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Abstract

This paper presents a novel solution to the illuminant es-
timation problem: the problem of how, given an image of a
scene taken under an unknown illuminant, we can recover
an estimate of that light. The work is founded on previ-
ous gamut mapping solutions to the problem which solve
for a scene illuminant by determining the set of diagonal
mappings which take image data captured under an un-
known light to a gamut of reference colours taken under
a known light. Unfortunately a diagonal model is not al-
ways a valid model of illumination change and so previ-
ous approaches sometimes return a null solution. In addi-
tion, previous methods are difficult to implement. We ad-
dress these problems by recasting the problem as one of
illuminant classification: we define a priori a set of plau-
sible lights thus ensuring that a scene illuminant estimate
will always be found. A plausible light is represented by
the gamut of colours observable under it and the illuminant
in an image is classified by determining the plausible light
whose gamut is most consistent with the image data. We
show that this step (the main computational burden of the
algorithm) can be performed simply, quickly, and efficiently
by means of a non-negative least-squares optimisation. We
report results on a large set of real images which show that
it provides excellent illuminant estimation, outperforming
previous algorithms.

1. Introduction

Colour has been found to be a useful aid in solving a
variety of classical computer vision problems such as ob-
ject recognition and tracking as well as image segmenta-
tion. Importantly, colour can only help in solving these
problems provided that it is a stable feature of an object
or surface. This implies that cameras must record colours
which are constant regardless of the colour of the prevail-
ing light. In practice a camera’s response changes as the

illumination changes, so it is necessary to correct camera
data to account for the colour of the prevailing light. This
procedure is a two-stage process which begins by estimat-
ing the colour of the scene illumination and subsequently
correcting the recorded image to account for the estimated
illuminant colour. The second of these tasks – correct-
ing the image for the colour of a known illuminant – is
relatively straightforward. However, recovering an esti-
mate of the scene illuminant from an arbitrary image has
proven to be a very difficult problem, and despite much
research [16, 5, 18, 13, 8, 14, 9, 2, 3] is still today very
much an active area of research. In this paper we present a
novel solution to the illuminant estimation problem, a solu-
tion which which builds on the strengths of the gamut map-
ping algorithm of Forsyth [13] while addressing many of its
weaknesses.

Early approaches to illuminant estimation sought to sim-
plify the problem by placing certain constraints on the com-
position of a scene. For example the constraint that the
scene contain a “white” (maximally reflective) surface [16]
or that the average of all surfaces in the scene is neu-
tral [5]. Other authors modelled lights and surfaces by low-
dimensional linear models and derived algebraic solutions
to the problem [18]. It is easy to understand why such ap-
proaches do not work in practice: the constraints they place
on scenes are too strong. By adopting weaker constraints
a variety of more successful algorithms have been devel-
oped [13, 14, 9] and these approaches can often give rea-
sonable illuminant estimation. In particular there are three
classes of algorithm which show promise and are worthy of
further research: neural network based methods [6], gamut
mapping methods [13, 8, 11, 1] which share the common
root of the original gamut mapping work of Forsyth [13] and
correlation based approaches such as Finlayson et al’s [9]
“Color by Correlation”. The neural network approach is
unattractive for a number of reasons. First, it provides a
black box solution to the problem which casts no light on
the nature of the problem which is being studied. Second,
neural networks are non-trivial to implement, and third and
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most crucially they rely on training data which properly
reflects the statistics of the world: in practice neural net-
works often do not generalise well. More promising is the
correlation matrix algorithm [9] which has the advantage
of being simple both in its implementation and in terms
of the computations which must be carried out to estimate
the illuminant. Set against these advantages is the fact that
this approach also relies on having a reasonable statistical
model of lights and surfaces: i.e. it requires accurate train-
ing data to work in practice. A second disadvantage of the
approach is that it gains its simplicity in part from the fact
that it works not with 3-d RGB camera data but with 2-d
chromaticity data: i.e. brightness information is discarded.
While brightness information can be incorporated into the
algorithm [4], doing so destroys the simplicity of the ap-
proach. We believe that brightness information is poten-
tially useful in the estimation process and so would like an
algorithm which is able to make use of it. In light of the
weaknesses of these two classes of algorithm we focus in
this work on the third class of algorithms: the gamut map-
ping methods. In particular we describe in this paper a new
illuminant estimation algorithm which is inspired by those
methods but which addresses many of the weaknesses in the
algorithms proposed so far.

Gamut mapping illuminant estimation was first proposed
by Forsyth [13] who derived the algorithm on the basis of
a sound theoretical analysis of the illuminant estimation
problem. His solution is founded on the observation that
the set of camera RGBs observable under a given illumi-
nant is a bounded convex set. This observation follows di-
rectly from physical constraints on the nature of a surface
(all surfaces reflect between 0 and 100% of light incident
upon them) and from the linear nature of image formation.
Forsyth coined the term canonical gamut to describe the
set of RGBs which can be possibly observed under some
canonical illuminant. Now, an image whose illuminant is to
be estimated can similarly be represented by a second set,
an image gamut, which contains the RGBs observed in the
image. Estimating the illuminant then becomes the problem
of finding a mapping which takes the image gamut into the
canonical gamut. Forsyth proposed that the mapping should
take the form of a diagonal matrix: i.e. RGBs in the image
are mapped to the canonical gamut by three scale factors ap-
plied independently to each of the R, G, and B responses.
He pointed out that under such an assumption the mapping
taking image gamut to canonical gamut would in general
not be unique: i.e. there are many mappings which map
the image gamut inside the canonical gamut. This amounts
to saying that many possible illuminants are consistent with
the observed image data. Forsyth’s strategy was to first find
the set of all feasible mappings and then to choose a single
feasible mapping as the illuminant estimate.

The algorithm has been found to be reasonably success-

ful but it does suffer from a number of inherent limitations.
One of the algorithm’s greatest drawbacks is that its imple-
mentation is difficult and computationally complex. These
difficulties are compounded by the fact that the operation
of the algorithm depends on being able to accurately inter-
sect a number of convex polyhedra to determine the fea-
sible set of illuminants. Failure to perform this step ac-
curately can sometimes result in the algorithm returning a
null intersection: i.e. the algorithm is unable to estimate
the illuminant in a scene. Another weakness of the algo-
rithm is the fact that it is founded on the explicit assump-
tion that illumination is well modelled by a diagonal matrix
transform. While under certain circumstances a reasonable
assumption, it cannot be said to be generally true. In par-
ticular many real scenes will contain an illuminant, or more
commonly, one or more surfaces, for which the model is not
adequate and in such situations the algorithm can return an
unrealistic set of feasible illuminants, or worse, no solution
at all. Finally, even when the algorithm works correctly it
can sometimes return a feasible set which contains illumi-
nants which will never be encountered in the world, thus it
fails to incorporate all the available prior knowledge about
the world.

In this paper we present an algorithm which avoids all
these problems while still retaining the spirit of the origi-
nal work. We avoid the problems of modelling illumination
change by making no explicit model of illumination change.
Rather, we observe that the range of illuminations we en-
counter in the world is quite restricted so that we can choose
a priori and independently of any image data a representa-
tive set of plausible scene illuminants. Next, we charac-
terise the gamut of possible deviceRGBs observable under
each of these plausible lights. Given an image whose illu-
minant we wish to estimate we first determine its gamut. We
can then get a measure of the degree to which each plausible
illuminant is consistent with the image data by determining
how well the image gamut matches the gamut for a plausi-
ble light. This is the core of the algorithm and importantly
we are able to cast it in terms of a non-negative least squares
problem - a problem for which there exist, simple, fast and
easily implemented algorithms. Given a measure of gamut
consistency for each plausible illuminant we can estimate
the scene illuminant in a number of different ways. It fol-
lows that our method is guaranteed to provide an illuminant
estimate for any set of image data we encounter.

The proposed algorithm also has a number of other ad-
vantages over previously proposed methods. First, unlike
neural network or correlation matrix based approaches, it
is not so dependent on accurate knowledge of the statistics
of surfaces and illuminants. Furthermore the algorithm is
essentially the same regardless as to whether we use 3-d
RGB data or ��d chromaticity data thus we are not forced
to make decisions on which data we use on the basis of im-
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plementational issues. Finally results on real images show
that the algorithm yields excellent illuminant estimation.

The next section contains a discussion of illuminant es-
timation problem itself and summarises Forsyth’s proposed
Gamut Mapping solution. Then, in Section 3 we address
the weaknesses of this approach by presenting a modified
algorithm which we call Gamut Constrained Illuminant Es-
timation (GCIE). In Section 4 we evaluate the performance
of the new algorithm on a large set of real images and we
also discuss how best to set some of the free parameters in
the algorithm’s implementation. We conclude the paper in
Section 5 with a brief summary.

2. Background

To understand the illuminant estimation problem we
must first consider the process of image formation. In com-
mon with previous work, we adopt a simple Lambertian
model [15] of image formation. We assume further that
our camera samples the light incident on its image plane
with three types of sensor, whose sensitivities are defined by
Rk��� �k � �� �� �� – a function of wavelength �. Light
from an object is characterised by the colour signal C���
which, under the assumptions of the Lambertian reflectance
model, can be written as: C��� � E���S��� where E���
is the spectral power distribution (SPD) of the ambient il-
lumination, assumed constant across the scene, and S��� is
the surface reflectance function of the object.

This colour signal is incident at a point on the image
plane and the response of the kth sensor, pk is given by:

pk �

Z
�

E���S���Rk���d� ���

where the integral is taken over�, the visible spectrum. The
response of a colour camera at a point on its image plane is
thus: p � �p�� p�� p��

t: a triplet of sensor responses. We
will refer to this triplet either as p, or as RGB. Equation (1)
makes it clear that a camera’s sensor responses strongly de-
pend on E���: the ambient illumination.

We can pose the illuminant estimation problem as that
of inverting Equation (1) to recover E���. However, since
light is a continuous function of wavelength, and since a
camera samples the incoming light at only three (broad)
bands of the spectrum, solving Equation (1) is impossible
without additional constraints. Fortunately, in most appli-
cations we are interested not in the spectrum of the illumi-
nation per se, but rather in determining what a scene imaged
under that illumination would look like when rendered un-
der a different light. Let us represent an image taken un-
der an unknown light o, by a set Io, of n sensor responses

Io �
n
po
�
� po

�
� � � � � po

n

o
. For this image we would like to

determine the corresponding set of data Ic which would be

observed under a reference, or canonical light c. Defin-
ing the problem in this way has the advantage that explicit
knowledge of E��� is not required. Rather, solving this
problem amounts to determining a mapping F�� such that:

pc
i
� F�po

i
�� i � � � � � n ���

Forsyth [13] formulated the illuminant estimation problem
in this way, and developed algorithms to solve it. His so-
lutions are founded on the observation that due to physical
constraints on the nature of lights (a light can emit no less
than no energy at each wavelength) and surfaces (a surface
can reflect no less than no light incident upon it, and no
more than all incident light), the set of image colours ob-
servable under a given light is restricted. That is, we can
define for our reference light c, a canonical gamut repre-
senting all the image colours that can be observed under
that light. The canonical gamut is a bounded region of sen-
sor RGB space. A change of illumination implies a differ-
ent gamut of observable image colours and this new gamut
is related to the first by the mappingF . That is, if C denotes
the gamut of possible image colours under the canonical
light c, and O, the gamut under the second light o then:

po � O �� Fo�c�po� � C ���

where Fo�c is the mapping taking colours under light o, to
their corresponding colours under light c.

Forsyth showed that the gamut of image colours possible
under a given light form a bounded convex set; for a three
sensor device this set is a convex polyhedron. To specify an
algorithm to find this mapping we must first establish what
form the mapping F should take. The algorithm proposed
and implemented by Forsyth is founded on the assumption
that the mapping takes the form of a diagonal matrix. That
is:

po � O �� Do�cpo � C ���

where Do is a � � � diagonal matrix. (later work [10] has
shown that such a model is well justified for a large class of
devices and illuminants). Estimating the scene illuminant
now becomes the problem of finding the three non-zero en-
tries of Do�c. Forsyth developed a two-stage algorithm to
perform this task. The algorithm begins with a set of image
colours Io recorded under an unknown light o, from which
it is desired to recover the mapping Do�c. However, the set
of colours, Io, in an image will in general be a subset of all
possible colours (i.e. Io � O) and the mapping taking the
image gamut Io inside the canonical gamut C may therefore
not be unique. Thus, in the first stage of the algorithm a fea-
sible set of mappings, D is determined. Every mapping in
this set maps the image gamut to the canonical gamut. The
feasible set characterises the set of illuminants which are
consistent with the image data. To complete the solution a
single mapping is chosen from this set as an estimate of the
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actual mapping Do�c. Of course if many lights are feasi-
ble, choosing one of them may result in a wrong illuminant
estimate. Thus, when selecting an illuminant care must be
taken to choose an answer which is broadly representative
of the whole set.

In it’s original form Forsyth’s algorithm can often give a
good estimate of the scene illuminant and it performs better
on average than a number of other approaches [2, 3]. The
algorithm does though suffer from a number of limitations.
First, its success depends on the degree to which illumina-
tion change can be modelled by a diagonal matrix trans-
form. Second, even when the properties of a device’s sen-
sors imply that such a model is a good one, real images often
contain features (for example specularities) which confound
the model. In either of these two cases, and due in part to
the manner in which the algorithm is implemented, the al-
gorithm will on occasion return no answer at all. Third,
the method can return an illuminant estimate which is “im-
plausible”. That is, while the feasible set characterises all
mappings consistent with the image data, not all of these
mappings will correspond to lights which occur in the real
world. Finally, the implementation of the algorithm is com-
putationally complex and quite sensitive to the input data:
determining the feasible set requires the intersection of a
number of convex polyhedra and this intersection can at
times, due to numerical instability, wrongly result in a null
intersection - that is no estimate of the scene illuminant.

Since Forsyth’s original work a number of authors have
proposed various modifications to the gamut mapping al-
gorithm which aim to make the algorithm more robust to
diagonal model failure [8, 1], to ensure that the feasible set
of illuminants is restricted to real world illuminants [8] or to
improve the performance of the algorithm by more carefully
selecting an illuminant from the feasible set [11, 1]. How-
ever, none of these algorithms address the most important
limitations of the original approach: all algorithms employ
essentially the same implementation and can thus be con-
founded by numerical accuracy problems or diagonal model
failure, sometimes resulting in a null solution. To address
these limitations we describe our new gamut mapping based
illuminant estimation algorithm in the next section.

3. Gamut Constrained Illuminant Estimation

We begin by defining a priori a set of M plausible scene
illuminants. This plausible set reflects our prior knowledge
about the range of illuminants we expect to encounter and
we note that the number and range of illuminants in this set
will vary depending on how much prior knowledge of the
illumination we have. Next we determine for each plausi-
ble illuminant the gamut of device RGBs observable under
it. In theory, characterising this gamut for illuminant i re-
quires us to determine the response of our device to all pos-

sible surface reflectance functions imaged under that light.
In practice we will choose a subset of these reflectances. It
will become clear that the success of the algorithm will be
dependent on how this set is selected, but we leave a dis-
cussion of this issue until Section 4. Let us denote the N
reflectances by fSj���� j � � � � �Ng. Given Ei���: the
SPD of the ith plausible illuminant, and the spectral sensi-
tivities of a device we can use Equation (1) to calculate the
sensor responses pi

j
to each surface.

Of course, an illuminant can have arbitrary brightness
so we should really allow any scalar multiple of pi

j
to be

a possible response. However, given only sensor responses
there is an ambiguity about the brightness of the illuminant,
since a sensor response given by Equation (1) could equally
well be accounted for by an illuminant with spectral power
sEi��� and surface reflectance �

s
Sj���. Rather than trying

to resolve this ambiguity, we instead ignore the overall in-
tensity of the illumination and attempt to recover only it’s
relative spectral power. Or, treating a sensor response as a
vector in three-dimensional sensor space, consider only the
direction of this vector and not its magnitude. In this case,
a sensor response can be represented as a 3-vector qi

j
, by

applying a transform to factor out intensity information, for
example:

qij�� �
pij��P
�

k�� p
i
j�k

� qij�� �
pij��P
�

k�� p
i
j�k

� qij�� �
pij��P
�

k�� p
i
j�k

���
The first two elements of qi

j
are called the chromaticity co-

ordinates of the sensor response and the set of all qi
j

lie on a
plane in three-dimensional sensor space. We can thus define
the response of a device to the set of surface reflectances
imaged under illuminant i as:

Gi � fqi
�
� qi

�
� � � � � qi

N
g ���

It can be shown [12] that if all of Gi are observable under
illuminant i, then so is any linear combination (with positive
coefficients) qi

k
:

qi
k
�

NX
j��

�jq
i

j
� � �j � 	 �
�

The gamut of the ith illuminant, which we denote Gi, is thus
an infinite cone in sensor space whose vertex is the origin
and whose extreme rays are defined by the convex hull of
Gi. This cone defines the set of observable chromaticities,
but places no restriction on how bright a colour can be.

Having defined the gamut for each illuminant the next
step is to use these gamuts to estimate the scene illuminant
given a set of image data. To this end let us first represent
the image by the set of all its sensor responses:

Io � fpo
�
� po

�
� � � � � po

n
g ���
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Now let us hypothesise that the ith illuminant is the scene
illuminant. If this hypothesis is true then any image colour,
po
k

will fall within the cone of observable image colours for
the ith illuminant. Or in mathematical terms:

po
k
�

NX
j��

�jq
i

j
�j � 	� qi

j
� Gi� � j ���

On the other hand, if the hypothesis is not true then an image
colour might fall outside the gamut of the ith illuminant so
that there will be some error in representing an image colour
in this way:

eik �

������pok �
NX
j��

�jq
i

j

������
�

��	�

Independently of whether or not the hypothesis is true
we can determine the “best” representation of the image
colour with respect to Equation (10) by choosing the �j
which minimise the error eik: a simple least-squares prob-
lem. However, we have the added constraint that all the �j
should be positive, so we have in fact a non-negative least
squares problem - a problem for which a known, fast, and
simple solution exists [17]. We point out that readers who
are familiar with optimization will understand that minimiz-
ing (10) might be carried out using a variety of numerical al-
gorithms. The non-negative least squares algorithm is cho-
sen because of its very fast operation.

The total error in hypothesising the ith illuminant as the
scene light is given by: eitotal �

Pn

k�� e
i
k. If the image data

falls completely in the gamut of a light then the correspond-
ing error for this light will be zero and we can say that the
hypothesis accounts perfectly for the data. If one or more of
the colours in the image falls outside the gamut for a light
then the corresponding error will be non-zero. The greater
the error, the less well the hypothesis accounts for the data.
Thus we can use the error to estimate the scene illuminant.
For example, we can choose as our estimate the illuminant
with minimum fitting error.

Clearly the algorithm we have just formulated has simi-
larities to Forsyth’s gamut mapping approach, however our
solution is posed in such a way that it avoids the limi-
tations in the original method which we previously dis-
cussed. By hypothesising a set of candidate illuminants
we avoid the need to adopt an explicit model of illumina-
tion change and we also ensure that the illuminant estimate
we recover will correspond to a real, physically plausible
light: a property absent from Forsyth’s formulation. Fur-
thermore the algorithm is guaranteed to return a solution in
contrast to Forsyth’s algorithm and other modifications of
it. Finally, the algorithm is much simpler to implement than
is Forsyth’s, being in essence a repeated application of the
method of non-negative least squares for which there exist
fast, robust and computationally simple algorithms.

3.1. Variations on GCIE

In the algorithm just described the gamut of an illumi-
nant is defined to be an infinite cone in sensor RGB space.
That is, we constrain the chromaticity of possible sensor
responses but we allow their intensity to be arbitrary. How-
ever, when checking whether or not an image RGB is con-
sistent with a particular illuminant, we retained the intensity
of theRGB so that the error is given by Equation (10). Two
variations of the algorithm suggest themselves immediately:
we could discard intensity information both when defining
the illuminant gamut and when checking image RGBs for
gamut consistency. That is, we check not that an RGB lies
within the illuminant’s gamut, but rather, whether or not an
image chromaticity is consistent with the illuminant. A sec-
ond variation of the algorithm is to retain intensity infor-
mation both in the image data and when constructing the
illuminant gamuts. Considering the second case first, let
us represent the gamut of the ith illuminant by a set Gi, of
sensor responses such that any convex combination of these
responses can be observed under illuminant i. That is any
possible response pi

k
can be written:

pi
k
�

NX
j��

�jp
i

j
pi
j
� Gi� �J � 	�

NX
j��

�j � � ����

It follows that the error in fitting the kth response to the ith

illuminant gamut is given by:

eik �

������pok �
NX
j��

�jp
i

j

������
�

����

Finding the “best” fitting �j is again a constrained least-
squares problem but now, in addition to the non-negativity
constraint on �j we have the additional constraint that the
�j sum to one:

Pn

j�� �j � �. This implies that we can
no longer determine the �j directly by non-negative least-
squares.

The problem though can be converted to a non-negative
least-squares optimisation in the following way. Let us
convert a three-dimensional sensor response p into a four-
dimensional vector r:

r � �p�� p�� p��W �
t

����

where W is some constant. If we do this, for all sensor re-
sponses in both the illumination gamut and the image, then
we can define a new error term eik:

eik �

������rok �
nX

j��

�jr
i
j

������
�

����
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and clearly:

eik � eik �W

�
���

nX
j��

�j

�
A ����

If we choose W to be sufficiently large so that the term

W
�
��

Pn

j�� �j

�
is the dominant one in Equation (15),

then minimising the error in that equation by the method of
non-negative least squares will lead to a set of �j whose
sum is approximately one. In this way we can use the
method to determine the convex combination of points in
Gi which best represent the sensor response po

k
. In all other

ways the algorithm is the same as that presented in the pre-
vious section.

We could employ a similar approach to handle the varia-
tion in which we discard intensity information both from the
image data and when constructing the illuminant gamuts. In
this case we represent camera responses as two-dimensional
chromaticity co-ordinates c:

cj�� �
pj��

pj�� � pj�� � pj��
� cj�� �

pj��

pj�� � pj�� � pj��
����

We then convert these chromaticities into 3-dimensional
vectors s:

s � �c�� c��W �
t

��
�

and follow the same minimisation procedure as in the 3-
dimensional case.

This analysis shows that our algorithm is the same re-
gardless as to whether we consider 2- or 3-dimensional data.
Thus we are free to choose the dimensionality of our data
on the basis of which gives the best results rather than on
the basis of what makes the algorithm easy to implement.

In the next section we address the issue as to which ver-
sion of the algorithm is best and discuss how to fix some
of the free parameters in the algorithm by considering it’s
performance in a set of illuminant estimation experiments.

4. Algorithm Performance

To test the performance of the new algorithm we fol-
lowed an experiment of Barnard et al [3] who recently pub-
lished a comparison of many different illuminant estima-
tion algorithms, assessing their performance on a set of real
images. The images consist of 32 scenes captured under
11 different lights 1 and were captured specifically for test-
ing the performance of illuminant estimation algorithms 2.

1In total 321 images were used in the experiment because a small num-
ber of the captured images were not suitable for the experiment.

2We thank Dr. Kobus Barnard et al for making this data publicly avail-
able from www.cs.sfu.ca/ colour/data.

Scene content is varied (ranging from a standard photo-
graphic test chart to just a few green apples) and thus repre-
sents different levels of difficulty for illuminant estimation.
The 11 illuminants encompass a wide range of illuminants
typically encountered in the world.

Testing algorithm performance on this set of images al-
lows us to perform a rigorous test of the new algorithm’s
performance and also to easily compare performance to that
of many other algorithms reported in [3]. Specifically, in ad-
dition to GCIE, we report performance for the following al-
gorithms: Max-RGB, and Grey-World which estimate the il-
luminant by the image maximum and image average respec-
tively. A neural-network algorithm, a version of Finlayson
et al’s Color by Correlation algorithm, and a modified ver-
sion of Forsyth’s gamut mapping algorithm. Details of each
algorithm’s implementation can be found in [2]. Where dif-
ferent versions of an algorithm exist we report results for
the best performing version.

The experimental paradigm is simple: for each image we
obtain an estimate of the RGB response to a perfectly re-
flecting surface using each algorithm. For example, if GCIE
selects the ith illuminant as being most consistent with the
image data we use the RGB value corresponding to white
under illuminant i as our illuminant estimate. We compare
this estimate to the RGB response of a white tile viewed
under the actual illuminant 3.

When assessing error, we discard intensity information
(which we cannot recover without ambiguity) and look at
error only in chromaticity. We do this by calculating the an-
gular distance between an algorithm’s estimate of the RGB
(p

w
) and the RGB of the actual illuminant (p

w
):

Angular Error � cos��

�
p
w
�p
w

kp
w
kkp

w
k

�
����

To completely specify the GCIE algorithm we must fix
a number of free parameters in the algorithm design. First,
we must decide on how many and which illuminants we
deem to be plausible. In general this choice will depend on
what prior knowledge we have about the scene illumination.
We report results here for two extreme cases: in one case
we use the 11 lights under which the scenes were captured
and in a second case we use 87 lights which represent a
uniform sampling (in chromaticity space) of a large number
of measurements of real world illuminants. This allows us
to test algorithm performance when we have maximal (11
lights) and minimal (87 lights) prior knowledge.

Next we need to specify the set of surfaces used to cal-
culate the gamut for each plausible illuminant. This stage is
crucial to the success of the algorithm since in choosing our

3This RGB was obtained from a white tile placed in each scene: im-
ages were obtained with and without the tile in the scene and testing was
done on images without the tile.
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gamuts we must ensure first that the gamuts for illuminants
do indeed differ from one another. In developing the theory
we insisted only that surface reflectance functions on which
gamuts are based be physically realiseable. This is a very
weak constraint and by itself will lead to very large gamuts.
For our purposes such gamuts are likely to be ineffectual
since while these gamuts will differ at their extremes, these
extremes are likely to correspond to reflectances which,
while physically realiseable, will occur only rarely in the
world. Instead we base our gamuts on reflectance functions
which are in a statistical sense “likely” to occur in scenes.
We do this by basing gamuts on sets of measured surface
reflectance functions. But rather than using all these re-
flectances we instead model their chromaticity distributions
using a bi-variate Normal distribution and construct gamuts
using only those reflectances which fall within some num-
ber of standard deviations of the mean chromaticity. Adopt-
ing such a model allows us, in a formal sense, to construct
a gamut of statistically likely chromaticities and to control
the size of a gamut by considering only reflectances whose
chromaticities fall within a standard deviation ellipse of our
choice.

A third issue is how we choose an illuminant estimate
once we have a measure of consistency for each plausible
light. We have experimented with two methods for doing
this: either we choose the illuminant most consistent with
the image data (minimum fitting error) or we take the av-
erage of a number of illuminants with small fitting error.
We have found both methods to give similar results and so
report here results for the minimum error approach.

The final issue which needs to be addressed is what pre-
processing of the image data is performed prior to estimat-
ing the illuminant. Barnard et al [3] have found that pre-
processing has a significant effect on performance for most
estimation algorithms. In the case of GCIE pre-processing
is important both in the context of algorithm performance
but also in the interests of computational efficiency. The
main computational step in the algorithm is to check the
consistency of a set of image data with the gamuts of each of
the candidate illuminants. Checking the consistency, while
a simple step, would be excessively burdensome if repeated
for all pixels in an image. Thus we seek a method of re-
ducing the number of RGBs which need to be checked.
The most principled way to do this is to segment the im-
age into the underlying surfaces which constitute the scene
and to use the RGBs of each segment as input into the al-
gorithm. Since the number of surfaces in a scene is gener-
ally small - at least relative to the number of pixels in the
image, this will lead to a large reduction in the number of
RGBs which must be checked and has the added advantage
that the RGBs correspond to real surfaces. Against this ap-
proach is the fact that the segmentation of an image is itself
a computationally intensive task and the fact that existing

Mean Median
Max-RGB 8.9 -
Grey-World 11.7 -
Neural Network 9.1 -
Color by Correlation 9.9 -
Gamut Mapping 5.6 -
GCIE Version 1, 11 lights 6.8 5.2
GCIE Version 2, 11 lights 7.4 5.8
GCIE Version 3, 11 lights 4.9 2.3
GCIE Version 1, 87 lights 8.6 6.5
GCIE Version 2, 87 lights 9.0 7.9
GCIE Version 3, 87 lights 5.3 3.2

Table 1. Angular error (degrees) for the dif-
ferent algorithms averaged over 321 images.
Algorithms in bold were presented in this pa-
per.

algorithms do not always produce an accurate segmentation
of the scene. However, even quite a crude segmentation of
the scene is likely to be good enough for our purposes and
the computational cost of the segmentation is still likely to
be less than that associated with testing every pixel in the
scene.

For GCIE we used the segmentation method of Meer et
al [7]. There was no reason for choosing this method be-
yond the fact that the authors had made available an imple-
mentation of their work. We found it to give reasonably
accurate segmentations of all the images and it produced on
average, around 15 regions per image. This implies that the
process of illuminant estimation is then very quick since we
need to check only a very small number of RGBs. Results
for the algorithms tested in [3] are also obtained with seg-
mented images. We point out that the segmentation method
is not the same as that used for GCIE, however the segmen-
tations ought to be close enough to allow us to compare il-
luminant estimation performance. We point out further, that
the pre-processing was not chosen to optimise performance
for any particular algorithm, thus it is possible that the per-
formance of any tested algorithm could be significantly im-
proved by choosing a more appropriate pre-processing pro-
cedure. Table 1 summarises results for all the algorithms
tested in terms of average angular error in degrees. For the
GCIE algorithms we also report median angular error, data
which was unavailable for the other methods. We report re-
sults for three variants of the new GCIE algorithm. Version
1 ignores intensity when constructing gamuts, but retains
the intensity of the image data, version 2 ignores intensity
in both cases, and version 3 retains intensity in both cases.

The results reveal a number of important facts. First is
that the gamut mapping algorithms, whether the original
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gamut mapping or our new GCIE approach give the best
performance. This suggests that algorithms which place
only weak constraints on the world can outperform other
more restrictive approaches such as Max-RGB or Grey-
World. It is surprising therefore that other well founded ap-
proaches such as Neural Networks and Color by Correlation
perform less well in these tests. Their poor performance is
most likely to be related to the fact that their success relies
upon having accurate statistical knowledge about the fre-
quency of occurrence of surface reflectances. Inaccuracies
in this knowledge manifest themselves in poor illuminant
estimation.

Turning to the performance of the new algorithm we see
that performance is very much dependent on which ver-
sion of the algorithm we use. Specifically, the results sug-
gest that it is important to consider intensity information
both when constructing the gamuts of plausible lights and
when checking image data for gamut consistency. Indeed,
keeping full 3-d information leads to algorithm performance
which is better than the previous best algorithm (the original
gamut mapping algorithm) and in absolute terms an angu-
lar error of 4.9 represents excellent average performance.
We further point out that median performance is also very
good - 50% of images have an error 2.3 or less. Another
interesting aspect of the results is the performance of GCIE
when we use 11 lights as compared to 87. Interestingly,
providing the maximum prior knowledge about the illumi-
nants (restricting lights to the 11 scene lights) does not give
too much better performance. We have found that gamut
size has a small but significant effect on algorithm perfor-
mance: the results presented here represent the best case
performance where gamuts were constructed by using all
reflectances whose chromaticities were within 2.5 standard
deviations of the mean.

5. Conclusions

We have set forth in this paper a new illuminant estima-
tion algorithm which can be viewed as a robust implemen-
tation of Forsyth’s Gamut Mapping algorithm. We have im-
proved upon Forsyth’s work by removing some of the lim-
itations inherent in that approach. Specifically we remove
the constraint of a diagonal model of illumination change
with the result that unlike the original work, the new method
is guaranteed to always give an illuminant estimate which
is furthermore constrained to be physically plausible. The
simplicity of the implementation of the new approach is
in contrast to the original work and leads to an algorithm
which is both fast and robust to all imaging conditions. We
have demonstrated the power of the new approach by testing
it on a set of real images and achieving excellent illuminant
estimation performance.
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