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Abstract

We aim at using color information to classify the physical
nature of edges in video. To achieve physics-based edge
classification, we first propose a novel approach to color
edge detection by automatic noise-adaptive thresholding
derived from sensor noise analysis. Then, we present a tax-
onomy on color edge types. As a result, a parameter-free
edge classifier is obtained labeling color transitions into
one of the following types: (1) shadow-geometry, (2) high-
light edges, (3) material edges. The proposed method is
empirically verified on images showing complex real world
scenes.

1 Introduction

The color of objects vary with changes in illuminant color
and viewing conditions. As a consequence, color bound-
aries are generated by a large variety of imaging vari-
ables such as shadows, highlights, illumination and mate-
rial changes. Therefore, classifying the physical nature of
edges is useful for a large number of applications such as
video segmentation, video indexing and content recogni-
tion, where corresponding edge types (e.g. material tran-
sitions) from distinct image frames are selected for image
matching while discounting other “accidental” edge types
(e.g. shadows and highlight transitions). In this paper, we
consider the problem of discriminating different edge types
based on local surface reflectance properties.

Edge detection in intensity images is well established,
[1], [2] for example. In general, to achieve color edge
detection, these intensity-based edge detection techniques
are extended by taking the sum or Euclidean distance from
the individual gradient maps. Further, to obtain robustness
against illumination effects, Tsang and Tsang [3] show that
edge detection in the hue color space is effective in sup-
pressing specular reflection. However, no edge classifica-
tion scheme is provided. Another approach is given by
Zhang and Bergholm [4] to classify edges into diffuse and
sharp edges. The idea is that illumination phenomena, such
as indoor shadows and reflections on glossy surfaces tend

to cause gradual transitions, whereas edges between distinct
objects tend to be sharp. A similar but more elaborated ap-
proach is given by Stander [5] for detecting moving shad-
ows. However, the method is based on a complex geometry
model restricted to the detection of cast shadows. Further-
more, all of the above mentioned classification techniques
are based on color edge detection, which is, in general, de-
pendent on the appropriate setting of threshold values to de-
termine the edge maps. This threshold is found, in general,
by trial-and-error. For general video segmentation and con-
tent recognition, manual settings of thresholds should be
avoided. Therefore, an automatic way for threshold value
selection is required.

In this paper, we aim at automatically classifying the
physical nature of edges in images using color and re-
flectance information. To achieve this, we first propose a
novel framework to compute edges by automatic gradient
thresholding. Then, we present a taxonomy on edge types
based upon the sensitivity of edges with respect to different
imaging variables. Finally, a parameter-free edge classifier
is provided labeling color transitions into one of the follow-
ing types: (1) shadow-geometry edges, (2) highlight edges,
(3) material edges. The proposed method is empirically ver-
ified on video sequences recorded from complex real world
scenes.

The paper is organized as follows. In section 2, the ba-
sics on reflection are discussed first. Further, different color
models are presented and a taxonomy on color invariance is
given. In section 3, computational methods are proposed
to get to color invariant gradients. Next, in section 4, er-
ror estimation and propagation is discussed. In section 5,
the color edge classification scheme is proposed. Finally, in
section 6, experiments are conducted.

2 Photometric Invariance

In Gevers and Smeulders [6] different color models are pro-
posed which show some degree of invariance for the pur-
pose of object recognition. In this paper, we use the differ-
ent color models for the purpose of color edge classifica-
tion in video sequences. Therefore, in this section, we first
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reconsider the basic reflection definitions in section 2.1.
Then, we discuss the different color models in section 2.2
and their sensitivity with respect to the imaging conditions.
We conclude this section with a taxonomy on photometric
invariance.

2.1 Basic Reflection Definitions

The reflection from inhomogeneous dielectric materials un-
der white or spectrally smooth illumination is given by [7]

wy, = Gg(7, §’)E/ B\ F:(\)d\ + Gs (7,8 6)ESF
A

(1
for wi, € {R,G, B} giving the red, green and blue sen-
sor response of an infinitesimal matte surface patch under
the assumption of a white or spectrally smooth light source.
Spectral sensitivities are given by fr(\), fa(\) and fg(A\)
respectively, where A denotes the wavelength. B(\) is the
surface albedo. Further, E denotes the white light source
and S is the Fresnel reflectance. These are constant over the
wavelengths assuming white or spectrally smooth illumina-
tion (i.e. approximately equal/smooth energy density for
all wavelengths within the visible spectrum) and the neutral
interface reflection (NIR) model (i.e. S(\) has a constant
value independent of the wavelength). Consequently, we
have E(\) = E and S(\) = S. Further, 7iis the surface
patch normal, $is the direction of the illumination source,
and ¥is the direction of the viewer. Finally, geometric terms
G B and G5 denote the geometric dependencies on the body
and surface reflection component.

2.2 Color Models

We focus on normalized color ¢ co defined by [6]

a(R,G,B) = arctan(g) 2)
G
c(R,G,B) = arctan(E). 3)

Further, we consider the two-dimensional opponent color
space (leaving out the intensity component here) defined by

o1(R,G,B) = (R—G)/2 “)

02(R,G,B) = B/2 — (R + G)/A. )

The opponent color space is well-known and has its funda-
mentals in human perception.
Consider the body reflection term of eq. ( 1)

Bu(®) = G (2, T, YE() A B@NF(VdA  (6)

giving the kth sensor response of an infinitesimal matte sur-
face patch under the assumption of a white light source.
Again, for a color camera we have k = {R, G, B}.

The body reflection component describes the way light
interacts with a dull surface. The light spectrum E falls on
a surface B. The geometric and photometric properties of
the body reflection depends on many factors. If we assume
a random distribution of the pigments, the light exits in ran-
dom directions from the body. In this simple case, the dis-
tribution of exiting light can be described by Lambert’s law.
Lambertian reflection models dull, matte surfaces which ap-
pear equally bright regardless from angle they are viewed.
They reflect light with equal intensity in all directions. As a
consequence, a uniformly colored surface which is curved
(i.e. varying surface orientation) gives rise to a broad vari-
ance of RG B values. The same argument holds for inten-
sity 1.

In contrast, the ¢ c2 color model is a photometric invari-
ant for matte, dull objects cf. eq. ( 6) and eqs. ( 2) and
(3)

c1(Br, Ba, BB) =
Gp(h, 3EKR(A)
GB(ﬁv 3E[(B ()\)
C2 (ﬂRv ﬂGv ﬂB) =
GB(? 7’E]ﬁ:G(/\)) _ arctan(B:G()\)
GB(TL, :}EIXB()\) I&B()\)

§
arctan( ) = arctan( .
¢

arctan(

where
Ke(\) = / B(ANFo(MNdMforC € {R,G,B} (9)
A

is the compact formulation depending on the sensors and
surface albedo only. Note that the dependency on illumi-
nation, object pose, camera position, and object shape is
factored out i.e. cjcs is only dependent on the sensors and
the surface albedo.

For shiny surfaces, 0102 is independent of highlights as
follows from substituting eq. ( 1) in eqgs. (4) and ( 5)

01 (wr,wg,wB) =

(Gp (7, §)E/ B(\)Fr(\)dA + Gs(i, 5,7)ESF)—
A

(Gp(7A, YE / B(\)Fg(\)dX + Gs(ii, 5, 0)ESF))/2 =
A
(G, §)E/ B\ Fr(\)d\ — Gp(#i, 5)E / B(\)Fg(\)d\)/2

A A 10y
Equal argument also holds for 0;. Note that 00 is still
dependent on G'5(7i, ¥ and E, and consequently being sen-
sitive to object geometry and shading.

In conclusion, cicy varies with a change in material
and highlights, 0102 with a change in material and object-
geometry, and RG B varies with a change in material, high-
lights and object-geometry.
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3 Photometric I nvariant Gradients

A number of well established techniques for edge detection
in ordinary (one-band) images is available, [1], [2]. How-
ever, for color edge detection, the computation of the gra-
dient magnitude is more complex due to the multi-valued
nature of a color image. In this paper, we compute the dis-
tance in color space by the Euclidean metric over the vari-
ous channels.

Further, the color channels of an image are differentiated
in the z and y direction by applying the Canny’s edge de-
tector (derivative of the Gaussian) with non-maximum sup-
pression in a standard way to obtain the gradient magnitudes

at local edge maxima denoted by (%—Cm , %—Cy) . Here, ¢; is the
notation for a particular color channel.

Then, the modulus of the gradient V F' of the color planes
is obtained by taking the Euclidean distance

o E[E -G o

i=1
where N is the dimensionality of the color space.

Often false edges are introduced due to sensor noise.
These false edges are usually eliminated by using a thresh-
old value determining the minimum acceptable gradient
modulus. In this paper, we aim at providing a computational
framework to determine automatically this local threshold
value. To achieve this, sensor noise characteristics on color
transformation are studied in the next section.

4 Error Propagation

In this paper, we assume that the noise is normally dis-
tributed, because the most frequently occurring noise is ad-
ditive Gaussian noise. It is widely used to model thermal
noise and is the limiting behavior of photon counting noise
and film grain noise.

Then, let the result of a number of measurements of a
random quantity u be given by

U = Upest £ 0y (12)

where upes 1S the average value which is the best estimate
for the quantity v and o, the standard deviation denoting
the uncertainty or error in the measurement of u. Suppose
that u, - - -, w are measured with corresponding uncertain-
ties 0y, -+, 0w, and that the measured values are used to
compute the function ¢(u,---,w). If the uncertainties in
u, - - - ,w are independent, random and relatively small, then
the standard deviation or the so-called predicted uncertainty
in g is given by [8]

2 2
aq:ﬂgau) o (20)

where 0g/0u and 0q/0w are the partial derivatives of ¢
with respect to v and w. In any case, the uncertainty in q is
never larger than the ordinary sum

9q
ou

0
‘O’u+""—q

aw O-uh (14)

oqg‘

if and only if the uncertainties o, -, 0, are relatively
small. Assuming normally distributed random quantities,
a way to calculate the standard deviations og, og, and op
is to compute the mean and variance estimates derived from
a homogeneously colored surface patch in an image under
controlled imaging conditions. Although eqs. (13) and (14)
are deduced for random errors, they have been used as uni-
versal formulas for all kinds of errors.

After calculating the noise variance, the uncertainty of
c1¢2 can be found by substitution of (2) and (3) into (13) as

_ |R%0% + Bo?,

o =\ Rt B2 5)

_ |G%0% + Bog

Ocy = (G2 + B?)? (16)

where 0%, 0% and o3, denote the sensor noise variance, and
0., and o, represent the uncertainty (standard deviation)
in the normalized red and green color components, respec-
tively. From the analytical study of egs. (15) and (16), it can
be derived that normalized color becomes unstable around
the black point R = G = B = 0.

Further, the uncertainty of the 0; 0, opponent coordinates

is given as
o —11/02 + 02 (17)
o1 — 2 G R
L /s 2 2
Oop = 3 o +oa+o% (18)

which is relatively stable at all RG'B points.

Further, to propagate the uncertainties from these color
components through the Gaussian gradient modulus, the un-
certainty in the gradient modulus is determined by convolv-
ing the confidence map with the Gaussian coefficients. This
results from the uncertainty in sums and differences as fol-
lows [8]. If several quantities

Uy, -, UN (19)
are measured with uncertainties
Od1y" "y Oay (20)
to compute

q=1y+dz-+ (dy-1 +in) 2y
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then the uncertainty in the computed value of ¢ is the sum
Oqg = 0qy + Cap... +Can_y + Ty (22)
As a consequence, we obtain:

> [(0cif0x) - 0o, 102 + (0ci/OY) - Toc, joy]
V22 [(0ci/0x) + (9ci [D)] 7
(23)

where ¢ is the dimensionality of the color space and ¢; is the
notation for particular color channels. In this way, the ef-
fect of measurement uncertainty due to noise is propagated
through the color gradients.

ovr <

5 Automatic Edge Thresholding and
Classification

In this section, techniques are presented to automatically
select the gradient threshold value. The threshold value is
computed locally in an adaptive way. In fact, the amount of
uncertainty at image locations will steer the threshold value.
Finally, a color edge taxonomy is presented on which the
novel rule-based edge classifier is based on.

5.1 Parameter-Free Edge Thresholding

From (23) the uncertainty associated with the gradient mod-
ulus is known. Color edges are thresholded taking this un-
certainty into account. As we assume that the noise is nor-
mally distributed (Gauss distribution), it is well-known that
99% of the values fall within a 30 margin. If a gradient
modulus is detected which exceeds 3ov g, then there is a
chance of 1% that this gradient modulus corresponds to no
color transition:

1 if VF(z,y) > 3ovr(z,y)

VC(z,y) = { 0 otherwise .

deriving a local threshold value.

The novelty of our approach is that the threshold value
is automatically and locally adapted to the amount of un-
certainty of the color invariant edge. For example, for cjcs
edges (unstable near the black point) at pixels with low in-
tensity, the threshold value is automatically augmented. In
this way, a local, noise-adaptive and automatic thresholding
scheme is obtained.

5.2 Reflectance Based Edge Classification

In the previous sections, the effect of varying imaging
circumstances have been analyzed first: cjcy varies with
a change in material and highlights, 0,0 with a change
in material and object geometry, and RGB varies with a

change in material, highlights and object geometry. Fur-
ther, color invariant edges have been computed with their
associated uncertainty.

As a consequence, we conclude that VCrgp (denoting
the edge map in RG B-space with noise-adaptive thresh-
olding corresponding to eq. ( 24)) measures the presence
of (1) shadow or geometry edges, (2) highlight edges, (3)
material edges. Further, VC,,., (denoting the edge map in
c1¢2 normalized space) measures the presence of (2) high-
light edges, (3) material edges. Finally, VC,,,, measures
the presence of (1) shadow or geometry edges, (3) material
edges.

In this way, a taxonomy of color edge types is obtained,
see figure 1. The color edge taxonomy is based upon the
sensitivity of the color gradients with respect to the follow-
ing imaging conditions: object geometry, shadows, high-
lights, and material.

shape edges| shadow edges | highlight edges | material edges
YCRGR + + + +
YCcic2 — - + +
YCola2 + + - +

Figure 1: Taxonomy of color edges based upon the sensitivity
of the different color edge model swith respect to theimaging
conditions. - denotes invariant and + denotes sensitivity of
the color edge model to the imaging condition.

Then the rule-based reflectance classifier is as follows:

IF VCrap # 0 AND VCe,0, =0

THEN classify as shadow or geometry edge
ELSE

IF VC,,e, # 0 AND VCy,,, =0

THEN classify as highlight edge

ELSE

classify as material edge

only computed at color edge maxima using non-maxima
suppression. Note again that the color edges are computed
by eq. ( 24). In this way, color edges and threshold values
are automatically calculated in a parameter-free setting.

6 Experiments

In this paper, experiments are conducted on still images (for
illustration purposes) and video sequences recorded from
complex scenes. To this end, in section 6.1, we focus on
color images taken from simple objects. In section 6.2,
video sequences are taken into account.
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6.1 Automatic Edge Classification in Still Im-
ages

For this experiment, an image is taken of two homoge-
neously colored plastic toys (red and green) against a blue
paper background. The experiments are performed using a
Sony 3CCD color camera XC-003P, Matrox Corona Frame-
grabber, and four Osram 18 Watt “Lumilux deLuxe day-
light” fluorescent light sources.

(a) Image

() Veyeo ©0v,,., (d) Thres.

Figure 2: Edgesin normalized (b) color space, and the as-
sociated uncertainty (c). In (d), the result of manual global
thresholding.

The image is shown in figure 2.a. The red object shows
two circles enclosing a number of small specularities. A
homogeneous, almost black, shadow region is visible at the
right side of the green toy. The edge map, computed in
the normalized color space, is shown in figure 2.b. As ex-
pected, the normalized color is sensitive to highlights. This
results in the specularities at the red object. Further, it is
experimentally established that the normalized color space
is highly unstable at dark colors (i.e. low intensity). The
uncertainty map of c;ce edges is shown in figure 2.c. Note
that uncertain values are depicted in black. In this way, re-
gions with high intensity, in the original image, correspond
to dark regions in the uncertainty map oy, . In figure 2.d,
the edge map is shown by thresholding the normalized color
gradient by using a global threshold value. The most opti-
mal threshold value has been selected by visual inspection.
As color invariant instabilities are not stationary over the
image (i.e. at each image location a different threshold is
required), the specularities on the red cup having gradient
moduli below the threshold value are shown up, whereas the
noise edges in the dark region have gradient moduli values
exceeding the threshold value. The experiment shows the
inappropriateness of the use of a global (manual) threshold
due to the local instabilities of color invariant edges.

The result of the newly proposed noise-adaptive thresh-
olding scheme is shown in figure 3. In figure figure 3.a
the gradient is shown computed for the RGB color space.
The image shows that many false edges are correctly sup-
pressed while edges caused by material, geometry and spec-
ularity transitions are retained. Figure 3.b shows the result

(b) Ve (©) Vojo0o (d) Label-

ing

(@) VRaB

Figure 3: Results of automatic local thresholding in sen-
sor (a), normalized (b) and opponent (c) color space. Fig-
ure (d) shows the result of color edge classification. Here,
black edges are highlight edges, blue edges are geometry or
shadow edges, red edges are material transitions.

for normalized color space. Here, noise-adaptive threshold-
ing correctly discards the edges present in the edge map of
figure 2.b while retaining the highlight edges on the bottom
of the red cup. Figure 3.c shows the result of automatic
thresholding for the opponent color space. As expected, the
color space is invariant for highlights, which consequently
do not show up in the edge map. Note that the opponent
color space still depends on shadows and object geometry.
Finally, in figure 3.d, the result of automatic edge labeling
is shown. Black edges correspond to highlight edges, red
edges to material transitions, and blue edges to geometry
changes. It is shown that the proposed method successfully
classifies color edges in still images without the need for
parameter settings.

6.2 Automatic Edge Classification in Video

In figure 4.a, six frames are shown from a standard video
often used as a test sequence in the literature. It shows a per-
son against a textured background playing ping-pong. The
size of the image is 260x135. The images are of low quality.
The frames are clearly contaminated by shadows, shading
and inter-reflections. Note that each individual object-parts
(i.e. T-shirt, wall and table) is painted homogeneously with
a distinct color. Further, that the wall is highly textured.
The results of the proposed reflectance based edge classi-
fier are shown in figure 4.b. As no highlights are present
in the scene, the edge classifier discriminates edges in the
color image to be one of the following types: (1) mate-
rial edges shown in figure 4.c, and (2) shadow or geom-
etry edges shown in figure 4.d. As one can see, the cast
shadow of the person on the wall is well detected and clas-
sified. Also the geometry transitions on the T-shirt have
been classified successfully. Material edges, as shown in
figure 4.c, are well-defined ignoring radiometrical effects.
Only inter-reflections and smoothly changing shading dis-
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Figure 4: Frames from a video showing a person against a textured background playing ping-pong. From left to
right column. a. Original color frame. b. Classified edges. ¢. Material edges. d. Shadow and geometry edges.

turb the edge map slightly. From the observed results, it is
concluded that the edge classifier discriminates the various
edge types satisfactory. Only minor errors are caused when
intensity change smoothly over a wide image range due to
the local behavior of the edge classifier.

7 Conclusion

Color information has been used to classify the physical
nature of a color edge. A novel framework has been pro-
posed for color edge detection and automatic noise-adaptive
thresholding. The framework is derived from sensor noise
analysis and propagation. Further, a parameter-free color
edge classifier has been proposed labeling color transitions
into the following types: (1) shadow, geometry or shading
edges, (2) highlight edges, (3) material edges. From the the-
oretical and experimental results it is concluded that pro-
posed method successfully classifies color edges in video
without the need for parameter settings.
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