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Abstract

Vision algorithms utilizing camera networks with a com-
mon field of view are becoming increasingly feasible and
important. Calibration of such camera networks is a chal-
lenging and cumbersome task. The current approaches for
calibration using planes or a known 3D target may not be
feasible as these objects may not be simultaneously visible
in all the cameras. In this paper, we present a new algorithm
to calibrate cameras using occluding contours of spheres.
In general, an occluding contour of a sphere projects to an
ellipse in the image. Our algorithm uses the projection of
the occluding contours of three spheres and solves for the
intrinsic parameters and the locations of the spheres. The
problem is formulated in the dual space and the parameters
are solved for optimally and efficiently using semi-definite
programming. The technique is flexible, accurate and easy
to use. In addition, since the contour of a sphere is si-
multaneously visible in all the cameras, our approach can
greatly simplify calibration of multiple cameras with a com-
mon field of view. Experimental results from computer sim-
ulated data and real world data, both for a single camera
and multiple cameras, are presented.

1 Introduction

The recovery of 3D information from 2D images is a
fundamental problem in computer vision. This recovery of
metric information requires knowledge of the camera pa-
rameters – also known as camera calibration. A real world
camera can be approximated by a pinhole camera model.
This model projects points in 3D by a perspective projec-
tion. The parameters of the camera to be recovered are
classified as intrinsic and extrinsic parameters. The extrin-
sic parameters relate the world coordinates to the camera

∗This work was carried out while the author was a graduate student at
the University of Maryland

orientation and position and the intrinsic parameters define
the imaging geometry of the camera. In the pinhole cam-
era model, the intrinsic parameters of the camera are mod-
elled by five terms. (Most non-linearities in cameras can be
modelled by an additional radial distortion term.) There has
been much work on camera calibration, both in photogram-
metry and computer vision. These work can be classified
into two categories.

In the first category are methods which use a calibra-
tion object. These can be further classified into two sub-
categories: methods which use a calibration object with a
fixed 3D geometry [14, 21] and methods with “generic”
3D geometry, eg. coplanar points. Recently, for example,
Zhang [23] has shown that it is possible to calibrate a cam-
era using a planar point pattern shown at a few different
orientations.

In the second category are methods which do not use
a calibration object and are generally referred to as self-
calibration [12, 16]. In this approach a camera is moved
in a static scene. If the internal parameters of the camera do
not change, then the rigidity of the scene provides two con-
straints on the internal parameters through Kruppa’s equa-
tions. Correspondences between three images are then suffi-
cient to recover the camera parameters. In some cases, even
if some of the camera parameters do change during the mo-
tion, they can still be recovered [18]. However, since a large
number of parameters need to be estimated, this method is
very susceptible to noise and is often unstable.

In this paper, we use spheres as calibration object. The
primary motivation for using spheres as calibration objects
stems from the need for simultaneously calibrating multi-
ple cameras mounted far apart from one another. Over the
last few years, cameras have become ubiquitous due to their
declining costs, so that vision systems using multiple cam-
eras are becoming cost effective. Example of multi-view
vision systems include the 3D room developed by Kanade
et al [19] and the Keck Laboratory (Davis et al [9]).

Calibration of such a large number of cameras using a
3D reference object is tedious and cumbersome. In addi-
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tion, it is very difficult to calibrate all the cameras simul-
taneously using these reference objects, as all the points
on the calibration object are not visible simultaneously in
all views. Similarly, planar patterns [23] cannot be used
for calibrating these multi-perspective vision systems, as a
plane is visible to only those cameras that it lies in front
of. Points are a natural choice since a point would be vis-
ible to all the cameras simultaneously [2]. But this tech-
nique faces various problems. It is very difficult to localize
the images of the points and, since, Euclidean constraints
are not available, these point correspondences provide only
weak calibration (intrinsic parameters cannot be recovered).
In addition, this technique usually needs a large number of
images of these points. Recently, Zhang [24] has presented
a method for calibration using 1D objects which can poten-
tially be used for simultaneously calibrating a large number
of cameras. However, this requires that one point of the line
be fixed, which may be difficult in practice.

The occluding contours of spheres, in addition to pro-
viding all the advantages of points, can also be localized
accurately. The image of an occluding contour of a sphere
is an ellipse in general, and is closely related to the abso-
lute conic which determines the intrinsic parameters of the
camera. In addition, as long as the sphere is placed in the
common field of view of the cameras, its occluding contours
are visible from any position. Hence they can be used to ac-
curately calibrate multiple cameras mounted at arbitrary lo-
cations simultaneously. We present an algorithm that uses
three images of the sphere to simultaneously calibrate the
intrinsic and the extrinsic parameters of the camera. Our
approach is based on semi-definite programming and solves
for the parameters of the camera directly without making
any assumptions about the parameters to be estimated. This
is achieved by formulating the problem in dual space.

Spheres have been used previously for calibration. [8]
and [3] have used four parameters to model the intrinsic
parameters of the camera, which are calculated in a multi-
step approach. First, the aspect ratio of the camera is esti-
mated. Then, using the fact that the major axes of the el-
lipse intersect at the principal point, the principal point is
estimated, and finally, the focal length is calculated. The
more recent work of Teramoto and Xu [20] is closest to our
work. However, in their approach the minimization is ac-
complished using general-purpose non-linear minimization
and needs a good initial estimate to start the minimization.
They obtain the initial estimate by assuming that the image
center is the principal point, the skew is zero, and the pix-
els are square. While this is a reasonable assumption, this
may still cause the optimization procedure to get stuck at a
local minimum. In addition, the principal point is known to
vary with the camera zoom. In a recent paper, Hartley and
Kaucic [13] have pointed out the sensitivity of calibration
to principal point estimation. They show that small changes

in the principal point position can cause very large changes
in the estimated focal length. Our dual space formulation,
on the other hand, is general enough for any camera which
can be modelled by five intrinsic parameters and does not
need an initial estimate. We also illustrate how to recover
the extrinsic parameters in a multi-camera setup.

The remainder of the paper is organized as follows. In
the next section, we present the preliminaries of the pinhole
camera model and quadrics. In Section 3, we derive the
basic equations governing the projection of the occluding
contour of the sphere. Sections 4 and 6 present the algo-
rithm for solving these equations. The algorithm uses semi-
definite programming for minimization, a brief introduction
to which is presented in Section 5. Experimental results for
real and simulated data are presented in Section 7. Finally,
Section 8 concludes the paper with suggestions for future
work.

2 Preliminaries

2.1 Pinhole Camera Model

Let X be a world point in homogenous coordinates and
x be its projection in the camera with projection matrix P ;
this can be represented as

x = PX (1)

The camera matrix P can be decomposed as

P = AR
[

I −t
]

(2)

A =


 αx s x0

αy y0

1


 (3)

RtR = I (4)

The upper triangular matrix A is the matrix of intrinsic pa-
rameters and R and t are the rotation and translation of the
camera respectively. Note that we are ignoring non-linear
distortion in our model.

2.2 Quadrics

In homogenous coordinates a quadric is represented by a
4 × 4 symmetric matric Q; the equation of the quadric is

XtQX = 0 (5)

The dual of the quadric Q is another quadric Q∗. Dual
quadrics are equations on planes: the tangent planes π to
the point quadric Q satisfy πtQ∗π = 0, where Q∗ =adjoint
Q, or Q−1 if Q is invertible.
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In particular, a sphere is a quadric with S ≡ Q matrix of
the form

S ≡ Q =
[

I −a
−at γ

]
(6)

This sphere S has center at a and the square of its radius is
ata− γ. Note that for real spheres we must have ata− γ >
0. The dual of this sphere is the quadric S∗ where

S∗ = S−1 =
[

I − βaat −βa
−βat −β

]
where β =

1
ata − γ

(7)
Note that β > 0 for all real spheres. Under the camera
matrix P , the apparent contour (also called outline) of a
quadric is a conic C with dual C∗ given by

C∗ = PQ∗P t (8)

The proof can be found in [14].

2.3 Absolute Dual Quadric

The absolute quadric is an imaginary quadric (i.e. with
no real points) and is defined by its dual representation

Q∗
∞ =

[
I 0
0t 0

]
(9)

The dual image of this absolute quadric (DIAC) is a conic
represented by ω∗. This DIAC plays an important role in
camera calibration. It can be shown [14] that under the cam-
era matrix P = AR

[
I −t

]
, the DIAC is given by

ω∗ = AAt (10)

Hence, if ω∗ is known, the intrinsic parameters A are easily
obtained by (uniquely) finding the Cholesky factorization of
ω∗.

3 Calibration using the apparent contour of
a sphere

The apparent contour of a sphere with center at a under
the camera matrix P = AR

[
I −t

]
is obtained by sub-

stituting the equation for the dual sphere (equation 7) into
equation 8:

C∗ = P

[
I − βaat −βa
−βat −β

]
P t

Substituting for P from equation 2 gives

C∗ = AR
[

I −t
] [

I − βaat −βa
−βat −β

] [
I
−tt

]
RtAt

= AR
[

I −t
] [

I − βaat + βatt

−βat + βtt

]
RtAt

= AR
[
I − β (a − t)

(
at − tt

)]
RtAt (11)

Let c = a − t. c is then the relative position of the sphere
center with respect to the camera center. Substituting c and
using the fact that R is orthogonal (equation 4), equation 11
becomes

C∗ = A
[
I − βRcctRt

]
At

= AAt −
(√

βARc
)(√

βARc
)t

(12)

Now, let v be the vector
√

βARc. Therefore, the above
equation may be written as

v =
√

βARc (13)

C∗ = AAt − vvt (14)

Equation 14 is the basis for our calibration approach and
several key observations can be made about this equation.

Since the quadric C∗ is defined up to an arbitrary scale,
the equality in equation 14 is only up to an arbitrary scale
factor. The left-hand-side (lhs) and right-hand-side (rhs) of
this equation are all symmetric matrices. The lhs is the dual
of the occluding contour of the sphere and can be calculated
by fitting an ellipse in the image and taking its inverse as the
dual. The rank of C∗ is 3. The rhs is the sum of two matri-
ces. The first, being the DIAC, is of rank 3 and the second
term, being the outer product (vvt), is of rank 1. Suppose
the internal parameters of the camera are fixed while the
camera images the sphere at different locations. Then the
first term (AAt) remains the same while the vector v, which
depends on the translation and rotation of the sphere with
respect to the camera, varies. Hence if we image the sphere
at multiple positions, it is possible to recover the internal
parameters.

We need a minimum of three such images in order to
perform this calibration; this can be seen by a counting ar-
gument. Since the internal parameters of the camera are
constant, AAt is fixed. Therefore, there are six unknowns
for AAt. (Note that matrix A is also defined up to a scale).
Each image of the sphere results in six constraints. (since
all the matrices in equation 14 are symmetric). In addition
each equation adds three unknowns for the v vector and one
unknown for the global scale. Therefore, the number of un-
knowns for N such images (corresponding to N equations)
is 6 + 4N and the number of constraints is 6N . Hence, in
order to solve this system of equations, we must have

6N ≥ 6 + 4N

N ≥ 3

The above proof is only an argument by counting and does
not give a procedure for finding AAt and the extrinsic pa-
rameters, which is presented next.
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4 Closed form solution

Suppose a sphere is viewed at three different positions by
a camera without changing its internal parameters. We pro-
ceed by extracting the occluding contour of the spheres in
the images. This can be accomplished by finding the edges
in the image and fitting an ellipse to the edge points belong-
ing to the ellipse. Fitting an ellipse to points is a classi-
cal problem and an accurate fit may be obtained using the
method described in [10, 15]. As a result of the ellipse
fitting, we obtain the quadrics C1, C2, C3. The inverses of
these quadrics C∗

1 , C∗
2 , C∗

3 then give the dual quadric. Given
these dual quadrics, we can solve for the intrinsic and ex-
trinsic parameters. Let the three corresponding equations
be

κ1C
∗
1 = AAt − v1v

t
1

κ2C
∗
2 = AAt − v2v

t
2

κ3C
∗
3 = AAt − v3v

t
3 (15)

where κ1,2,3 are the unknown scale factors.

4.1 Solving for the scale factors

First, we solve for the scale factors κ1, κ2, κ3. We ob-
serve that

Cij ≡ κiC
∗
i − κjC

∗
j = vjv

t
j − viv

t
i (16)

Hence, the rank of Cij is at most 2. Therefore κj/κi is a
generalized eigenvalue [11] of C∗

i and C∗
j . A 3 × 3 matrix

has, in general, three generalized eigenvalues. Hence, there
will be three values for κ2/κ1 and κ3/κ1. We arbitrarily
fix κ1 = 1 and choose values for κ2 and κ3 such that it is
consistent with the generalized eigenvalue for C∗

2 and C∗
3 .

4.2 Solving for the v’s

From equation 14, it is easy to see that v =
√

βAR(a−t)
is the projection of the center of the sphere in the image in
homogenous coordinates. Note that, in general, the center
of the sphere does not project to the center of the ellipse.
Here we will illustrate how to obtain the projection of the
center for each of the three spheres.

The symmetric matrix Cij can be factorized by SVD as
Cij = UijSijU

t
ij where Sij is a diagonal matrix of the sin-

gular values and Uij =
[

e1
ij e2

ij e3
ij

]
is orthonormal.

According to equation 16, for any i �= j the rank of Cij is
2. Therefore Sij(3, 3) = 0 and

Sij = U t
ij

[
vjv

t
j − viv

t
i

]
Uij

Let pj = U t
ijvj and pi = U t

ijvi. Then
 λ1

λ2

0


 = pjp

t
j − pip

t
i

Since pj �= pi, from the above equation it is easy to see
that pt

j =
[

αj βj 0
]

and pt
i =

[
αi βi 0

]
Since

vj = Uijpj , therefore vj is a linear combination of the first
two eigenvectors of Cij . The same also applies to vi:

vi = γ1e
1
ij + γ2e

2
ij

For an additional view k of the sphere, we obtain Cik and
therefore vi is also a linear combination of the first two
eigenvectors of Cik:

vi = δ1e
1
ik + δ2e

2
ik

From these two equations, we can solve for vi up to a scale
factor vi = αiv̂i; this is the projection of the center of the
sphere onto the image.

4.3 Solving for the internal parameters

From the previous section vi = αiv̂i where αi is the
scale parameter which needs to be computed. Let Vi =
v̂iv̂

t
i . Then

viv
t
i = α2

i v̂iv̂
t
i

= α2
i Vi

Therefore equations 15 become

C∗
1 = AAt − σ1V1 σ1 = α2

1 > 0
κ2C

∗
2 = AAt − σ2V2 σ2 = α2

2 > 0
κ3C

∗
3 = AAt − σ3V3 σ3 = α2

3 > 0 (17)

In solving for A from these equations, we must take note of
the fact that AAt is symmetric positive definite and σi > 0.
Therefore, our solution must obey these constraints. These
constraints fit naturally into the formulation of semi-definite
programming, a brief introduction to which is provided be-
low.

5 Semi-definite programming

Semi-definite programming (denoted SDP) is an exten-
sion of linear programming (LP) where the nonnegativity
constraints are replaced by positive semi-definiteness con-
straints on matrix variables. SDP is a very powerful tool that
has found applications in positive definite completion prob-
lems, maximum entropy estimation and bounds for hard
combinatorial problems; see e.g. the survey of Vanden-
berghe and Boyd [22].

The standard dual form of SDP can be expressed as min-
imizing a linear function of a variable x ∈ Rm subject to a
matrix inequality

minimize ctx
subject to F (x) � 0
F (x) = F0+

∑m
i=1 xiFi
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The problem data are the vector c ∈ Rm and m + 1 sym-
metric matrices F0, . . . , Fm ∈ Rn×n. The inequality sign
in F (x) � 0 means that F (x) is symmetric positive defi-
nite.

Unlike LP, SDP is a nonlinear convex programming
problem, because the feasible boundary (the cone of pos-
itive semi-definite matrices) is nonlinear. Nonetheless, SDP
shares a key feature with LP – SDP can be effectively solved
by generalizing interior-point methods developed originally
for LP. The credit for this important discovery goes primar-
ily to Nesterov and Nemirovski [17] and Alizadeh [1]. The
fact that SDP can be efficiently solved by interior–point
methods, both in practice and, from a theoretical point of
view, exactly in polynomial time, has driven the recent surge
of interest in the subject.

5.1 Norm minimization using SDP

Suppose a matrix A(x) depends affinely on x ∈ Rk :
A(x) = A0 + x1A1 + · · · + xkAk ∈ Rp×q , and we wish
to minimize the spectral norm (maximal singular value)
‖A(x)‖. This can be cast as the semi-definite program

minimize ζ

subject to

[
ζI A(x)

A(x)t ζI

]
� 0

If B(x) is another matrix which depends linearly on x and
we want to minimize ‖A(x)‖ + ‖B(x)‖, then the corre-
sponding semi-definite program to be solved is

minimize ζ + η

subject to




ζI A(x)
A(x)t ζI

ηI B(x)
B(x)t ηI


 � 0

6 Complete calibration using semi-definite
programming

We solve for the scale parameters σ1,2,3 and refine κ2,3

using SDP-based norm minimization. From equation 17

C∗
1 + σ1V1 = κ2C

∗
2 + σ2V2 = κ3C

∗
3 + σ3V3 = AAt

Therefore we want to solve for σ1,2,3, κ2,3 for the SDP
problem:

minimize ‖A‖ + ‖B‖ + ‖C‖
where
A = C∗

1 + σ1V1 − κ2C
∗
2 − σ2V2

B = C∗
1 + σ1V1 − κ3C

∗
3 − σ3V3

C = κ2C
∗
2 + σ2V2 − κ3C

∗
3 − σ3V3

(18)

subject to the constraints

C∗
1 + σ1V1 � 0

κ2C
∗
2 + σ2V2 � 0

κ3C
∗
3 + σ3V3 � 0

diag (σ1, σ2, σ3) � 0

(19)

The corresponding dual SDP can be written in standard
form and is omitted here due to space restrictions. This SDP
is minimized to obtain the refined scale parameters. AAt

can then be obtained from these equations in a least squares
sense, which can then be used to obtain A using Cholesky
decomposition.

AAt =
1
3

(C∗
1 + σ1V1 + κ2C

∗
2 + σ2V2 + κ3C

∗
3 + σ3V3)

6.1 Calibration with known principal point

Most real world cameras have zero skew (s = 0). In
addition, suppose the principal point (x0, y0) is also known.
Then we need to obtain the focal length of the camera in the
x and y direction (αxαy). The DIAC for this restricted case
can be written as

AAt =


 α2

x + x2
0 x0y0 x0

x0y0 α2
y + y2

0 y0

x0 y0 1




Therefore AAt can be decomposed as a linear combination
of three matrices.

AAt = α2
xFx + α2

yFy + F0

Fx =


 1 0 0

0 0 0
0 0 0




Fy =


 0 0 0

0 1 0
0 0 0




F0 =


 x2

0 x0y0 x0

x0y0 y2
0 y0

x0 y0 1




Since AAt can be written as a linear combination, the fo-
cal lengths and the scale parameters can be computed by
solving the following norm minimization problem:

minimize ‖P‖ + ‖Q‖ + ‖R‖
where
P = κ1C

∗
1 + σ1V1 −

(
α2

xFx + α2
yFy + F0

)
Q = κ2C

∗
2 + σ2V2 −

(
α2

xFx + α2
yFy + F0

)
R = κ3C

∗
3 + σ3V3 −

(
α2

xFx + α2
yFy + F0

)
(20)

subject to the constraints

diag
(
σ1, σ2, σ3, α

2
x, α2

y

) � 0 (21)
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6.2 Multi-camera calibration

Our algorithm can be used to calibrate multiple cameras
simultaneously. This is achieved by imaging the sphere at
three or more locations in the common field of view of the
cameras. Thus, we can obtain the internal camera parame-
ters A and the vectors v for each camera. Since the same
sphere is viewed by each of the cameras, we can set the ra-
dius of the sphere to unity, i.e. β = 1. (Thus we have metric
calibration up to scale). Then the 3D location of the center
of the sphere with respect to the camera reference frame can
be obtained by setting t = 0 and R = I in equation 13.

ai = A−1vi

These 3D point sets can then be registered to obtain the
rotation and translation parameters for the cameras. Regis-
tering 3D point sets is a common problem in computer vi-
sion. The case of two point sets has been analytically solved
by several authors [5]. This pairwise registration algorithm
can be sequentially applied pair by pair for registering mul-
tiple point sets. However, this usually leads to propagation
and cumulation of registration errors. This limitation can
be overcome by using a global multiple point set registra-
tion algorithm [7, 4].

7 Experimental results

The proposed algorithm has been implemented and
tested on both computer simulated and real data. We have
used CSDP [6], a freely available implementation for solv-
ing semi-definite programming problems.

7.1 Simulated data

For the computer simulation, the intrinsic parameters of
the camera are shown in the first row of Table 1. A sphere
was then ray-traced at three different locations to obtain
three images of the spheres. The image resolution was
640 × 480. Figure 1 shows the ray traced images of the
three spheres. The contours of the ellipses were then ex-
tracted using Canny’s edge detector and ellipses were fitted
to these contours using a least squares ellipse fitting algo-
rithm. The camera parameters obtained by our algorithm
are shown in the second row of the table. The third row dis-
plays the relative error in the parameters obtained with re-
spect to the focal length(which is taken to be 1000) (The rel-
ative difference with respect to the focal length rather than
the absolute error is a meaningful error measure as argued
by Zhang [24]). The relative error in this case is less than
1%. The error is primarily due to the fact that our extracted
edges are correct to within a pixel. As we are looking at
occluding contours, the external zero of the laplacian will

Figure 1. Ray traced images of three spheres

Table 1. Experimental results for synthetic
data

Data αx αy s x0 y0

Ground truth 1000 1050 0.1 320 240

Calculated 992 1041 0.3 321 238

Relative 0.8% 0.9% 0.02% 0.01% 0.02%
difference

probably give us a better localization. Sub-pixel edge de-
tection methods will also result in further reduction of the
errors.

7.2 Real Data

For the experiments with real data, we obtained a 12
′′

diameter globe lamp. This globe lamp was then shown to
the camera at three different locations. The three images
are displayed in Figure 2. Edges were detected to obtain
the contour of the ellipse and the parameters of the ellipse
were obtained using ellipse fitting. The calculated intrinsic
parameters using these images are listed in the first row of
Table 2. Since ground truth is not available, in order to val-
idate our parameters we obtained one more set of images.
The extracted edges of the contours for the second set is
shown in Figure 3. The parameters calculated using these
three ellipses are given in the second row of Table 2 and
the third row shows the relative difference in the parameters
obtained using both sets (the focal length was taken to be
1151). The relative difference, in this case, is less than 2%.

6

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



(a) First Image (b) Second Image (c) Third Image

Figure 2. Images used for calibration

The difference in these two results can be attributed to im-
age noise, non-linear distortion and edge localization error.

Figure 3. Second set of images

Table 2. Intrinsic parameters for real data

Set αx αy s x0 y0

Set1 1151.0 1151.9 3.03 373.7 222.5

Set2 1131.0 1133.0 2.26 363.1 228.7

Relative 1.73% 1.64% 0.07% 0.92% 0.54%
difference

7.3 Multiple Camera Calibration

As pointed out earlier, our algorithm can be used to cali-
brate multiple cameras simultaneously. We have tested our
multiple camera calibration on a pair of cameras in a stereo

configuration. The cameras were placed vertically about
one foot apart. We used six images of the sphere. We need
only three spheres for calibration, but increasing the num-
ber of spheres results in increased accuracy of registration.
The pairwise 3D registration algorithm [5] was used to cal-
culate the rotational and translational parameters of the sec-
ond camera with respect to the first using the six centers of
the spheres. The residual error of registration is defined as
the average distance between the first point set and the sec-
ond point set after registration. This error for our case was
about 0.5 inch.

In addition, we selected 20 random points in the back-
ground of the first image and hand matched them to find
the corresponding points in the second image. The distance
between the corresponding point and the epipolar line is a
measure of the goodness of the calibration parameters. For
the camera parameters obtained by our algorithm, this max-
imum distance was found to be 1.6 pixels and the mean dis-
tance was 0.6 pixels.

8 Conclusion

We have presented an algorithm for camera calibration
using the occluding contours of spheres. Our algorithm re-
quires the camera to observe a sphere at three or more loca-
tions. By formulating the problem in dual space, we have
shown how to recover the camera parameters optimally us-
ing semi-definite programming. The solution is exact and
does not require any initialization. On the practical side,
our technique is flexible, easy to use, and can be used to
simultaneously calibrate multiple cameras. Therefore, our
technique can find applications in calibrating multiple cam-
era arrays for three dimensional reconstruction in meeting
and lectures.

Our approach recovers the DIAC in a closed-form solu-
tion by minimizing algebraic error using semi-definite pro-
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gramming. However, this has no physical significance. In-
stead, the solution obtained by our method can be used as
a starting point for a maximum likelihood estimate which
minimizes the geometric error between the measured edgels
and conic C over variation in the DIAC.

One of the key limitations of this approach is that the
quality of the boundary fitting and ellipse detection strongly
affect the accuracy of calibration results. In particular, if
the sphere is imaged near the center of the image, the as-
pect ratio of the projected ellipse would be close to one. In
this degenerate case, calibration based on spheres performs
poorly. On the other hand, near the image periphery, lens
distortion begins to play an important role. Hence, an anal-
ysis of the dependence of localization error of the edges on
the recovered camera parameters needs to be carried out. In
addition, we are looking into the effects of lens distortion
on the calibration.
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