homography Hsc (and the projector poses).

The following will be shown with respect to the solvabil-
ity of this problem.

Proposition 3.1. From a sequence Hpc,1, . . . ,Hpc,n, Hsc can
be determined up to four free parameters. Three of them
correspond to freedom of choice of the screen coordinate
frame and the rest is scaling ambiguity.

Suppose that for a given sequence Hpc,1, . . . ,Hpc,n, a par-
ticular Hsc enables factorization H−1

sc Hpc,i ∝ KiRi. Further
suppose that there exist a 3×3 matrix T such that, for any K
and R, it is possible that TKR ∝ K′R′, where K′ is any ma-
trix of the form of Eq.(2) and R′ is any orthogonal matrix.
Then a matrix defined by H′sc ∝ HscT−1 should be another
valid screen-to-camera homography. This is because

Hpc,i ∝ HscKiRi ∝ HscT−1TKiRi = H′scK
′
iR
′
i .

Thus, a key issue is if such T exists and if so, what property
it should have.

3.1.1 Difference from the problems of camera autocal-
ibration from an image sequence

The above problem is quite similar to the problems of
autocalibration of a camera [5, 3, 2]. They are problems
of estimating camera parameters, including intrinsic ones,
from a sequence of images, and their theoretical aspects
have been already made clear. The camera autocalibration
is to upgrade projective reconstruction to metric reconstruc-
tion, and it is done by factorizing projective camera matrices
into a desired form. The main problem there was to clarify
under what conditions the factorization is possible [2].

As described above, our problem here is to know
whether it is possible to factorize the projector-to-camera
homographies into our desired form and, if it is possible,
how it may be achieved. Although the problem is seemingly
the same as those of camera autocalibration, it differs in the
following way: in the problems of camera autocalibration,
the factorization form of H ∝ KRT is considered, whereas
in our problem, the form of H ∝ TKR is considered, where
in both cases, H is a matrix obtained from observed data
and T is a matrix that needs to be determined. This slight
difference results in that theories for camera autocalibration
cannot be directly applied.

3.2. Uniqueness of solution

In order to prove Proposition 3.1 we first show two lem-
mas.

Lemma 3.2. A 3 × 3 real matrix V ≡ [v1, v2, v3]� can be
decomposed as V ∝ KR where K is a matrix having the
form of Eq.(2) and R is an orthogonal matrix if and only if

(v1 × v3)�(v2 × v3) = 0 (6)

and
|v1 × v3| = |v2 × v3|. (7)
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Proof. The QR (or RQ in this case) decomposition of V is
always possible as

V =


v�1
v�2
v�3

 ∝

a11 a12 a13

0 a22 a23

0 0 1



r�1
r�2
r�3


where r1, r2, and r3 are the vectors forming an orthogonal
system, and this decomposition is unique. In order for V to
be decomposed as described, it must hold that a12 = 0 and
a11 = a22, and vice versa. These equations can be repre-
sented using v1, v2, and v3 as Eqs. (6) and (7) �

Lemma 3.3. Let T be a 3 × 3 matrix. For any matrix K
having the form of Eq.(2), multiplication TK can be de-
composed as TK ∝ K′U where K′ is also a matrix of the
form Eq.(2) and U is any orthogonal matrix if and only if T
is given by

T ∝


cos θ − sin θ p
σ sin θ σ cos θ q

0 0 r

 , (8)

where σ is either 1 or −1.

Proof. We write T and K as

T =


t11 t12 t13

t21 t22 t23

t31 t32 t33

 and K =


a 0 b
0 a c
0 0 1

 .

Then we apply the result of Lemma 3.2 here. By defining
V ≡ TK and substituting into Eqs.(6) and (7) we obtain two
equations for the entries of T. Those equations must hold
for any K, i.e., any a, b, and c. Then the coefficient of any
order terms aib jck must be zero in the equations. Several
equations are available, from which we obtain the following
as independent ones:

t12t31 + t11t32 = t22t31 + t21t32 = 0, (9a)

t11t21 + t12t22 = 0, (9b)

t2
11 + t2

12 = t2
21 + t2

22. (9c)

In order for T not to be a trivial solution of T = 0, it must
hold that t31 = t32 = 0. Then it is easy to see that Eq.(8) is
one parametrization that implicitly represents Eqs.(9a)-(9c).

In fact, if T is given by Eq.(8), the following decompo-
sition is possible:

TK ∝


cos θ − sin θ p
σ sin θ σ cos θ q

0 0 r



a 0 b
0 a c
0 0 1



=


a 0 b cos θ − c sin θ + p
0 a bσ sin θ + cσ cos θ + q
0 0 r




cos θ − sin θ 0
σ sin θ σ cos θ 0

0 0 1

 .
(10)

The first matrix on the right hand side has the desired form
and the second is an orthogonal matrix. �

Now we prove Proposition 3.1.

Proof of Proposition 3.1. Let Hsc be the true screen-to-
camera homography. Then Hpc,i can be decomposed as
Hpc,i ∝ HscKiRi. In order for T to make possible a differ-
ent decomposition: HscKiRi ∝ HscT−1TKiRi ∝ H′scK′iR

′
i ,

it must be given in the form of Eq.(8), which has four free
parameters, θ, p, q, and r. From Eq.(10) the coordinates
[b, c, a] of the pointer position are transformed by T into
[b′, c′, a′] as

b′
c′
a′

 =


(b cos θ − c sin θ + p)/r
σ(b sin θ + c cos θ + q)/r

a/r

 .
Also, the pointer orientation is transformed as

R′ =


cos θ − sin θ 0
σ sin θ σ cos θ 0

0 0 1

R.
Thus, it can be seen that the coordinates are transformed
by 2D translation on the screen plane by [p, q], rotation by
angle θ around the screen z axis, and exchange between a
left hand system and a right hand system byσ. These can be
said to correspond to choice of the screen coordinate frame.
It is also scaled by r. �

Thus we have shown that Hsc can be determined up to
the described ambiguities. These can be resolved only by
other means. An example of such resolution is to fix both
the screen coordinate frame and the floating scale by setting

K1 ≡

1 0 0
0 1 0
0 0 1

 and K2 ≡

∗ 0 0
0 ∗ ∗
0 0 1

 , (11)

which means that the 1st and 2nd pointer positions are
set to [0, 0, 1] and [0, ∗, ∗], respectively. Then only T =
diag[±1,±1, 1] is allowed for making the decomposition
possible and we can determine Hsc up to any combination
of the signs. There are four combinations of the signs and
thus we have four possible solutions.

4. Algorithms for computing the screen-to-
camera homography

4.1. A noniterative method

In this section, we present an algorithm for solving Prob-
lem 3.1.

The problem was to derive Hsc from a sequence
Hpc,1, . . .Hpc,n. We want to derive equations for Hsc in as
simple a form as possible. As in the case of camera autocal-
ibration, orthogonality of rotation matrices is used first. Let
Ai ≡ Hpc,iH�pc,i. The substitution of Hpc,i ∝ HscKiRi into
Ai ≡ Hpc,iH�pc,i yields

Ai ∝ HscKiRiR�i K�i H�sc = HscKiK�i H�sc, (12)
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where Hsc and Ki are unknowns. The fact that Ki has
the form of Eq.(2) places constraints on these unknowns,
from which we can derive equations for Hsc. For exam-
ple, the elimination of entries of Ki from Eq.(12) results in
two polynomial equations of degree 4 for the entries of Hsc.
They are, however, quite difficult to solve analytically, due
to their nonlinearity 1. Thus, another way must be found.

As described, there is freedom of choice of the screen co-
ordinate system. By assuming K1 and K2 as in Eq.(11) and
exploring the properties of the resulting equations, we can
derive a comparatively simple algorithm as shown below.

Firstly, for the 1st pose, since K1K�1 = I, we have
A1 ∝ HscH�sc. Since A1 is symmetry, its singular value de-
composition (SVD) can be represented as A1 = U1D1U�1
where U1 is an orthogonal matrix and D1 is a diagonal ma-
trix. We use here the following known result; see [4] for
proof.

Lemma 4.1. For any given symmetry matrix A, consider a
square matrix X satisfying A ∝ XX�. There are many pos-
sible solutions. Let X0 be a particular solution. Then, all of
the possible solutions can be represented by X0Q where Q
is any orthogonal matrix.

By applying this, we can represent Hsc without loss of

generality as Hsc ∝ U1D
1
2
1 Q, where D

1
2
1 is a diagonal matrix

whose elements are square roots of those of D1, and Q is an
orthogonal matrix.

We next define for the 2nd pose

K2 =


α 0 0
0 α β
0 0 1

 .

By substituting this along with Hsc ∝ U1D
1
2
1 Q into Eq.(12),

we have

A2 ∝ U1D
1
2
1 QWQ�D

1
2
1 U�1 , (13)

where

W ≡ K2K�2 =


α2 0 0
0 α2 + β2 β
0 β 1

 . (14)

By calculation, it can be shown that the matrix W has the
following eigenvalues:

 λ1, λ3 =
α2+β2+1±

√
((α−1)2+β2)((α+1)2+β2)

2
λ2 = α

2
. (15)

They are ordered as λ1 ≥ λ2 ≥ λ3 independently of α and
β, and the equalities hold only if α = 0 or β = 0. Since
it means that the pointer is exactly on the screen, α = 0

1As is often done in the methods for camera autocalibration [5], we can
probably convert the nonlinear equations into linear ones by introducing
new redundant variables. This requires a huge amount of new variables,
however, due to the form of Eq.(12).

should not happen. Thus, the above eigenvalues coincide
only when β = 0.

Now we want to determine the unknown Q. In Eq.(13),
we move known matrices U1 and D1 to the left hand side

and define A′2 ≡ D
− 1

2
1 U�1 A2U1D

− 1
2

1 (∝ QWQ�). Its SVD
can be represented as A′2 → U′2D′2U′�2 , where U′2 is an
orthogonal matrix and D′2 is a diagonal matrix. Since
A′2 ∝ QWQ� and QQ� = I, known A′2 and unknown
W should have collinear eigenvalues. That is, letting
τ1,τ2, and τ3 (τ1 ≥ τ2 ≥ τ3) be the eigenvalues of A′2,
[λ1, λ2, λ3]� ∝ [τ1, τ2, τ3]�. By solving this for α and β we
have α = ±τ2/

√
τ1τ3 and β = ±√(τ1 − τ2)(τ2 − τ3)/(τ1τ3).

(We again neglect the case of α = 0 here.) As a result,
there are four pairs of solutions for (α, β) corresponding to
the signs, but effectively there are only two since α appears
only in the form of α2.

By substituting these solutions for (α, β) into W in
Eq.(14), its SVD can be computed: W → U′′2 D′′2 U′′�2 .
The substitution of this into A′2 ∝ QWQ� yields A′2 ∝
QU′′2 D′′2 U′′�2 Q�. Then we compare this with the SVD of
A′2, A′2 ∝ U′2D′2U′�2 , that have been already computed. It is
well known that for any matrix, its SVD, UDV�, is unique
up to sign changes of any column vector of U and V, if the
singular values are all different and sorted, say, in descend-
ing order. As described above W has different eigenvalues
whenever β � 0. Therefore, if singular values are sorted
in descending order, it should hold that U′2 is equivalent to
QU′′2 up to sign changes of column vectors. Thus we can
determine Q as

Q = U′2diag[±1,±1,±1]U′′�2

There are eight solutions for Q corresponding to the sign
changes but effectively four since Hsc has inherent scaling
ambiguity. Thus, we have

Hsc ∝ U1D
1
2
1 U′2


±1 0 0
0 ±1 0
0 0 1

U′′�2 .

There were two solutions for (α, β). Hence there are, in to-
tal, eight (2× 4 = 8) solutions that satisfy all the constraints
coming from the 1st and 2nd poses. According to the re-
sults of the last section, when data from a sufficient number
of poses are given, there should be only four solutions. We
can therefore choose four correct solutions by testing each
of the eight solutions against the 3rd and more poses. The
algorithm can be summarized as Fig.2, and as to the number
of poses required, the following can be said.

Proposition 4.2. If the parametrization by Eq.(11) is em-
ployed for the 1st and 2nd projector poses, eight solutions
are obtained from the corresponding two images, unless the
positions of the two projector poses are accidentally on a
line perpendicular to the screen. They can be reduced to
four if more than one image derived from generic projector
poses is added.
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1. Compute the projector-to-camera homography Hpc,i

for each pose i.

2. For the 1st pose, define A1 = Hpc,1H�pc,1 and compute
SVD of A as A1 → U1D1U�1 .

3. For the 2nd pose, define A′2 = D
− 1

2
1 U�1 A2U1D

− 1
2

1 and
compute its SVD as A′2 → U′2D′2U′�2 . All SVD’s must
be computed so that the diagonal elements are sorted
in descending order. Let τ1,τ2, and τ3 (τ1 ≥ τ2 ≥ τ3)
be the diagonal elements of D′2. Compute α and β as

α2 = τ2
2/τ1τ3

β = ±√(τ1 − τ2)(τ2 − τ3)/(τ1τ3).

4. Substitute the resulting α and β into W in Eq.(14) and
further compute its SVD: W → U′′2 D′′2 U′′�2 . Then, Hsc

is given by Hsc ∝ U1D
1
2
1 U′2diag[±1,±1, 1]U′′�2 .

5. From the eight candidates of solution, select four that
are compatible with the 3rd and subsequent poses. This
is done by computing the factorization Hpc,3Ĥ−1

sc →
KR, where Ĥsc is a candidate of solution need to be
tested, and then by checking if K has the form of
Eq.(2).

Figure 2. The proposed algorithm

The additional condition on the projector positions in the
above statement is to guarantee β � 0.

4.2. Nonlinear iterative refinement: Bundle adjust-
ment

The above noniterative method determines the parame-
ters only from the 1st and the 2nd images. The rest of the
images are used only for selecting solutions. It is clear that
the more images take part in the parameter estimation, the
more accurate the estimation. For the solution obtained by
the above noniterative algorithm, we can refine the solu-
tion by maximum likelihood inference as is frequently done
in many camera calibration methods. This is done by a
nonlinear minimization of the so called reprojection errors:∑ |pi − p̂i(θ)|2 + |qi − q̂i(θ)|2, where (pi, qi) are the measured
image coordinates of the ith beam spots, (p̂i(θ), q̂i(θ)) are
the functions representing the geometry, and θ is the param-
eter we want to estimate. Employing minimal parametriza-
tion by Eq.(11), we choose the following as the elements of
θ: Hsc, R1, . . . ,Rn, the elements of K2 other than (1,3), and
K3, . . . ,Kn. This nonlinear method can improve the estima-
tion accuracy, although it has a greater computational cost
than does the proposed noniterative method.

5. Experimental results

The proposed algorithm has been tested on both syn-
thetic and real data.

Figure 3. An example sequence of the projec-
tor poses used for the experiments; see text.

Figure 4. An example of the synthesized im-
ages overlayed into one image. Left: 20 im-
ages. Right: The 1st and 2nd images that are
used as “key images” in the proposed algo-
rithm.

5.1. Synthetic data

Experimental setup for synthetic data Figure 3 shows
the setup used for the experiments. The quadrilateral on one
side of the cube indicates a unit square on the screen plane.
The triplets of thin lines indicate the projector poses, which
are randomly chosen within a certain range of pose parame-
ters. One triplet of thick lines indicates the pose of the cam-
era. The proposed noniterative algorithm determines the pa-
rameter mostly from the 1st and the 2nd poses. Therefore,
they are not randomly chosen, but chosen especially so that
the resulting images become those shown on the right of
Fig.4.

The projector used here has four discrete beams. The
beams are along the edges of a square cone that has a φ
diagonal angle. The resulting synthetic images are shown
in Fig.4. The largest quadrilateral is the unit square on the
screen, which is also shown in Fig.3. The small quadrilat-
erals scattered in the image represent the projections of the
beams on the screen; their four corners are the image points
of the beam spots. Then, Gaussian noise with mean 0 and
variance σ2 is added to those image points. The noise level
σ is changed from 0.1 to 1.5 pixels, assuming the image
size to be 500 × 500 pixels.

Accuracy measures of Hsc The proposed noniterative al-
gorithm and nonlinear refinement are applied to the im-
ages generated in the above way. Their estimation accu-
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Figure 5. Errors vs. the noise level of the
image points. Upper: Projector position.
Lower: Orientation. ’CF’ indicates the pro-
posed noniterative algorithm and ’BAn’ indi-
cates nonlinear refinement using n images.

racies are measured using recovery of the projector poses
using estimated Hsc’s. In order to distinguish the noise
effects on the Hsc estimation and those on the Hpc de-
composition, two image sequences are prepared. One is
generated with noise and the other without. The for-
mer is used, of course, for estimating Hsc and the lat-
ter is used for evaluating the accuracy of the estimated
Hsc. For the sequence without noise, the estimation ac-
curacy is measured by errors of the recovery of the pro-

jector poses: (Error of position) =
√

1
100

∑100
i=1 |ti − t̂i|2 and

(Error of orientation) =
√

1
100

∑100
i=1 |I − RiR̂�i |2.

Performance w.r.t. the noise level In this experiment,
we varied the noise level σ from 0.1 to 1.4 pixels. For each
noise level, 100 trials were independently conducted by ran-
domly choosing the image noise alone. The beam angle was
set to φ = 20 degrees. Figure 5 shows the results. It can be
seen that for the case of σ = 0.5 pixels, which is considered
to be a typical case, the relative errors for the noniterative
algorithm are less than 10% for both the position and ori-
entation. It can also be seen that the nonlinear refinement
improves the estimation accuracy and that more images are
used, the greater is the improvement in accuracy.

Performance w.r.t. the beam angle It is anticipated that
we will get poor results with projectors with a small beam
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Figure 6. Error of the estimated projector po-
sition vs. the angle spanned by the beams.

Figure 7. Experimental setup.

angle. In this experiment we varied the beam angle φ from
10 to 40 degrees. The noise level σ was fixed at 0.5. The re-
sults are shown in Fig.6. To conserve space, only the results
for the projector position are shown. The estimation errors
seem to be inversely proportional to square of the beam an-
gle, and it can be seen that the accuracy varies drastically
from 10 to 20 degrees. It might be said that a beam angle of
at least 20 degrees is desirable for applications that require
accuracy.

5.2. Real data

The proposed algorithm was also tested on real images.
The projector used here had four laser beams, which were
made of four off-the-shelf single-beam type laser point-
ers. An ordinary whiteboard of approximately 1.5m×1.0m
is used for the screen. On the screen, four marker points
were attached for evaluating the accuracy of the results. A
NIKON digital camera D1 was used, whose image size is
2000 × 1312 pixels. The lens has a field angle of approxi-
mately 40 degrees. The setup is shown in Fig.7.

An example of the images acquired is shown in Fig.8.
The beam spots appearing on the images were identified
manually and then extracted automatically by color thresh-
olding. Since each beam spot had an area, although it is
small, a mean was computed to determine exact image co-
ordinates.

Since it is difficult to get the ground truth of the pointer
poses in this case, we measured the estimation accuracy in

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



Figure 8. An example of the image and its
enlarged subimage of four beam spots.

the following way. Firstly, the screen-to-camera homogra-
phy Hsc was estimated from the four marker points attached
on the screen. Let Ĥsc,0 be the estimation. This is expected
to be highly accurate due to the use of the special purpose
marker points. Thus, we assumed Ĥsc,0 to be accurate and
thought of this as the ground truth for Hsc.

The estimation by the proposed algorithm, Ĥsc, was then
compared with Ĥsc,0. There is freedom of coordinate frame
choice between Ĥsc and Ĥsc,0, and thus direct comparison
does not make sense. They are connected by the following
relation if both are correct:

Ĥsc,0 ∝ ĤscT,

where T is a matrix having the form of Eq.(8). In other
words, if Ĥsc is correct, T′ ≡ Ĥ−1

sc Ĥsc,0 should have the form
Eq.(8). Thus, the estimation accuracy can be measured by
checking the matrix T′. Let [t1, t2, t3] ≡ T′. The conditions
for T′ having the form Eq.(8) are given as Eqs.(9a)-(9c),
which can be rewritten as ea ≡ 1 − [0, 0, 1]� ̂(t1 × t2) = 0,
eb ≡ |t1| − |t2| = 0, and ec ≡ (t�1 t2)/(|t1||t2|) = 0. If errors
exist in the estimation, ea, eb, and ec have non-zero values.
Thus, we used ea, eb, and ec as indexes for the estimation
accuracy.

For 13 selected pairs of the images, we applied the pro-
posed noniterative algorithm. The resulting indexes ea, eb,
and ec are shown in Table.1. It can be said that the results
have considerably accuracy, assuming that Ĥsc,0 is correct.
An example of recovered projector poses is shown in Fig.9.
In the same figure also poses recovered from Ĥsc,0 is shown,
to which the coordinate transform given by T′ were applied.
The two recovery results almost coincide, and thus their dif-
ference is hardly seen2.

6. Summary

We have shown that for the projector-screen-camera sys-
tem, if the pattern the projector projects toward space is
known, the screen-to-camera homography can be deter-
mined from multiple images of the patterns up to choice of
the internal coordinate representation. In addition, we have

2If the reader is reading the paper on a PC display, he or she can see the
difference by enlarging the figure.

Table 1. The indexes for the estimation accu-
racy over 13 pairs of images; see text.

mean std. dev.
ea -0.0033 0.020
eb 0.0037 0.011
ec 0.00031 0.00045

Figure 9. An example of projector pose recov-
ery. Projector poses recovered using Ĥsc,0 are
also shown.

presented a noniterative algorithm that can directly provide
solutions from basically more than two images. The perfor-
mance of the method was confirmed by several experimen-
tal results.
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[3] A. Heyden and K. Ȧström. Flexible calibration: Minimal
cases for auto-calibration. In Proceedings of IEEE Interna-
tional Conference on Computer Vision, pages 438–443, 1999.

[4] K. Kanatani. Geometric computation for machine vision. Ox-
ford: Clarendon Press, 1993.

[5] M. Pollefeys, R. Koch, and L. V. Gool. Self-calibration and
metric reconstruction inspite of varying and unknown intrin-
sic camera parameters. International Journal of Computer
Vision, 32(1):7–25, 1999.

[6] R. Sukthankar, R. G. Stockton, and M. D. Mullin. Smarter
presentations: Exploting homography in camera-projector
systems. In Proceedings of IEEE International Conference
on Computer Vision, 2001.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 


