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Abstract

In many medical computer vision tasks the relevant data is
attached to a specific tissue such as the colon or the cor-
tex. This situation calls for regularization techniques which
are defined over surfaces. We introduce in this paper the
Beltrami flow over implicit manifolds. This new regular-
ization technique overcomes the over-smoothing of the L,
flow and the staircasing effects of the L1 flow, that were re-
cently suggested via the harmonic map methods. The key
of our approach is first to clarify the link between the in-
trinsic Polvakov action and the implicit Harmonic energy
functional and then use the geometrical understanding of
the Beltrami Flow to generalize it to images on implicitly
defined non flat surfaces. It is shown that once again the
Beltrami flow interpolates between the Ly and L1 flows on
non-flat surfaces. The implementation scheme of this flow
is presented and various experimental results obtained on a
set of various real images illustrate the performances of the
approach as well as the differences with the harmonic map
flows. This extension of the Beltrami flow to the case of non
flat surfaces opens new perspectives in the regularization of
noisy data defined on manifolds.

1. Introduction

We have seen in recent years an expansion in the use of
differential geometry and calculus of variation for various
problems in image processing, computer vision and com-
puter graphics. In particular, one can notice that the prob-
lem of regularizing noisy data defined on non flat implicit
or intrinsic surfaces has been tackled with two functionals
which operate on the space of embedding of Riemannian
manifolds (see [9] for non-variational approach)

o The Polyakov action: Tt was introduced in the Bel-
trami framework [18, 19, 21, 10, 17]. Tt uses a local
and intrinsic-parametric description of the manifolds
and an explicit form of the metric.

e The Harmonic maps. Recently used to denoise im-
ages on manifolds [2, 13, 5, 3, 16]. Tt uses an implicit
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description for the surface where the noisy data are
constrained to live.

It is the aim of this paper to first clarify the relation be-
tween the intrinsic Polyakov action of the Beltrami frame-
work [18, 19, 21, 10, 17] and the implicit harmonic energy
functional [2, 13, 5, 3, 16] . It is found that although the
functionals are basically the same, there are differences in
the way various problems are formulated and consequently
in the way the functionals are applied. Specifically for the
casc of denoising images on non-flat surfaces there arc dif-
ferences in the definition of the manifolds and of the cm-
bedding functions.

Usually we have, in various problems in vision, an under-
linc manifold, flat or curved, and the features arc defined
over this manifold. A typical situation is when the image
rectangle is the underlying flat manifold and at each pixel
we assign values such as intensity, color, gradient value,
gradient direction, motion vector, disparity vector, texture
characteristics etc. This is easily described mathematically
as a fiber bundle in which a space is attached to each point
in the base manifold. The spaces at different points of the
manifolds are isomorphic. A choice of one point in the at-
tached space for every point in the base manifold is called
a section. If the attached space is a vector space then this
section is called a vector field.

In order to understand better the difference between the two
formulations, we consider the case of a gray-value image
defined on a surface (flat or not). In the harmonic energy
approach it is usually assumed that the map is from the 2D
surface (the base manifold) to the real axis (the fiber). This
means that the metric of the base manifold is used for the
derivatives and the fiber’s 1D flat metric is used for the val-
ues of the scalar field. If the norm chosen is Ly we get a
linear diffusion process whether the base manifold is flat or
not. In the case of L1 norm or the ¢ formulation [11, 15, 7]
we get non-linear flows. These flows only depend on the ab-
solute value of the gradient, defined over the base manifold
[3, 22]

In the Beltrami framework [18, 19, 10], the basic object is
the section embedded in the fiber bundle. For a flat gray-
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value image, thus, the graph of the intensity function is the
section of this 3D fiber bundle and is the primary object of
interest. The metric of the fiber bundle induces a metric on
this scction and both arc uscd in the functional. The flow
depends on the geometry of the data and not only on the
geometry of the base manifold. This means that the im-
age metric, that is, the section metric is being changed
along the flow. It also means that the flow may depend on
the direction of the gradients and not only on their ampli-
tudes. The Beltrami flow which has been shown to interpo-
late, for gray-value images, between the L, norm and the
L4 norm [19, 20] is generalized in this paper to images on
non-flat surfaces. It is shown, in this work, that the Beltrami
flow interpolates between the Lo and L1 flows on non-flat
surfaces that were derived recently [3, 22] and opens new
perspectives in the regularization of noisy data defined on
surfaces. A common feature of both frameworks is the abil-
ity to deal with non-flat feature spaces [21, 22, 17, 23, 4].
Due to space limitations we follow here a pure geometric
approach in the derivation of the denoising algorithm (see
[9] for similar approach). The variational point of view is
detailed in [1].

This article is organized as follows: In Section 2 we briefly
review the Beltrami and harmonic map frameworks. We
take in Section 3 the Beltrami formulation of the problem
and reformulate it in an implicit form. Section 4 presents
examples and results and we summarize and conclude in
Section 5.

2 The Beltrami and the Harmonic
Map frameworks

There are two ways to write the geometric functional which
is called harmonic energy or the Beltrami functional that
weight embedding of Riemannian manifolds (for early non-
variational use of the Laplace-Beltrami operator on flat im-
ages see [8]) . We focus our attention to the case of a gray-
value image defined over a two- (or one-) dimensional man-
ifold i.c. a surface (curve). The first way is to represent the
surface implicitly i.c. as a zero scction of a distance func-
tion, defined over IR, The other way will be to choose
a local coordinate system and define the surface intrinsi-
cally in a parametric way. The difference with the latter is
explained theoretically and demonstrated on real and syn-
thetic images. developed in more details in the next two-
subsections.

2.1 Implicit formulation

Let’s suppose that we have a scalar data U defined on a
known surface P, that is we have a mapping U : ¥ — R?
where U is a known surface, given by its implicit repre-

sentation ¥(X1, X2 X3) = 0. The Data function U is
extended to | R®. One possible way for this extension is to
solve the initial value problem U+ sign(¥)(VU-V¥) = 0
as donc in [2]. The Harmonic maps approach [2, 13,5, 3]
is to look for the minimizer of the following cnergy

SimplU] :A | Vool |2 dv (1)
where dV is a surface element §(U)||VW||dX dX?dX3.
We denote here by ¢ the Dirac function and Vg4 U denotes
the gradient intrinsic to the surface W i.e the surface gradient
applied to the restriction of U on U. Noting the property
that V¢ U is just the projection onto the surface of the 3D
Cartesian classical gradient Vs that is to say VygelU =
P, VsU where Py is the orthogonal projection operator on

the surface ¥ and 7, the unit normal vector to the surface ¥
with

Va0
N= o
VR O[]

and

X1 9X2 9X3

‘We can rewrite this harmonic energy as follows :

S <8U oU 8U>
R3 =

SimnlU1 = [ 11 PV | av
v
= / || Poy VU [|? 8(F) || VI || dX T dX2dX3
]R3

all the expressions above are considered in the sense of dis-
tributions. Noting that given a surface with a unit normal
vector 7, the orthogonal projection operator P on that sur-
face is given by :

P,=I-m 2)

where I is the 3 x 3 Identity matrix and n’ denotes the trans-
posed vector 1, one can rewrite this functional as follows :
Simp U] =

Ve U (I — gt )VRsUd¥
B3

3

This functional is the generalization of the L, norm from
flat to non-flat manifolds. The modified gradient descent
equation reads:

Div (||[V¥|| PoeVU) )]

1
Ut = —=—
IVl
where Div stands for the Divergence operator. This equa-
tion can be generalized via the & formulation [11, 15, 7]
to
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SelV] = [ #(FeuT DAy )

and in particular, for the generalized L1 norm
SimplU] = / . |VeeU || d¥ (6)
R

we obtain the following minimization flow

1 . ||V\P||qu,VU>
Uy=——"——"Div| ———— (7
C IVl Pyel| ( ||PewVU]|

For the interested reader, we refer to [2, 13, 5, 3] for more
details and results on this implicit formulation and its vari-
ous applications.

d5"= g, dG' o7 = &¢ +dif +dI*

Figure 1: The graph of the intensity map as a surface em-
bedded in R?

2.2 Intrinsic formulation

Suppose we have an 2-dimensional manifold ¥ with local
coordinates o', o2 embedded in an 3-dimensional manifold
M with coordinates X', X2, X3, the embedding map X :
¥ — M is given explicitly by the 3 functions of 2 variables
X i (o1,0%) — (X1(07,0%), X2(c1,0%), X*(0,02))
A gray-valuc imagce is represented, in this framework, as
the embedding (X! = o, X2 = 02, X3 = U(ol,0?))
(see Fig. 1).

Denote by (X, g) the image manifold and its metric and by
(M, h) the spacc-feature manifold and its metric, then the
map X : ¥ — M has the following weight :

SinelU, g] = / V3§ 8, X9, X7 hij(X)do'do?  (8)

where ¢ is the determinant of the image metric, g"* is
the inverse of the image metric, the range of indices is
w,v=1,..,2and ¢,5 = 1,..3 and h;; is the metric of the

embedding space. We use the summation convention: in-
dices that appear twice are being summed over. This func-
tional was first proposed by Polyakov in the context of high
cnergy physics [14].

The gradicent descent cquations, with respect to the embed-
ding functions, are

. 1 . . .
X = ﬁau(\/ﬁg“”aqu)+F§'k(3uXJ )@, XF)g". (9)

UXY)

X

Figure 2: The Beltrami flow velocity as a projection of the
mean curvature on the data = z axis

In our casc X! and X2 arc fixed and we only change X° =
u. The embedding space is Euclidean and therefor the Levi-
Civita T}, coefficients are zero.

We end up with the following flow:

1
U, = %Qt(\/ﬁg“l’@uU) (10)
Since our two-dimensional manifold is the section, i.e. the
graph of U, the metric (g,,) is the metric of the section.
It can be calculated explicitly, as the induced metric, from
IR3. 1t is find to be [19] :

(14U U,
(g“”)_(Uwa 1+U§)' an

Note that this metric is also the minimizer of S;.;[U, g]
with respect to the metric [18].

Equation (10), with the induced metric Eq. (11), has a clear
geometric meaning. It is the projection of the mean curva-
ture vector in the X3 = U direction:

u, = KNp, (12)

where K is the mean curvature magnitude. NN is the normal
to the surface and U is a unit vector in the X = U direction
(see Fig. 2).
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It is this geometric understanding that we are using below
in order to derive the Beltrami flow on non-flat implicit sur-
faces.

3 Data Regularization on an implic-
itly defined curves and surfaces

Although the derivation of the flow equations for scalar data
defined over a curve and that over a surface is very sim-
ilar it is easier to have a clear mental image of the situa-
tion for curves. We describe, therefore, in the first subsec-
tion, the derivation in details in this simpler situation. That
derivation is then generalized, in the second subsection, in
a straightforward manner to the case of the surface. We an-
alyze in the last subsection the L1 and L, limits.

3.1 Scalar field defined on a 2D Curve

The curve is given in the x-y plane and the data is pictured
as the height in the z direction. The data from this point
of view is a curve in IR®. Note that this curve lies on the
cylinder-like surface defined by ¥(x,y) = 0. We want to
produce a curvature flow of this data such that it is con-
fined to the surface which means that it is defined on the
basc curve. The projected curvature on the surface is the
geodesic curvature. Note however that the fact that the data
curve is on the cylinder-like surface, generated by the base
curve, is not enough in general to guaranty that the data
curve can be represented as a function on the base curve
since the evolution is not done in the z direction only (com-
pare with [5]). It may happen, for a general flow, that at
some time of the flow more than one point of the data curve
has the same z-y values. In order to avoid that and in or-
der to have a flow that respect discontinuities we confine the
flow by projecting the geodesic curvature on the z direction.
It is the analog of the Beltrami flow which is a projection of
the mean curvature flow on the intensity direction.
Formulating this geometric understanding, we represent the
curve as the intersection of two surfaces :

0
z—BU(x,y) =0.

U(z,y)
D2, y,2) =

13)

The surface defined by W is a cylinder-like surface defined
by the base curve, which lies in the z-y plane. The second
surface is the graph of the function U which is defined over

vector to the curve by

DV x D(z — 8U)

T =
|D® x D(z — 5U)|

= [Tla T27 TS]t

The curvature is given by the second derivative of the curve.

kN 01 = 20,1 + y. 0,1 + 2,0.T = VT

(T-VTy,T-VT, T -VT3) (14)

The projection of this vector on the surface defined by
U(z,y) = 0is PpykN and keeping only the 2z component
we get

uy = (PpwkN), (15)

which is the non-flat analogue of Eq. (12).

UX,Y)

Figure 3: The data curve as the intersection of the cylinder-
like surface induced by the base planar curve, extended to
IR?, and the graph of the function U.

Lect us calculate it cxplicitly. We have the following:

(DY x D(z — gU))"
D(z—-pU) =
DUt =

(‘I'yv —Va, B(‘I'yva B \I'vay))
(_/BUTH _ﬁUya 1)
(U, ,,0) (16)
Note that T" does not depend on z! The projection operator
is

the z-y plane (and by restriction over the base curve). The p _ 7 DYDY
data function is modified along the flow in the z direction by = - || D®||2
only. It remain, thus, a function along the flow (see Fig. 3). 1 \pz —0, 0, 0
We denote by D the 3D gradient D = (95, 9y, 9 )", and by = —— | -T.7, P2 0
V the 2D gradient V = (9,,9,)". We define the tangent ||| 0 0 ||DD|[?
“
Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set C(]SFI{/IPUQTER

0-7695-1950-4/03 $17.00 © 2003 IEEE SOCIETY



The equation of motion now reads

T.-VT,
T VT,
T VT,

U = PDq; :TVTg

Since T does not depend on z, only the 2 and ¢ components
enter the calculation:

U = Tlang + TgayTg

The gradient notation V and all other vector notations are
from now on two-dimensional. We also denote the perpen-
dicular gradient by VP¥ = (¥,, -, )" Notice also that
in the z-y plane we have the identities

IVO|*PgeVU = (U,U, -V, U,)VPT
IVU|?||PoeVUI? = (O,U, —0,U,)*  (17)
Define
g = |IVV|?+ 8%V, U, — T, U,)?

= [[VO|? (1 +8||PeeVU||?).  (18)

We can finally write the implicit Beltrami flow as follows

VPl BT, U, — \Iway))
U, = -V
! NG ( NG
_ 1]mvcmvwnzw¢vv> (19
V3 V3

where we used the identities Eq. (17) and the fact that
DivVPU = 0, (V) + 0y (—¥5) = 0.

In conclusion, this last equation allows us to denoise
the scalar signal U lying on the implicitly defined curve
U(x,y) = 0. This Beltrami flow defined on implicit curve
can also be generalized to the case of scalar field defined on
implicit surface.

3.2 Scalar field defined on a 2D surface

The situation, in this case, is completely analogous to the
one we described above. We are given an implicit surface
T(X1, X2, X3) = 0 and a scalar image defined on the sur-
face U(X', X2, X3). The data surface is represented as a
2D surface embedded in 4D space. It is described by the
intersection of two hyperplanes: ¥(X1, X2, X®) = 0 and
a second one that emphasizes the role of the data direction :
(X, X2 X3 XY = Xt - U(XY, X2, X3%) = 0. The
Beltrami flow is given by the geodesic curvature projected
to the U direction. The resulting flow is the straightforward
generalization of the curve case (see [1] for details) :

1. (/3||V\I’||2PV\IJVU>
—Div .
NG, NG,

Up = (20)

3.3 The L, and L, limits

We show in this subscction that Eq. (20) interpolates be-
tween the non-flat L flow Eq. (7) and the L» flow Eq. (4).
Note that

limg = [[VT|J?
8—0
Blggog = FVY|]P||PeeVU|? @D

Tt is easily seen now that the implicit Beltrami flow Eq. (20),
inthe limit3 — 0, { — oo such that7 = ¢31is finite, goes
to
= L piv(ve) Peev)

R e
which is the non-flat > flow, which was derived differently
by Bertalmio et al [2].
In the other limit, 3 — oo, ¢ — oo such that T = ¢/3 is
finite, we obtain another flow :

_ 1 D (llV‘I’HPWVU>
||VO|||| Pow VT| ||PoeVU||

Uy

which is the non-flat Ly flow, used in [2].

In one limit, we find the L, norm which over-smooth the
image, while in the other limit we find the L flow with the
notorious staircasing” effect. Choosing for 3 intermediate
value brings more degree of freedom in the regularization of
noisy data defined on surfaces. It opens ncws perspectives
with the advantage of smoothing anisotropically the image
and conserving the edges while avoiding the disadvantages
of the total variation type of flow. This is well illustrated
and demonstrated on various synthetic and real images in
the next section.

4 Examples and Results

In this section, we first give some implementation details
and then illustrate the capabilities of the approach we have
developed to regularize noisy signals and images defined on
implicit curves and surfaces. Various experimental results
have been carried out, but due to space limitations, we just
give some figures for illustrations.

4.1 Implementing the regularization of
scalar fields on surfaces

We compute the value of .,

the value of u in the pixel
(1,7, k) at the n*" iteration, based on the values of ™" at
the neighboring pixels. First, we compute the vector N ~
VU (this is needed only once), by central differences. Then,

for each iteration n, we visit all pixels to compute:

e The gradient, its projection, and g.
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o The divergence.
e The actualization of u. 120

For the gradient 17;”]  we used backward differences,
J
I —_—
ui+17j7k u 7J7]V

T "o = L 100
Yi,j.k v+uw,k Y1k ,J ke
Uit T Uik ®

its projection on the surface,

3
> Mol - 77 ]
—\ 7 _ -n m= X2
(Pﬁv)i,j,k - Ui’j’k - _ 2 Ni7j7k -
‘ N z',j,kH
and g,
Y 2 2 S\ 2
05 = 1Nl 2 (1+ 8211 (Pg)] 1) -
where square brackets represent the component of the vec- © ‘ I
tor. To compute the divergence, we use backward differ- e - -
ences, T o
- ~ (b) 8 = 0 (Isotropic diffusion)
Vo dijp = Wigk[l] = Tik[l] +
U)L, k2] — W o1k (2] + Regarding the CPU time, for the tori (12500 pixels), it took
W 5, 6[3] — Wi 5 k-1 [3] less than 2 scconds for 20 iterations. Plcasc note that we

uscd a color map from red to blue in order to better sce
how the the discontinuities are treated. Regarding the noise
level, we have added a Gaussian noise with (o = 40) to the

grey level images which scalar range is (0,256). [h] For the
We usc a time stcp ¢ adjusted accordingly to scction 3.3.

The code is made i m C++ using the librarics developed in . .

our lab. For the visualization, we uscd the marching cubes Original noisy image Tsotropic diffusion
algorithm [12] to obtain a triangulation from our implicit

representation of the surface, and draw the data on this sur-
face. This was made using VTK.
4.2 Examples
=0.1

We present in this subsection few figures that illustrate the L1 anisotropic diffusion
regularization of noisy data on various implicitly defined
curves and surfaces. The results are given with various val-
ues of the parameter 3. Note how the regularization of the
data is done isotropically or anisotropically depending on
the value of this parameter.

We switch forward differences and backward differences to
avoid numerical problems. Finally, the flow implementation
is:

1 BHN,J ’”H Py)
u?ji —u’]k—l—At \%

\% g,f] k - V gz,],k

7 ],L

Figurc 4: Synthetic image on the torus regularized with dif-
ferent 3

- i . o Ella image, illustrated in Fig. ( 5) and defined in a solid that
For the next set of images: the red curve is the original func- looks like a quadratic, the image is much bigger (2744000

tion, the green curve is obtained by adding noise, and the pixels). The time to compute 20 iterations was almost 3.5

blue curve is after regularization. For images (a) and (b), minutes in a 386 sun, 260 MB in RAM. We can see that in
we added a Gaussian noise with o = 15.
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strongly noised images like these, where anisotropic regu-
larization treat some noise as part of the image discontinu-
ities (the points under the left eye, for example) the regular-
ization with 3 = 0.1 performs better.

Original noisy image 8 = 0 (Isotropic diffusion)

68=0.1
and detail

Anisotropic diffusion
and detail

Figure 5: Ella image regularized with different 3

Finally, for a slice from a cortex (97x222x143) acquired at
IRMf Center of Marscille (N. Wotawa together with J.L.
Anton and his colleagues are gratefully acknowledged for
their support) it took less than 10 minutes to compute these
results (fig 6). This is a retinotopic map i.e a neural repre-
sentation within the visual cortex that preserves the spatial
layout of the retina image. Notice the red holes in the noisy
image. The small holes have to be filled in the map. Our
approach allows to fill in these holes while preserving the
important borders. While the isotropic smoothing also per-
forms this task, it doesn’t allow to preserve important infor-
mation like the blue zone in the extreme right. With the L
anisotropic smoothing 4 la Bertalmio et al, the outer borders
are thinner, but the inner holes rest. Our approach allows
us to deal with more degree of freedom in the process to
manage the weighting between the isotropy and anisotropy
processes. Choosing beta in a range from 0.1 to 0.5 allows
to produce a whole set of interesting and better results since
the blue zone is kept and the holes are filled in.

original noisy image
on the left cortex

g=05

L1 anisotropic diffusion

Figure 6: Retinotopic images regularized with different 3

5 Summary and conclusions

In this paper, we have first clarificd the link that cxists
between the the intrinsic Polyakov action of the Beltrami
framework and the implicit harmonic energy functional .
Tt is found that although the functionals are basically the
same, there are differences in the way various problems are
formulated and consequently in the way the functionals are
applied.

We used the geometrical understanding of the flat Beltrami
flow and gencralized it to a denoising flow over implicitly
defined curves and surfaces. It is shown that this flow de-
pends on @ which encodes the ratio between the data and
spatial units. This parameter controls the edge-preserving
characteristic of the flow. The Beltrami flow is shown to act
as the linear diffusion (L.-norm) in the limit 3 — 0 and
to the strongly edge preserving diffusion (L-norm) in the
limit 8 — oo (up to time scaling).

This work opens interesting perspectives in some important
applications such as the inverse EEG-MEG problem. See
for instance the work presented in [6] where the authors
are interested by localizing cortex activity from EEG/MEG
measurements. The PDE associated to the inverse problem
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includes a regularization term on the implicitly defined sur-
face of the cortex. It could certainly be of interest to apply
the implicit Beltrami flow, we developed, to regularize such
data defined on implicit cortex surface. It will also be of
great interest to compare our result to the methods devel-
oped to regularize data defined on triangulated surfaces. For
more details, we refer the interested reader to our incom-
ing research report where the intrinsic formulation and the
derivation of the implicit Beltrami flow from a variational
point of view are also presented (see [1] for details).
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