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Abstract

Many sensing techniques and image processing applica-
tions are characterized by noisy, or corrupted, image data.
Anisotropic diffusion is a popular, and theoretically well
understood, technique for denoising such images. Diffu-
sion approaches however require the selection of an “edge
stopping” function, the definition of which is typically ad
hoc. We exploit and extend recent work on the statistics
of natural images to define principled edge stopping func-
tions for different types of imagery. We consider a variety
of anisotropic diffusion schemes and note that they compute
spatial derivatives at fixed scales from which we estimate
the appropriate algorithm-specific image statistics. Going
beyond traditional work on image statistics, we also model
the statistics of the eigenvalues of the local structure tensor.
Novel edge-stopping functions are derived from these image
statistics giving a principled way of formulating anisotropic
diffusion problems in which all edge-stopping parameters
are learned from training data.

1 Introduction

We consider the problem of reconstructing a high-quality
image from a single noisy example. Optimal solutions to
this problem require knowledge of the noise statistics and
the spatial statistics of the “true” image. We focus on sit-
uations in which we can learn these image statistics from
examples and then show how they can be used for denois-
ing. In doing so we make connections between Bayesian
inference, image statistics, and anisotropic diffusion. These
insights lead to new edge-stopping functions for diffusion
algorithms which are derived from a sound statistical basis.
In particular, the parameters of these algorithms are auto-
matically learned from training data.

Anisotropic diffusion has become a widely used tech-
nique with a well understood computational theory (see
e.g. [27]). It has been used for various applications (e.g.
[3, 11, 25]) and there are many different implementation
approaches. Besides the simple, conventional, two-level ex-
plicit finite-difference schemes [10, 23, 27, 29] as used here,

there are, for instance, semi-implicit approaches [9], multi-
grid methods [1] or adaptive finite element techniques [4].

Central to the technique is a “diffusivity” or “edge stop-
ping” function that controls the degree of image smoothing.
Despite the mathematical rigor of current anisotropic diffu-
sion techniques, the choice of this function is typically ad
hoc. Additionally, all of these functions have parameters
(e.g. scale parameters) which influence the enhancement
result and must be tuned in some way (typically by hand).
Black and Sapiro [7] used local image statistics to automat-
ically set some of the relevant parameters. We go a step
further and use learned image statistics to design both the
edge-stopping function and its parameters in a principled,
automatic, way. While we focus on images of man-made
scenes here, the method is general and can be applied to
other classes of imagery such as natural scenes where the
spatial statistics are easily learned from training data.

The statistics of natural images have recently received a
great deal of attention [17, 18, 19, 21, 22] and a number of
authors have shown how they can be exploited for denois-
ing [8, 30], edge detection [13, 17], and tracking [24]. Most
work has looked at the spatial statistics of images in terms of
empirical probability distributions (normalized histograms)
of first derivative filters. Many authors have observed the
non-Gaussian nature and scale invariance of these statis-
tics. We observe that, if these empirical statistics are to
be exploited in an algorithm, then they must correspond to
the computational implementation of the filters in that al-
gorithm. In particular, anisotropic diffusion is often formu-
lated as in terms of a continuous partial differential equation
(PDE) which is then discretized. Different discretizations
result in algorithms with different filter kernels.

In a probabilistic model, these spatial statistics represent
the prior probability of image filter responses. In addition to
this prior term we can model a likelihood, or data term that
encodes the conditional probability of observing a noisy im-
age given the true image. Using training data with corre-
sponding smooth and noisy image pairs, we learn a statisti-
cal model of the deviations between the pairs; i.e. the (non-
Gaussian) observation noise.

The prior and the likelihood could then be exploited in
a Bayesian formulation of the image reconstruction prob-
lem. Optimization of such a formulation would give a max-
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Figure 1: Example images (see text). Top left: high quality
image. Top right: lower quality image. Below: sub-region
of images above.

imum a posteriori estimate of the true image but would
require expensive stochastic optimization methods such as
simulated annealing. Instead we formulate a non-optimal,
but deterministic, problem and minimize the negative log-
arithm of the Bayesian formulation. We note that this cor-
responds to a standard objective function formulation used
for anisotropic diffusion. Abandoning a Bayesian interpre-
tation, we are free to formulate this objective function ei-
ther with or without a data term. While the data term helps
prevent the smoothed image from deviating inappropriately
from the original, diffusion schemes commonly omit it.

Our automatic approach derives a statistically motivated
edge-stopping function from training data and achieves
competitive results compared with traditional, hand-tuned,
methods. We start with a particular discretization of a con-
tinuous PDE and then compute the correct algorithm spe-
cific statistics from a set of training images. For images of
“man-made” scenes we find similar statistics to those pre-
viously reported [14, 18] and show that a probabilistic mix-
ture of a t-distribution and a normal distribution models this
data well. Furthermore, we extend results in image statis-
tics to capture locally oriented image structure by modeling
the eigenvalues of the structure tensor. We then develop a
novel mechanism for converting the spatial statistics into the
appropriate edge-stopping function. We illustrate the appli-
cation of these methods with various diffusion formulations
and apply them to various images of man-made scenes.

2 Image Statistics

Our approach exploits learned models of image statistics.
While there has been a great deal of recent work on model-
ing the statistics of natural scenes, here we first focus on a
specific class of images for which we can carefully model
the appropriate statistics and measure the results. The re-
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Figure 2: Empirical image noise statistics for silicon chip
images. (a) distribution of image noise (fi − gi). (b) log of
image noise distribution. (c, d) log probability of horizontal
and vertical image derivatives.

sults here however are applicable to general imagery and
we draw connections to natural image statistics.

Consider the images of a silicon structure in Fig. 1 which
are produced by a direct read-write imaging system. The
image on the left is the result of a high quality “scan” and
will form what we consider the “ground truth”. The image
acquisition process is destructive and the higher quality the
scan the more material is removed. Consequently it may be
desirable to work with lower-quality, less destructive, im-
ages such as the one on the right1. From the low-quality
image, the task is to reconstruct a high quality one such that
it approximates the ground truth2. This particular example
has the nice property that the noise comes from a real, but
unknown, process and we know approximately what the re-
covered image should look like.

We begin by measuring the deviation between the high
quality and noisy images. Let g be the “true” image and
let f be the measured image. We can define the generative
model of the image values fi at pixel i as fi = gi +η where
η represents the image noise which is distributed according
to some, as yet, unknown distribution that we will measure
from our training images. Fig. 2a shows the empirical dis-
tribution (normalized histogram) of pixel intensity differ-
ences, fi − gi, between the images. This distribution has
a characteristic shape which is made more readily apparent
by looking at the empirical log probability in Fig. 2b.

We also model the spatial image statistics of g which,
for this initial example, we compute using simple neigh-
borhood differences. This corresponds to a simple deriva-
tive filter and, as we will see later, more appropriate filter
kernels can be exploited for anisotropic filtering. The log
marginal probability of horizontal and vertical derivative fil-
ter responses are shown in Fig. 2c and Fig. 2d respectively.

One might suspect that the spatial statistics observed
here are somehow special to this type of image data. It is in-
teresting to observe, however, that these statistics are com-
mon to wide class of images of man-made objects. Consider
the images of buildings in Fig. 3a, and b 3. Lee and Mum-

1Similar situations arise with other imaging technology such as low-
dosage X-ray or functional MRI.

2The high-quality scan is, itself, only an approximation to the “true”
image which is not observable.

3Images are from the natural image collection [26] available from:

2

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



a b

0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

c d

Figure 3: Images of “man-made” scenes (a, b). Log proba-
bility of horizontal and vertical image derivatives (c, d).
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Figure 4: (a) Synthetic image with statistics similar to
man-made scenes (similar to the “dead-leave” model [18]).
(b) Empirical log probability of the horizontal and vertical
derivatives.

ford [18] note that images such as these have characteristic
spatial statistics and that these are distinct from “natural”
images of, for example, vegetation, water, and sky. The
log probability of horizontal and vertical derivatives in these
images are shown in Fig. 3c and d. Note the similarity with
the spatial statistics in Fig. 2 c and d.

Lee an Mumford explore a “dead leaves” model of image
formation that can account for these and other spatial statis-
tics. We take a similar approach. Consider the synthetic
image in Fig. 4a. This was generated by choosing a ran-
domly sized rectangle, in a random location, with a linear
brightness function the parameters of which were chosen
uniformly over reasonable ranges. The result is a patchwork
of overlapping rectangles with smooth brightness gradients.
The image was then smoothed to simulate the optical blur-
ring of the image discontinuities and then Gaussian noise
was added. The resulting spatial statistics have qualitatively
the same form as those observed above in images of man-
made objects (Fig. 4b). In particular, they have a peak near
zero and then broad “shoulders.”

http://hlab.phys.rug.nl/archive.html

2.1 A Mixture Model of Man-Made Image
Statistics

In this synthetic case above, the filter outputs come from
one of two populations. If there was no additive Gaussian
noise, the smoothed piecewise constant image would give
rise to image statistics that can be well approximated by a t-
distribution [14]. Huang and Mumford fit this t-distribution
to natural images and find that t should be approximately
2.6. Here the image derivatives are perturbed by the addi-
tion of Gaussian noise within the uniform regions. Conse-
quently we propose to model the empirical distribution as a
probabilistic mixture of a t-distribution and a Gaussian.

Let X be a random variable representing the filter re-
sponse for an image (data difference, horizontal derivative,
or vertical derivative). Formally, the probability of a filter
response, p(X = x), is given by the mixture model

p(X = x) =
w

Z
(1 +

x2

σ2
1

)−t + (1 − w)
1√

2πσ2

exp(− x2

2σ2
2

) (1)

where 0 ≤ w ≤ 1 is the mixture proportion of the two
terms and Z is a normalization factor insuring that the first
term integrates to 1.

The first term in the mixture is the t-distribution which
captures the edge statistics and the second term captures the
Gaussian noise. We note that the data noise statistics for
the image in Figure 1 are also well modeled by this mixture
and we exploit this below. This mixture model has four free
parameters which we fit to the marginal distributions: the
mixture proportion w, the degree t, and the two scale terms
σ1 and σ2.

We now formulate the problem of recovering the image
g from f as the maximization of

p(g|f) ∝
∏

i


p(fi|gi)

J∏
j=1

p(nj∇gi)


 (2)

where p(g|f) approximates the posterior probability of the
image g conditioned on the observed, noisy, image f. The
likelihood term, p(fi|gi), at every pixel, i, is defined by
our measured image statistics (e.g. Fig. 2a). The spatial
prior term exploits a Markov Random Field assumption [12]
which defines the prior in terms of local neighborhood prop-
erties. Here it is defined in terms of the spatial derivatives,
∇gi, at a pixel i, in J different directions nj , and uses the
learned image statistics to assess the prior probability.

2.2 Formulating an Objective Function

Maximizing the posterior probability in Eq. 2 is challeng-
ing. Rather than seek an exact, global, solution, we re-cast
the problem as one of minimizing the negative logarithm of
Eq. 2. Our goal here is to construct a simple objective func-
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Figure 5: Mixture model fit to image statistics. Smooth
(dashed) plots show the fit of the mixture of a t-distribution
and a Gaussian to the image statistics from Fig. 2. The neg-
ative logarithm is shown here to illustrate the shape of the
ρ-function. (a) data noise statistics. (b, c) horizontal and
vertical derivative statistics (computed via neighbor differ-
ences). In fitting the mixture model we find the degree of the
t-distribution to be: tdata = 1.43, tdx = 1.27, tdy = 1.22.

tion that can be minimized using gradient descent. That is,
we formulate an objective function

E(g) = −
∑

i

(
log(p(fi|gi)) + λ

J∑
j=1

log(p(nj∇gi))

)
(3)

where we have introduced a weight term λ which accounts
for the confidence one has in the different model terms; this
is common in regularization approaches. In a pure diffusion
scheme, the data term and λ are dropped but one must set
a parameter to stop the algorithm. Either scheme results in
one free parameter that must be determined manually.

Recall that the likelihood and the prior terms are defined
as mixture models. Consequently, the log probability here
does not have a simple form. What we seek is a function,
ρ(x) ≈ − log(p(x)), that is computationally tractable. A
variety of ρ-functions have been proposed for similar image
smoothing problems (see [5] for a review and [6] for the
application of such ρ-functions to diffusion processes).

In contrast to previous work where ad hoc ρ-functions
are used, here we construct ρ-functions that are specific to
the measured image statistics. Toward that end, we first
fit the mixture model to the empirical distributions (using
Matlab’s lsqnonlin function). Fig. 5 shows the fitted model
overlaid on the negative logarithm of these distributions.

To construct a computationally tractable approximation
to the logarithm of this mixture model we model it using a
third order B-spline. The spline can be evaluated and dif-
ferentiated easily at low numerical cost. Using these novel
ρ-functions, our objective function finally becomes

E(g) =
∑

i


ρ0(gi − fi) + λ

J∑
j=1

ρj(|nj∇gi|)

 . (4)

Note, we observe the image statistics to be symmetric and

thus can use either nj∇σgi or |nj∇σgi| in the spatial term.
Local optimization of Eq. 4 is performed using gradient

descent. While simple and effective, this does not guaran-
tee convergence to a global minimum. An analysis of the
resulting computational scheme reveals that it is a discrete
implementation of a diffusion process. We study the nu-
merical properties of this scheme in the following section.
This provides a connection to the diffusion literature where
numerically stable diffusion processes have been studied in
detail. The question is: What is a good scheme and how is
it related to the objective function? Or: How can we ob-
tain the benefits of a numerically stable diffusion scheme
and still exploit the local image statistics? The key idea
will be to pose a computational scheme, determine the cor-
responding filter kernels it implies, and then compute the
image statistics appropriate to that kernel. The result, as
described in the following section, is a statistically and nu-
merically sound scheme in which the edge stopping func-
tion and its parameters are learned from image statistics.

3 Diffusion

In this section we will draw the connection between image
statistics and anisotropic diffusion.

From image statistics to anisotropic diffusion.

We derive a partial differential equation (PDE) from the ob-
jective function in Eq. 4. Toward this end, we convert the
discrete problem into the continuous formulation

E(g,∇g) =
∫
Ω

ρ0(g(x)−f(x))+λ
J∑

j=1

ρj(|nj∇σg(x)|)dx

where x represents an (x, y) image position over the im-
age domain Ω. Rather than the discrete images g and f
we now work with continuous functions g and f . As be-
fore, nj is a unit vector indicating the neighbor direction
and ∇σg =

∫
Ω
ω(x − x′)∇g(x′)dx′ is a smoothed version

of (the ideal) ∇g where ω(·) is the smoothing kernel. Note
that the smoothing denoted by σ is implicit in the choice of
filter kernel used to compute ∇σg.

We minimize E via the calculus of variations, which
leads us to the following optimality criterion

0 = λ∇T
σ

J∑
j=1

ψj(|nT
j ∇σg(x)|)njn

T
j ∇σg(x)−ρ′0(g(x)−f(x)) (5)

where ρ′ denotes the derivative of ρ and we define

ψj(x) = ρ′j(x)/x. (6)

Note that the ρj (or ψj) functions may differ in each direc-
tion, j, as they represent the appropriate image statistics.
ψ(x) is the classic edge-stopping function [6, 20].
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Now, what does Eq. 5 tell us? Let us explore two exam-
ples using different neighborhoods. In a 4-neighborhood the
two neighbor directions are n1 = (1, 0)T and n2 = (0, 1)T .
The first term in Eq. 5 can be rewritten as an anisotropic ker-
nel oriented along the coordinate axes

∇T
σ

(
ψ1(|∂x,σg|) 0

0 ψ2(|∂y,σg|)
)
∇σg.

Alternatively we might use an 8-neighborhood where we
add the diagonal neighbor directions n3 = (

√
2/2,

√
2/2)T

and n4 = (
√

2/2,−√
2/2)T . This gives fully anisotropic

diffusion as the first term in Eq. 5 becomes

∇T
σ

(
ψ1 + 1

2 (ψ3 + ψ4) 1
2 (ψ3 − ψ4)

1
2 (ψ3 − ψ4) ψ2 + 1

2 (ψ3 + ψ4)

)
∇σg.

with an abbreviated notation ψi=̂ψi(|nT
i ∇σg|). In general

the smoothness term is of the form

∇T
σ D∇σg (7)

where D is a symmetric 2 × 2 diffusion tensor.
In the 4-neighborhood case the diagonal diffusion tensor

results in filter kernels oriented along the coordinate axes.
As a result it is not rotationally invariant and may introduce
artifacts. Using the 8-neighborhood we can construct any
symmetric 2 × 2 diffusion tensor and thus are able to rotate
the kernel along any direction.

Please note that the numerical properties of the deriva-
tive operator introduced above are carried over to ∇σ in
this term. Thus there is a one to one correspondence be-
tween the operator used for neighborhood statistics and the
numerical scheme used to implement the diffusion.

The optimality criterion derived in Eq. 5 can be consid-
ered to be the steady state solution of

λ∇T
σ D∇σg − ρ′0(g − f) = ∂tg (8)

using the notation from Eq. 7. This is an anisotropic diffu-
sion equation with a source term. It means that we evolve
an initial image, g(0), under this diffusion. For implemen-
tation convenience we choose simple explicit discretization
of the temporal derivative. The spatial term ∇T

σ D∇σ is dis-
cretized using convolution filters for the derivatives. The
update scheme now reads

g(t+τ) = (1 + τλ∇T
σ D∇σ)g(t) − τρ′0(g

(t) − f) (9)

with the time step size τ . This parameter τ has little effect
on the solution, as long as it is small enough.

Above, we assumed simple [1,−1] derivative filters.
More generally, we adopt the filters

∂x =
1

32


 3 0 −3

10 0 −10
3 0 −3


 , ∂y =

1

32


−3 −10 −3

0 0 0
3 10 3


 (10)

which are recommended in [23, 29]. Thus we get two

update schemes using a 4 neighborhood. We denote the
one using [1,−1] by 2tap and the one using the 3×3-filters
above by 3×3. We refer to [23, 29] for related numerical
issues, including the choice of τ , stability and performance.

Image statistics and the structure tensor.

Typically, the diffusion tensor for rotationally invari-
ant anisotropic diffusion is not constructed via an 8-
neighborhood, but rather via the structure tensor

J = Gφ ∗ ∇σg∇σg
T (11)

=
∑

j

µjejeT
j (12)

where Gφ is a Gaussian kernel with variance φ, µj are the
eigenvalues, and ej are the normalized eigenvectors of J
(c.f. [23, 27, 29]). The eigenvalues are sorted in descending
order by size and can be expressed by

µk = Gφ ∗ (eT
j ∇σg)2. (13)

The diffusion tensor D is now given by

D =
∑

j

d(µj)ejeT
j (14)

where the function d is often chosen in an ad hoc way.
Adopting our approach, we derive d in the same way we

derived ψ in Eq. 6 above. We start by building a normalized
histogram for each eigenvalue and thus estimate the empir-
ical probabilities pj(µj). As before, the negative logarithm
of this gives ρj(µj) and the objective function we derive is

E(g,∇g) =
∫
Ω

ρ0(g(x) − f(x)) + λ
∑

j

ρj(µj)dx.

Via calculus of variations we derive the optimality criterion

0 = λ∇T
σ

∑
j

ρ′j(µj)eje
T
j 2Gφ ∗ ∇σg(x) − ρ′0(g(x) − f(x))

= λ∇T
σ D∇σgφ(x) − ρ′0(g(x) − f(x)) (15)

with the notation gφ := Gφ ∗ g and the diffusion tensor

D = 2
∑

j

ρ′j(µj)ejeT
j .

This criterion is very similar to Eq. 5, but features the fol-
lowing differences: 1. Smoothing is performed along local
eigenvectors e of the structure tensor J rather than fixed di-
rections n. 2. As µ depends on squared derivatives, the
diffusivity terms in D are built using ρ′ instead of ψ (see
Eq. 6). 3. The smoothing kernel Gφ is carried over to the
gradient of g.

Interestingly, the statistics of the eigenvalues µj , can also
be modeled by the mixture model from Sec. 2.1. We note,
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Figure 6: Image statistics (negative logarithm) using eigen-
values µ computed with the derivative filters given in
Eq. 10. Smooth (dashed) plots show the fit of the mixture
model. a : µ1. b : µ2 using a 3 × 3 binomial Gφ. c : µ1 for
φ = 0 (µ2 is not used in this case).

however, that µ1 = (∇σg)2 when φ = 0 and consequently
we replace x2 in Eq. 1 by µ (note that µ is always positive
or zero)

p(µ) =
w

Z
(1 +

µ

σ2
1

)−t + (1 − w)
1√

2πσ2

exp(− µ

2σ2
2

). (16)

The negative logarithm of the histograms of the eigenvalues
and their fits by this mixture model are plotted in Fig. 6.
This provides a novel view of oriented image statistics in
terms of the structure tensor.

This optimality criterion is similar to that of standard
usual anisotropic diffusion with the only difference being
that the diffusion update ∇T D∇g is derived from data
smoothed by Gφ at each time step. Note that, when we
choose φ = 0, the criterion leads to isotropic nonlinear dif-
fusion rather than anisotropic diffusion. This is due to the
fact, that, in this case, ∇σg is the first eigenvector of J and
thus of D. Consequently D∇g = ρ′1(µ1)∇g and the diffu-
sion tensor collapses to a scalar diffusivity.

For the implementation of this diffusion, we use the
scheme proposed in [23, 29] with the 3 × 3-derivative fil-
ters in Eq. 10 and introduce Gφ as needed. For Gφ we use
either 1 or a 3 × 3-binomial filter and refer to the resulting
schemes as ST1 and ST3. The update scheme then reads as

g(t+τ) = (g(t) + τλ∇T
σ D∇σGφ ∗ g(t)) − τρ′0(g(t) − f). (17)

Summary of the method.

To summarize the approach, one first chooses a diffusion
scheme. The discretization of the continuous problem then
defines the appropriate smoothing and derivative kernels.
These are then used in conjunction with training data to
build the empirical prior distributions, p(nj∇σgi) or p(µj).
In the case of “man-made” images, we fit the proposed mix-
ture model to the empirical distribution (other image data
may require different models). We then approximate the
negative log of this model with a B-spline to derive prac-
tical ρ, ρ′ and ψ functions for all terms. Finally, Eq. 9 or

Eq. 17 give the deterministic update scheme.

4 Results

We illustrate the ideas here with denoising results for a va-
riety of “man-made” images and compare different update
schemes described in Sec. 3. Evaluating the performance
of anisotropic diffusion schemes is difficult, consequently
we focus here on demonstrating how various schemes be-
have with the automatically constructed diffusivities. We
do not claim “better” reconstructions than previous meth-
ods. Rather our focus is on providing previous diffusion
schemes with statistically grounded, and automatically gen-
erated, diffusivities. The results are qualitatively what one
would expect but have the advantage of not requiring the
hand tuning of parameters.

Fig. 1 presents noisy and “clean” micro-machining im-
ages. Our goal is recover the clean image by smoothing
the noisy image in Fig. 1 in a way that exploits our knowl-
edge of the image noise and underlying spatial statistics.
We compute the data noise statistics and, for the 2tap, 3×3,
ST1 and ST3 schemes, the appropriate spatial statistics.
From these we derive the 4 optimization schemes in which
the edge-stopping-functions are automatically determined.

We also compare these methods with a usual scheme [23,
29] in whichGφ does not appear outside the tensor. Here we
use the edge-stopping functions derived from the structure
tensor (ST3) and refer to this scheme as AD3.

Fig. 8 shows a variety of reconstruction results with, and
without, the data term. With the data term, we must set
the weight parameter λ (see Eq. 3) and we illustrate results
for various settings. In the pure diffusion case we must
set a stopping time T (here set to be T = 1000). For all
schemes that use the derivative kernels from Eq. 10, we ob-
serve checkerboard-like artifacts as known from [29]. They
can be suppressed using a fourth order term (compare [23]
and Fig. 7). This term can also be set automatically via a
statistical prior term with �g in the same way as the diffu-
sion itself, but this is beyond the scope of this paper.

For the results without a data term (left column) we ob-
serve a smoother behavior than for the other columns. As
expected, the smaller we choose λ, the lower the influence
of the smoothing term and the closer the solution stays to
the input data.

We have argued that images such as those in Fig. 1 and
Fig. 3 have similar spatial statistics. While we do not know
the data noise for the images in Fig. 3 we can still exploit
the learned image statistics for anisotropic smoothing that
is appropriate to this class of images. Here we run the dif-
fusion without a source term and show the results for stop-
ping time T = 1000. Details of results for two sub-regions
of the image in Fig. 3a are shown in Fig. 9. We used the
spatial statistics derived from the noiseless image in Fig. 1.
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Figure 7: Denoising results using the estimated ρ-functions,
λ = 0.5, and additional 5% of a fourth order correction term
[23]: (compare Fig. 8 for results without this term).

The learned edge-stopping functions (ρ′ or ψ depending
on the algorithm) do a good job of preserving gray-level
discontinuities. As expected we observe staircase artifacts
where non-horizontal, non-vertical edges occur (see Fig. 9,
rows 2 and 3) for the non-rotation-invariant schemes 2tap
and 3×3.

5 Summary, Conclusion and Outlook

In this paper we develop and exploit the connection between
image statistics and image reconstruction via anisotropic
diffusion. This connection yields a principled way to auto-
matically construct an edge-stopping function using the ap-
propriate image statistics. In particular, we have considered
a class of man-made images for which we show the image
statistics to be well modeled by a mixture of a t-distribution
and a normal distribution. Moreover, we modeled the statis-
tics of both standard derivative kernels and the eigenvalues
of the structure tensor. In recent work we have observed
that the mixture model proposed here can also be applied to
images of natural scenes.

From the statistical models we derive novel ρ-functions
which can be used in a gradient descent optimization
scheme. While many such ρ-functions have been proposed,
to our knowledge, this is the first time one has been moti-
vated by image statistics in this way. While more complex
than previous such functions we derive a computationally
tractable form by modeling the ρ-function (and its related
diffusivity ψ(x)) using B-splines. It is worth noting that
these ρ-functions are specialized to particular image classes
and even to particular image dimensions as appropriate.

The coupling between the image statistics and a particu-
lar diffusion method is quite deep. In particular, we showed
that the properties of derivative operators used to build the
spatial prior (or smoothness) term are carried over from the
diffusion scheme; i.e. the derivatives used to compute the
image statistics and the derivatives used in the diffusion
have to act on the same scale. This leads to the notion of
algorithm-specific image statistics as introduced here.

We are currently exploring the use of image statistics to
distinguish between different classes of images (e.g. vege-

Figure 8: Denoising results using ρ-functions estimated
from the images shown in Fig. 1. Top to bottom: results
using 2tap, 3×3, ST1, ST3, and AD3. Left column: results
without a data term, T = 1000. Middle and right columns:
results using λ = 0.5 and λ = 1.

tation versus man-made) with the goal of adapting the dif-
fusion method to the local statistics (c.f. [2, 7]). In this
way we hope to automatically add higher-level contextual
information into the diffusion process.

Acknowledgments. We thank Yoram Gat, Scott Ettinger,
and Stefan Roth for discussions on anisotropic diffusion.
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